PoS(ICRC2021)232 International th 12–23 July 2021 July 12–23 37 SICS CONFERENCE SICS CONFERENCE Berlin | Germany Berlin Berlin | Germany Conference Ray Cosmic ICRC 2021 THE ASTROPARTICLE PHY ICRC 2021 THEASTROPARTICLE PHY https://pos.sissa.it/ software will also be ONLINE line Off fluorescence telescopes, which measure Collaboration 27 푏 surface detector and 2 3000 km on behalf of the Pierre Auger ∗ 푎, [email protected] International Cosmic Ray Conference (ICRC 2021) Presenter ∗ th made available. The Pierre Auger Observatory, located near Malargüe, Argentina,detector. is It the comprises world’s largest a cosmic-ray Institute of Physics of the Czech AcademyObservatorio of Pierre Sciences, Auger, Av. Prague, San Czech Martín Republic Norte 304,E-mail: 5613 Malargüe, Argentina the lateral and longitudinalin distributions the of interactions the initiated many bynature millions a cosmic of of ray cosmic air-shower in particles rays the produced simulations and Earth’s describing atmosphere. studies the of The physics determination the processesresponses. occurring of detector the in performances extensive rely air on showersThe and extensive aim the Monte of detector Carlo the Montewith Carlo reference simulations libraries task used is in to aare wide produce currently variety and of produced provide analyses. the in All Augersimulations multipurpose local Collaboration detector are clusters simulations produced using Slurm onmiddleware. The and the job HTCondor. submission grid, is madeThe via The via Auger bulk the python site scripts of Virtual is using the the undergoingdetectors, Organization DIRAC-API. demanding shower a auger, increased major simulation using resources. upgrade, The the whichof novel extensive detection includes air DIRAC of showers the the is radio installation the component most ofwith challenging very endeavor, new requiring long types dedicated computation shower of times, simulations not optimizedFor data for redundancy, the the grid simulations are production. stored on theand Lyon are server and accessible the to grid the Disk Pool Auger Manager File members System via is iRODS used and for DIRAC, software respectively. distribution The where, CERN soon, the VM- Auger Copyright owned by the author(s) under the terms of the Creative Commons 푎 푏 © Attribution-NonCommercial-NoDerivatives 4.0 International License (CC BY-NC-ND 4.0). 37 July 12th – 23rd, 2021 Online – Berlin, Germany Eva Santos Monte Carlo simulations for the Pierreusing Auger the Observatory VO auger grid resources (a complete list of authors can be found at the end of the proceedings) PoS(ICRC2021)232 with TeV . Eva Santos 30% to about 15% eV [5,6]. These limitations were 19 10 at , showing remarkably very few distinctive 3 10 10 2 above sea level, corresponding to an atmospheric fluorescence telescopes. A detailed description of the 27 1400 m ∼ energies, the mass composition of cosmic rays can be measured area with a Fluorescence Detector (FD), comprising four sites at 2 GeV . It is a hybrid detector, which combines a Surface Detector (SD) 2 − 3000 km 875 g cm ∼ However, at the highest energies, full shower simulations become computationally prohibitive Cosmic rays are mostly fully ionized atomic nuclei that permanently reach us from outside the The cosmic-ray spectrum can be relatively well described over an extensive energy range by a Some Monte Carlo codes implementing the features described above are CORSIKA [9] and The interpretation of some properties of cosmic rays requires extensive simulation libraries Designed to study the most energetic particles in the Universe, the Pierre Auger Observatory is In operation since 2004, the Pierre Auger Observatory was completed in 2008. Currently, the since the number of secondary particles producedwith in the one energy extensive air of shower, the which scales primary linearly cosmic ray, exceeds elemental precision [3,4], significant uncertaintiesto rapidly arise be viable. as soon Coincidently, as around directfeasible the thanks detections same to cease energy, the the many indirect millions of detectionthe particles of interaction generated cosmic in of rays a the becomes cascading cosmic process rayshower. that in initiates the from In Earth’s the atmosphere latter, -from a the air phenomenon cosmic-ray shower called and energy an detector and extensive simulations. air mass composition have to be derived indirectly features [2]. Whereas at sub- directly by balloon or space-borne experiments with isotope precision, and at multi- overburden of Solar system. More than onesources, century and acceleration has mechanisms passed are since still their largely discovery unknown. [1]. However, their nature, power-law whose spectral index slightly deviates from AIRES [10]. Other codes whichto treat simulate the the particle detector transport response and are, interactions for with example, the FLUKA medium [11, used 12] andthat GEANT4 can [13]. only be produced using local computing farms or grid2. computation. Pierre Auger Observatory the world’s largest cosmic-ray detector. It is locatedof near the Mendoza, Argentinian city at of Malargüe, a province mean altitude of array extending over a Monte Carlo simulations for Auger using the VO auger 1. Introduction overcome by the development of thinning algorithms, which allowparticles reducing the with number energies of simulated falling below afraction pre-defined of threshold [7]. the particles In this isassigned. case, simulated, only More and recently, a CPU a representative (Central weight Process Unit) indicatingthe time-intensive ones air the shower of number simulations, showers such of without as thinning, ’thinned’ orbecame particles those more is accessible including thanks the to radio the emission parallelization or of the the Cherenkov Monte light, Carlo codes, see for instance [8]. the array periphery, housing a total of Auger site is undergoing aof major its upgrade, SD called stations, AugerPrime, along which with an consists extension of of an the enhancement FD duty cycle from Observatory can be found in [14]. 2.1 AugerPrime PoS(ICRC2021)232 individual Eva Santos 32 . In1, Figure ◦ 60 eV, will allow a direct within the Observatory, m from the shower axis, 19 2 10 km 250 - 5 25 . 17 10 GeV for showers with zenith angles below 1 > 3 휇 퐸 Left: Schematic sketch of the Pierre Auger Observatory. Right: Schematic sketch of an TeV scale will be pursued [15, 16]. , while the RD works better for air showers with zenith angles above ◦ 45 100 The VO auger was created in 2006 by the Czech group inAll cooperation members of with the the PierreCESNET Auger Collaboration can apply for membership by filling a regis- The key feature towards an improved mass composition with the SD is to disentangle the The main objective of AugerPrime is to improve the determination of the mass composition of [17]. ∼ ◦ times higher time resolution, and the installation of a small PMT inside the tank, will allow 푠 3. Virtual Organization auger Metacentrum[18–20]. The CESNET Metacentrumsuch provides as and the registration maintains portal the and central the resources VOMS (Virtual Organization Membership Service)tration server. form which has to beyear, after approved which by it the can VO be manager. renewed under The request. membership As has of a May validity 2021, the of VO one auger had improving the event reconstruction. Finally, underneath an area of 45 members. Figure 1: schematic sketches of the(right) Pierre are Auger shown. Observatory Additionally, (left) an electronics and board the capable AugerPrime of detector connecting all stations the detectors, with AugerPrime station with the SSD and RD mounted on top of the water-Cherenkov detector. 3 measuring the lateral distribution of the shower particles as closean as underground muon detector operatingmeasurement in of the the energy range muon component with electromagnetic and muonic signals measured byscintillator the detector water-Cherenkov detectors. (SSD) and Hence, a a surface radioBoth detectors detector are (RD) complementary since are the being SSDs are installedup mostly on sensitive to to top showers with of zenith the angles SD stations. the highest energy cosmic rays withwill the allow SD us array to on understand anelements the event-by-event basis. at origin√ Such of the measurements the highest flux energies. suppression and determine Also, the the fraction potential of light of studying multi- at the Monte Carlo simulations for Auger using the VO auger PoS(ICRC2021)232 TB of disk Eva Santos 210 (see Section4). million files are registered 3 . , runs on the France Grilles 1 million hours (normalized elapsed 60 dirac.egi.eu different sites and occupy used cores in the second semester, primarily 13 1000 4 countries. More than different regions. The bulk of the jobs, which had 11 5 grid sites in CPU seconds walltime, the maximum allowed limit, may greatly 7 23 10 grid sites from PB storage capacity. 6 4 . 1 single-core jobs which used more than 5 https://dirac.france-grilles.fr/DIRAC/ 10 Relative elapsed time of the Astrophysics VOs in 2020, according to the EGI accountig portal [25]. The VO auger comprises In 2014 the VO auger adopted the DIRAC (Distributed Infrastructure with Remote Agent According to the EGI - European Grid Infrastructure accounting portal [25], in 2020, the VO Figure 2: The contributions of the LHCb, pheno, and Fermilab groups were excluded. Control) interware for the job submission,DIRAC monitoring, server, and at file catalog management [21, ].22 The auger ran nearly Monte Carlo simulations for Auger using the VO auger in the DIRAC File Catalog;space these from files a are total stored of on 3.1 DIRAC interware Infrastructure [23]. Itsversion usage is provided only in requires the DIRAC having CVMFS a [24] repository running DIRAC client3.2 installed. Grid A computing in client 2020 time). The jobs ran in a stringent requirement of justify the small numbersecond of quarter of sites the accepting year, reaching an ourdue average of jobs. to the CoREAS The [26] productionand jobs started Fermilab for to the groups’ work contributions, ramp presentedcategory, which up in the we in27]. [ VO do auger the When used not an excluding considerVOs the amount (see as LHCb,2). of Figure belonging normalized pheno, to walltime comparable the to Astrophysics other Astrophysics PoS(ICRC2021)232 hours to 3 Eva Santos TB only in grid , where its relevant 200 TB, and are mirrored at becomes available in the 5 ∼ line Off auger.egi.eu framework [34], namely, raw data and line Off 5 . These data are divided into three main categories: raw, , a reasonably modest output compared to other high-energy TB 50 TB TB, are stored locally in Malargüe and mirrored every 46 , i.e., high-level data typically used in all the physics analyses [34]. All line Off team, helping to test new features that require numerous simulations, particularly in installation in the Auger CVMFS repository soon. In our setup, the CVFMS is essentially line CORSIKA files, which have typical outputs of several hundreds of MB, occupy the most In its turn, the total data volume required to store all data produced at the Pierre Auger The CERN Virtual Machine – File System (CVMFS) provides a scalable, reliable, and low- Auger has its own CVMFS repository, under the name of The total volume dedicated to Monte Carlo simulations undoubtedly comprises the bulk of The data storage requirements for the whole set of Auger data and simulations currently amounts The main objectives of the Monte Carlo simulations task are to produce multipurpose reference Off line MB. software is installed. Only CORSIKA is currently available. There are ongoing efforts to have an monitoring, and significant fraction of the storage volume.are For stored redundancy, in in the theIN2P3 mostComputing Center recentvia in productions,iRODS Lyon- all [32], integrated files where Rule-Oriented all Data Auger members System can [ 33]. access them Observatory is of the order of maintenance software distribution service [24]. Itment aims for to running provide LHC a and complete HEP and data portableof analysis on environ- any the end-user computer operating and the system grid,installing, platforms. independently and validating software [35]. Each user community defines the procedures for building, productions. simulations, comprises the tiniest fraction1 of disk space since typical file4.2 sizes are of CERN the Virtual Machine order - of File System Off used to run the task’s jobs,network providing of a local uniform computing configuration farms thatCVMFS, and can the the be bulk grid. used of in the As afarms productions heterogeneous soon free will as for be the processing transferredwalltime CPU-time to limitations. demanding the grid, jobs leaving that the cannot local run computing on the grid mainly due to disk storage. However, its actual dimensiongroups’ is computing hard farms to and determine in sinceIn the particular, it grid the is Disk Monte scattered Pool Carlo among Manager Simulations many (DPM), task consult alone [31] has produced for more the than full list. physics (HEP) experiments. raw data, comprising about the IN2P3 Computing Center indifferent Lyon. sites. Monitoring data Finally, all accounts data for processed with the from several to many hundreds of relatively short time scales. Below, a description ofand the computing multipurpose resources, simulation production framework, libraries are given. 4.1 Computing resources and detector simulation libraries, see [28–30] forand some usage CPU-intensive examples, and simulations also when extensive requested, asthe in [27]. The task also collaborates closely with Monte Carlo simulations for Auger using the VO auger 4. Monte Carlo simulations Task PoS(ICRC2021)232 GB jobs 1 versions line Eva Santos Off line Off jobs through the batch system line Off 6 simulations, each batch also includes the application line Off simulations are submitted by a bash script. Similarly, in the end, line Off [34], where the simulation of the detector’s response and event reconstruc- line Off simulations, and define the number of jobs. At the end, bash scripts check the simulation The reference simulation libraries consist of CORSIKA [9] extensive air shower simulations Per CORSIKA version, three high-energy hadronic interaction models are simulated: EPOS- Instead, other groups typically use bash or python scripts to handle their local production. Re- While standard CORSIKA simulations have CPU memory requirements of the order of Efforts are being made towards creating a uniform environment across all Auger computing Currently, there is no centralized system to submit jobs to the local computing farms.In Each the task, a bundle of Python 2.7 scripts is used to submit jobs to the grid, using the DIRAC - The bulk of the grid jobs uses this Python script bundle since a small team runs a fraction of For illustration, we give examples of the submission of jobs in local computing farms. In line later injected into LHC [38, 39], QGSJetII-0.440, [ 41], and Sibyll 2.3* [42–44], and four hadronic species, namely: Slurm. This program receives as input a set of parameters which allow to steer the CORSIKA and according to the type of simulation, Pythonand 2.7 recover the or failed bash simulations. scripts check For the integrity of the output files if FLUKA [11, 12] isrequire used several hundreds to of simulate MB the of memory low-energy hadronic and4.4 less interactions, than typical one Reference hour simulation of libraries processing time. tion occurs. The librarieswere are used continuously over the updated, years. and several CORSIKA and cently, CORSIKA jobs use the recent Pythonusing 2.7 the script HTCondor bundle - adapted API, from DIRAC to HTCondor, outputs and resubmit the failed jobs. of standard FD andwith SD the event plots selection characterizing the criteria performanceswikipage of and of the production the reconstruction, which library. of is accompanying placed to documentation a dedicated Off systems. CentOS7, from Communitytem Enterprise]. [36 Operating Systems must System, also is havefor CVMFS the local [24] job chosen installed submission, operating for and software sys- the distribution, DIRAC HTCondor server [37] [21] for grid usage. group has its own set of scripts, or4.3.1 programs, tailored for Grid their production own use. API (Application Programming Interface) functionalities,the which local are computing easily farms adapted using tosharing HTCondor run within or jobs the Slurm. in Collaboration. CORSIKA Theseand Slurm [9] scripts currently and will exist. AIRES be [10] readily scripts available for for DIRAC, HTCondor, the productions. Thus, homogeneityjobs is consist a of requirement only one for CORSIKA theto file consistency more per than of job one since the week typical simulations. if run the times All radio can4.3.2 component vary of from air several Local showers hours computing is farm activated. production some cases, a C++ program is used to submit CORSIKA and Monte Carlo simulations for Auger using the VO auger 4.3 Production framework PoS(ICRC2021)232 4 . Up to , arranged 6 Eva Santos 휃 − 10 cos 휃 in which the radio , depending on the ◦ sin eV, using the same 30 89 17 to 10 5 job, one CORSIKA shower < 휃 < ◦ line 50 Off uniformly distributed in ◦ 65 7 showers per energy bin. ˘ CR 21-02226M. , except for the highest energy bin, with a spectral index 5 . 0 10000 = ) eV / GeV in air. The library comprises air shower simulations ranging version for AugerPrime is finalized46], [ we will start producing 퐸 ( 80 line 10 showers per bin simulated with an optimal thinning [9] of log Off eV. The standard photon simulations follow a similar structure as the one eV, with zenith angles below 19 5000 reconstruction is only performed for energies above 2 libraries for AugerPrime. . 10 20 line line 10 − Off Off 15 . There are 10 The AugerPrime progresses at a good pace, and some data isSimulations already for being the radio acquired, component from of which air showers pose many challenges due to the long CPU The grid usage in 2020 doubled when compared with the previous year. We aim to increase This work is funded by the Czech Republic grants of MEYS CR: LTT18004, LM2018102, Finally, there are plenty of simulations for photon primaries with pre-shower activated for Studies to run CORSIKA jobs using Message Passing Interface (MPI) are ongoing since most Finally, when the All Auger data and a subset of the simulations produced are stored in the IN2P3 Computing In the dawn of the multi-messenger era and on the advent of AugerPrime, the production of two 1 − reference updated reference libraries are very much required. time required to simulate aparallelization single of shower. the Therefore, CORSIKA we code aresee [8] studying if to the it provide can possibility enough be of simulations used using in for the the the grid. radio studies and the simulation budget this year with the two newAcknowledgements productions. CZ.02.1.01/0.0/0.0/18_046/0016010 and GA 6. Conclusions energies above described above. In this case, there are grid sites do not acceptour jobs CORSIKA that 8 take simulation libraries longer [45]. than three days. Also, in the future, we plan to start different Malargüe atmospheres can be found in the simulations. reconstruction chains like the onesis for acquired processed data. by throwing In itnumber each multiple of reconstructed times events, at the random number positions of resamplings of varies the from SD array. To increase the component of air showers is included. Center in Lyon, France.Computing iRODS Center is [33]. the preferred Allgroups system are the to shared task’s download with simulations simulations the whole from and Collaboration the many this5. Lyon others way. produced by Next several productions Auger major simulation libraries is about tofor start. neutral These and are charged-current interaction the modes productiona in of all library reference Auger of detection libraries inclined channels, air accompanied showers by with zenith angles ranging from Monte Carlo simulations for Auger using the VO auger Hydrogen, Helium, Oxygen, andhadronic interactions Iron. below FLUKAfrom [11, 12 ] isin used energy bins to of width treatof elastic and inelastic energy of the primary particle. PoS(ICRC2021)232 ]. ]. , Eva Santos 1306.0121 ]. 1912.03300 ]. ]. ]. ]. ]. 0904.0725 , . PoS(2015)528 ]. . (2015) 034906,[ 1502.01323 (2020) 063002,[ 1905.04472 92 1301.2132 ]. 102 ]. astro-ph/9911331 hep-ph/0506232 (2010) 072033 (2009) 293–338,[ hep-ph/0412332 Phy. Rev. C 219 63 0707.1652 (1994) 5710–5731. (2013) 128,[ (2015) 032005. (2011) 467–489. Proc. 34th Int. Cosmic Ray Conf., the Hague, Phys. Rev. D (2015) 172–213,[ (2019) 06002,[ ]. 50 61 ]. 1808.02927 664 798 1535 ]. 210 , (2006) 044902,[ 8 . 74 1010.1869 . (2006) 143–146,[ (2003) 250–303. Phys. Rev. D (2021) 1–116. 1510.00568 J. Phys. Conf. Ser. 1604.03637 (1997) 29–42. 151 506 (2007) 1485–1496,[ 894 . EPJ Web Conf. (2015) 10–18. 52 Prog. Part. Nucl. Phys. AIP Conf. Proc. J. Phys. Conf. Ser. (2010) 042003. Proc. 36th Int. Cosmic Ray Conf., Madison, Wisconsin, USA (2019) 580 82 Phys. Rev. C 219 ]. Nucl. Instrum. Meth. A , . . Ann. Rev. Nucl. Part. Sci. (2011) 014018,[ (2005) 387–397. Phys. Rept. (2003) 1220–1247. , 83 22 . . . 591 . , ,[PoS(ICRC2015)236 1909.09073 (1912) 1084–1091; V. Hess, (2018) , [ Nucl. Instrum. Meth. A Ann. Nucl. Energy 13 Nucl. Phys. B Proc. Suppl. Phys. Rev. D J. Phys. Conf. Ser. Nucl. Instrum. Meth. A Proc. 34th Int. Cosmic Ray Conf., the Hague, the Netherlands (2015) Nucl. Phys. B Proc. Suppl. Astropart. Phys. Astrophys. J. Phys. Z. Air Showers”, Report FZKA 6019, Forschungszentrum Karlsruhe. the Netherlands (2015) https://www.metacentrum.cz/en/VO/auger/ https://www.cesnet.cz/ ,[PoS(ICRC2019)411 http://diracgrid.org/ https://www.auger.org/science/publications/icrc-papers/276-computational-resources https://cc.in2p3.fr/ https://irods.org/ https://dirac.france-grilles.fr/ https://cernvm.cern.ch/fs/ https://accounting.egi.eu/ https://www.centos.org/ https://www.redhat.com/en/blog/community-profile-centos-project https://research.cs.wisc.edu/htcondor/ [9] D. Heck, J. N. Capdevielle, G. Schatz, and T. Thouw, “CORSIKA: A Monte Carlo Code to Simulate Extensive [8] T. Pierog et al., [2] J. Blümer, R. Engel,[3] and J.K. R. Lodders, Hörandel, [4] M. Aguilar et al. [AMS Coll.], [7] A. M. Hillas, [1] V. Hess, [5] J. Matthews, [6] R. Engel, D. Heck, and T. Pierog, [10] S. J. Sciutto, “AIRES: A system for air shower simulations”, (1999),[ [11] A. Ferrari, P. R.[12] Sala, A.G. Fasso, Battistoni and et J. al., [13] Ranft, “FLUKA: AS. multi-particle Agostinelli transport et al., code”, (2005). [43] F. Riehn, R. Engel, A. Fedynitch, T. K. Gaisser, and T. Stanev, [14] A. Aab et[15] al. [Pierre AugerA. Coll.], Aab et al. [Pierre Auger Coll.], (2016) , [ [40] S. Ostapchenko, [41] S. Ostapchenko, [42] R. Fletcher, T. Gaisser, P. Lipari, and T. Stanev, [45] A. Alves Junior [for[46] the CORSIKA-8L. Coll.], Nellen these [for proceedings, the. PoS(ICRC2021)284 Pierre Auger Coll.], these proceedings, . PoS(ICRC2021)250 [16] A. Castellina [for the Pierre Auger Coll.], [18] [19] [44] R. Engel, A. Fedynitch, T. K. Gaisser, F. Riehn, and T. Stanev, [20] J. Chudoba et al. [for the Pierre Auger Coll.], [22] J. Chudoba [for the Pierre Auger Coll.], [17] F. Sánchez [for the Pierre Auger Coll.], [21] [27] B. Pont [for the[28] Pierre AugerJ. Coll.], Vícha these [for proceedings, the[29] . PoS(ICRC2021)387 Pierre AugerJ. Coll.], Carceller these [for proceedings, the[30] . PoS(ICRC2021)310 Pierre AugerJ. Coll.], Glombitza these [for proceedings, the[31] . PoS(ICRC2021)229 Pierre Auger Coll.], these proceedings, [32] . PoS(ICRC2021)359 [34] S. Argirò et al., [39] T. Pierog, I. Karpenko, J. M. Katzy, E. Yatsenko, and K. Werner, [33] [23] [24] [25] [26] T. Huege, M. Ludwig, and C. W. James, [38] K. Werner, F.-M. Liu, and T. Pierog, [35] P. Buncic et al., [36] [37] Monte Carlo simulations for Auger using the VO auger References PoS(ICRC2021)232 , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , 1 8 3 1 , ,푒 32 14 23 13 33 28 12 52 41 46 48 81 49 22 36 70 44 72 72 79 38 46 30 11 47 32 79 73 15 49 64 34 17 , , , , , , , , , 5 8 8 92 57 58 59 54 45 80 59 , A. di 8 , , C. Pérez 41 , R.J. Bar- , R. Sato Eva Santos , F. Gollan , V.V. Kiza- , G. Medina- , I. Lhenry- , A.C. Co- , E. Roulet , C. Bleve , P. Assis 21 8 46 , S. Dasso 푎 , X. Bertou 8 , , G. Cataldi 10 80 , V. Rizi , B.L. Lago , M. Palatka 35 13 , K. Mulrey , A. Machado 41 , J. Jurysek , T. Fujii 32 , F. Fenu , S. Marafico , N. Borodai 85 52 6 45 , P. Horvath 19 , P. Buchholz , 44 40 30 , F. Pedreira 22 76 86 푎 , F. Gesualdi 40 , N. González , S. Andringa , G.P. Guedes 21 , D. dos Santos 81 63 42 1 8 , 32 , V.M. Harvey 40 , S. Querchfeld 50 1 25 , V. Pirronello , 80 , L. Miramonti , S.J. de Jong , A. Etchegoyen 89 , J. Alvarez-Muñiz 6 , L. Caccianiga , A. Condorelli 60 72 푎 41 , L. Deval , 12 66 , O. Martínez Bravo 72 , 8 , F. Gobbi , M. Roth 8 34 8 , , J.D. Sanabria Gomez , J. Blazek , P.O. Mazur 42 , H. Asorey 43 , D. de Oliveira Franco 41 51 37 , N. Kunka , M. Risse 38 , F. Catalani , R.W. Clay 67 , F. Barbato 18 , P. Mantsch , M. Niculescu-Oglinzanu , L.A. Núñez 39 72 , M. Pech 52 , C.E. Covault 33 , 73 43 68 , M.A. Muller 48 , M.M. Freire , J.A. Johnsen , , A. Khakurdikar 38 8 28 , D. Harari 54 , B. Andrada , J. Perez Armand , F. Feldbusch , F.L. Briechle , J.P. Lundquist 80 4 56 , H. Gemmeke 32 42 8 푎 8 , , M.E. Bertaina 87 , C. Sarmiento-Cano 39 , J.M. González , A. Puyleart , F. Guarino 42 , M. Pimenta 39 , A. Letessier-Selvon 36 , R.C. dos Anjos , A. Almela 72 , J.R. Hörandel 11 32 13 , C.O. Escobar 41 1 , J. de Jesús , G. Salina , J. Biteau 푎 41 , M.I. Micheletti , O. Deligny 72 , S. Rossoni 42 28 , E. Mayotte 64 , R. Conceição 8 42 , J. Glombitza 33 11 , F. Riehn , M. Köpke , S. Martinelli 51 48 , L. Nellen 49 , 32 , L. Bonneau Arbeletche 10 , A Nucita 48 , L. Chytka , J. Kemp 38 , 62 , J. de Oliveira 26 , Q. Luce , 33 32 41 , A.L. Müller 56 , T. Fodran , P. Janecek 46 9 , P. Hansen , A. Castellina , A. Balaceanu , , C. Berat , N. Fazzini , J. Manshanden , K.S. Caballero-Mora 94 8 91 41 74 8 , J. Pawlowsky , T. Pierog 47 32 45 , 69 22 13 , , , V. Lenok , T. Bister , M. Prouza , I. Allekotte 64 , C. Hojvat 39 46 , T.D. Grubb 8 58 , 13 , R. Sarmento , H. Salazar , 24 , J.P. Gongora , S. Michal 92 13 13 38 , L. Anchordoqui 45 , J. Ridky 86 39 46 11 86 , , M. Erdmann 8 , M. del Río 9 , 52 , L. Lu , A.L. Garcia Vegas , , L. Nožka 57 , J. C. Arteaga Velázquez 48 , D. Correia dos Santos 7 48 41 , 64 , M.J. Roncoroni , G. Matthiae , 63 , J. Kleinfeller 31 42 48 56 , P.G. Brichetto Orchera , , P.G. Isar 56 11 88 , M.R. Coluccia , M. Giammarchi 40 , E.E. Pereira Martins , D. Martello , C. Bonifazi , B. Keilhauer , J. Chudoba , R.M. de Almeida 42 56 47 , M. Mostafá 93 80 , 30 47 , T. Fitoussi , I. De Mitri , A. Parra 46 41 , 22 , R. Caruso , 13 , A. Nasr-Esfahani , A.C. Fauth 52 58 , , A. Bakalova 76 27 79 61 , M. Büsken 57 , , 78 , B.C. Manning , M.R. Hampel 38 , G.C. Hill 90 , S. Petrera 54 , J.A. Bellido , F. Sarazin 75 , L.M. Domingues Mendes , J.M. Albury , P. Privitera 47 77 26 32 32 41 , K. Bismark 48 , 38 , B. García 32 68 52 80 6 , M. Gottowik , , , R. López , F. Salamida 56 49 , , V. Novotny 54 81 52 , T. Bretz 72 , , I. Epicoco , K.-D. Merenda 73 푑 59 , J. Matthews 31 54 41 40 , E. De Vito , M. Kleifges , 41 , J.A. Day , U. Giaccari , G.A. Anastasi , P.F. Gómez Vitale , F. Convenga , M. Reininghaus 20 41 39 , A. Insolia 1 13 8 34 80 , A. Coleman , G. Farrar 11 15 , G. Parente , D. Heck , V. Binet , D. Boncioli , G. Marsella , , C. Morello 50 , N. Karastathis , D. Mandat 92 , , P. Hamal 푏 , J. Rodriguez Rojo , E. Santos , M.A. Leigui de Oliveira 38 42 8 41 , J.M. Carceller 32 14 36 , A. Filipčič 38 48 , 60 , J.A. Chinellato 21 , , M. Buscemi 8 21 , P.R. Araújo Ferreira 42 , J. Brack , L. Lopes , J.C. D’Olivo , L. Perrone 38 , K.H. Becker 41 8 , J. Peña-Rodriguez , D. Nosek , A.M. Badescu , A. Saftoiu , W.M. Namasaka 56 10 , M. Aglietta 15 , C. Galelli 50 , M. Pothast 47 22 41 , A. Gorgi 72 , , 65 89 11 44 90 72 80 8 80 70 , R. Engel 58 , P.L. Ghia , H.J. Mathes 32 73 46 , A. Menshikov , H.O. Klages , , J.R.T. de Mello Neto 8 , V. de Souza , F. Contreras , J. Farmer 41 , T. Huege 57 81 , , D. Ravignani , B.R. Dawson , I.C. Mariş , 48 55 8 81 , D. Nitz , , I. Caracas 33 4 , , M. Boháčová A.M. Botti reira Luz P.L. Biermann G. Avila C. Aramo R. Alves Batista P. Abreu , S. Hahn 38 , F. Montanet 41 80 , P. Ruehl , T. Hebbeker 1 44 56 , N. Langner 81 49 , R. Colalillo , C. Galea 82 5 63 , , E.M. Santos , B. Pont , S. Buitink , M. Cerda , , J. Ebr 7 , , P. Papenbreer , K.H. Kampert , M. Muzio , R. Pelayo , D. Góra 41 8 , M. Perlin 8 4 20 12 , M. Gómez Berisso 2 80 , 80 78 72 , J.M. Figueira 52 1 38 52 , G. Mancarella 70 41 8 41 , C. Dobrigkeit , , 89 1 , D. Melo 8 22 52 , D. Lo Presti 68 34 A.C. Rovero J. Rautenberg W. Rodrigues de Carvalho F. Sánchez M. Platino Bertolli J. Pallotta J. Pe¸kala M. Niechciol R. Mussa S. Mollerach M. Mastrodicasa A.G. Mariazzi Payeras R.G. Lang kke Covilakam G. Golup A. Kääpä A. Fuster I. Goos E. Guido A. Haungs M. Hrabovský bos Cerutti M.T. Dova H. Falcke B. Fick A. Gherghel-Lascu L. Cazon G. Consolati Matteo K. Daumiller G. De Mauro F. Canfora A. Bueno F. de Palma Monte Carlo simulations for Auger using the VO auger The Pierre Auger Collaboration Tanco Yvon PoS(ICRC2021)232 , , , , , , , , , , , 4 8 , 32 40 32 68 80 13 41 42 38 , , 8 41 81 Eva Santos , J. Schulte , G. Silli , M. Weber 푐 38 43 , A. Yushkov , T. Sudholz , M. Schimp , P. Travnicek 8 8 , 14 10 39 , M. Stadelmaier , J.F. Valdés Galicia 10 , C. Timmermans , G. Sigl , I.D. Vergara Quispe 33 52 , 16 27 , S. Schröder 63 , A.A. Watson 41 , , A. Travaini 26 93 , B. Wundheiler 36 76 38 , M. Vacula , R. Squartini , M. Schimassek , M. Suárez-Durán 33 36 8 41 , , C. Ventura , C. Taricco 39 41 , R.C. Shellard 29 , Z. Torrès 38 , L. Zehrer 72 , C. Watanabe 4 , F.G. Schröder 76 , 32 77 , D. Wittkowski , J. Souchard , L. Vaclavek 42 , H. Schieler , A. Tapia 87 41 , A. Streich • , D. Veberič 48 71 , B. Tomé , S. Sehgal 10 , 36 30 19 47 56 , 53 , H. Wahlberg 76 , P.Schovánek , M. Wirtz , M. Zavrtanik 15 , M. Unger 70 , 77 , , P. Stassi 41 84 , J.F. Soriano 76 70 91 , V. Scherini , Z. Szadkowski , A. Segreto 8 41 41 , , S. Vorobiov 8 , R. Ulrich 83 , C.J. Todero Peixoto 4 , O. Scholten , A. Vásquez-Ramírez 32 , H. Wilczyński 39 64 , J. Stasielak , D. Zavrtanik , P. Sommers 86 76 79 92 , J. Vink 32 , C.M. Schäfer , M. Tueros 94 , , A.D. Supanitsky , P. Tobiska , E. Zas 46 , 34 , E. Varela 37 41 , D. Schmidt , 14 57 8 , M. Scornavacche , , R. Šmída 50 , L. Wiencke , S. Stanič 48 , 4 , 41 41 73 , 푓 , J. Vicha 60 56 73 51 Aires and CONICET, Buenos Aires, Argentina U.N.R., Rosario, Argentina Nacional – Facultad Regional Mendoza (CONICET/CNEA), Mendoza, Argentina Miguelete – San Martín, Buenos Aires, Argentina Republic Centro Atómico Bariloche and Instituto BalseiroCentro (CNEA-UNCuyo-CONICET), de San Investigaciones Carlos en de Láseres Bariloche, y Argentina Departamento Aplicaciones, de CITEDEF Física and and Departamento CONICET, Villa de Martelli, Ciencias de Argentina la Atmósfera y los Océanos, FCEyN,IFLP, Universidad de Universidad Buenos Nacional de La Plata andInstituto CONICET, de La Astronomía Plata, y Argentina Física delInstituto Espacio de (IAFE, CONICET-UBA), Física Buenos Aires, de Argentina Rosario (IFIR) – CONICET/U.N.R.Instituto and de Tecnologías Facultad en de Detección y Ciencias Astropartículas Bioquímicas (CNEA, CONICET, y UNSAM), Farmacéuticas and UniversidadInstituto Tecnológica de Tecnologías en Detección yInternational Astropartículas Center (CNEA, CONICET, of UNSAM), Advanced Buenos Studies Aires, and Argentina Instituto de Ciencias Físicas,Observatorio ECyT-UNSAM Pierre and Auger, CONICET, Malargüe, Campus Argentina Observatorio Pierre Auger and Comisión NacionalUniversidad de Tecnológica Nacional Energía – Atómica, Facultad Malargüe, Regional Argentina BuenosUniversity Aires, of Buenos Adelaide, Adelaide, Aires, S.A., Argentina Australia Université Libre de Bruxelles (ULB), Brussels,Vrije Belgium Universiteit Brussels, Brussels, Belgium Centro Brasileiro de Pesquisas Fisicas, RioCentro de Federal Janeiro, de RJ, Educação Brazil Tecnológica CelsoInstituto Suckow da Federal de Fonseca, Nova Educação, Friburgo, Ciência Brazil eUniversidade Tecnologia de do São Rio Paulo, de Escola Janeiro de (IFRJ),Universidade Engenharia de Brazil de São Lorena, Paulo, Lorena, Instituto SP, de Brazil Universidade Física de de São São Paulo, Carlos, Instituto São de Carlos,Universidade Física, SP, Estadual São Brazil de Paulo, Campinas, SP, IFGW, Brazil Campinas, SP,Universidade Brazil Estadual de Feira de Santana,Universidade Feira Federal de do Santana, ABC, Brazil Santo André,Universidade SP, Federal Brazil do Paraná, Setor Palotina,Universidade Palotina, Federal Brazil do Rio de Janeiro,Universidade Instituto Federal de do Física, Rio Rio de de Janeiro Janeiro,Universidade (UFRJ), Federal RJ, Observatório Fluminense, Brazil do EEIMVR, Valongo, Volta Rio Redonda, de RJ,Universidad Janeiro, de Brazil RJ, Medellín, Brazil Medellín, Colombia Universidad Industrial de Santander, Bucaramanga, Colombia Charles University, Faculty of Mathematics and Physics, InstituteInstitute of of Physics Particle of and the Czech Nuclear Academy Physics, of Sciences, Prague, Prague, Czech Czech Republic 1 2 3 4 5 6 7 8 9 O. Zapparrata V. Verzi A. Weindl C. Trimarelli L. Valore O. Tkachenko D. Stanca T. Suomijärvi O. Sima S.J. Sciutto F. Schlüter Monte Carlo simulations for Auger using the VO auger P. Savina 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 PoS(ICRC2021)232 Eva Santos 11 IN2P3, Paris, France France (UPIITA-IPN), México, D.F., México Universidade de Lisboa – UL, Lisboa, Portugal postela, Spain Palacky University, RCPTM, Olomouc, Czech Republic CNRS/IN2P3, IJCLab, Université Paris-Saclay, Orsay, France Laboratoire de Physique Nucléaire et de Hautes Energies (LPNHE), Sorbonne Université, Université deUniv. Grenoble Paris, Alpes, CNRS- CNRS, Grenoble Institute of Engineering Univ. Grenoble Alpes, LPSC-IN2P3, 38000 Grenoble, Université Paris-Saclay, CNRS/IN2P3, IJCLab, Orsay, France Bergische Universität Wuppertal, Department of Physics,Karlsruhe Wuppertal, Germany Institute of Technology (KIT), InstituteKarlsruhe for Experimental Institute of Particle Technology Physics, (KIT), Karlsruhe, Institut Germany Karlsruhe für Institute Prozessdatenverarbeitung und of Elektronik, Technology (KIT), Karlsruhe, Institute Germany RWTH for Aachen Astroparticle University, Physics, III. Karlsruhe, Physikalisches Germany Institut A,Universität Aachen, Hamburg, Germany II. Institut für TheoretischeUniversität Physik, Siegen, Hamburg, Department Germany Physik – ExperimentelleGran Teilchenphysik, Siegen, Sasso Germany Science Institute, Italy L’Aquila, INFN Laboratori Nazionali del Gran Sasso,INFN, Assergi Sezione Italy (L’Aquila), di Catania, Catania, Italy INFN, Sezione di Lecce, Lecce, Italy INFN, Sezione di Milano, Milano, Italy INFN, Sezione di Napoli, Napoli, Italy INFN, Sezione di Roma “Tor Vergata”, Roma,INFN, Italy Sezione di Torino, Torino, Italy Istituto di Astrofisica Spaziale e FisicaOsservatorio Cosmica Astrofisico di di Palermo Torino (INAF), (INAF), Palermo, Torino, Italy Italy Politecnico di Milano, Dipartimento di ScienzeUniversità e del Tecnologie Salento, Aerospaziali Dipartimento , di Milano, Matematica Italy Università e dell’Aquila, Dipartimento Fisica di “E. Scienze De Fisiche Giorgi”, e Lecce,Università Chimiche, di Italy Italy L’Aquila, Catania, Dipartimento di FisicaUniversità e di Astronomia, Milano, Catania, Dipartimento Italy di Fisica,Università Milano, di Italy Napoli “Federico II”, DipartimentoUniversità di di Fisica Palermo, “Ettore Dipartimento Pancini”, di Napoli, Fisica Italy Università e di Chimica Roma ”E. “Tor Vergata”, Segrè”, Dipartimento Palermo, diUniversità Italy Fisica, Torino, Roma, Dipartimento Italy di Fisica, Torino, Italy Benemérita Universidad Autónoma de Puebla, Puebla,Unidad México Profesional Interdisciplinaria en Ingeniería yUniversidad Autónoma Tecnologías de Avanzadas Chiapas, Tuxtla del Gutiérrez, Chiapas,Universidad Instituto Michoacana México de Politécnico San Nicolás Nacional deUniversidad Hidalgo, Nacional Morelia, Autónoma Michoacán, de México México, México,Universidad D.F., Nacional México de San Agustin deInstitute Arequipa, of Facultad Nuclear de Physics Ciencias PAN, Naturales Krakow, Poland yUniversity Formales, of Arequipa, Łódź, Peru Faculty of High-EnergyLaboratório Astrophysics,Łódź, Poland de Instrumentação e Física Experimental de“Horia Hulubei” Partículas National Institute – for LIP PhysicsInstitute and of and Nuclear Space Engineering, Instituto Science, Bucharest-Magurele, Bucharest-Magurele, Romania Superior Romania University Politehnica Técnico of – Bucharest, Bucharest, IST, Romania Center for Astrophysics and Cosmology (CAC), UniversityExperimental of Particle Nova Physics Gorica, Department, Nova J. Gorica, Stefan Slovenia Universidad Institute, de Ljubljana, Granada Slovenia and C.A.F.P.E., Granada, Spain Instituto Galego de Física de Altas Enerxías (IGFAE), Universidade de Santiago de Compostela, Santiago de Com- Monte Carlo simulations for Auger using the VO auger 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 PoS(ICRC2021)232 Eva Santos 12 also at University of Bucharest, Physics Department, Bucharest, Romania School of Physics and Astronomy, University ofColorado Leeds, State Leeds, University, Fort United Collins, Kingdom CO,now USA at Hakubi Center for Advanced Research and Graduate School of Science, Kyoto University, Kyoto, Japan IMAPP, Radboud University Nijmegen, Nijmegen, The Netherlands Nationaal Instituut voor Kernfysica en HogeStichting Energie Astronomisch Fysica Onderzoek (NIKHEF), in Science Nederland Park, (ASTRON), Amsterdam, Dwingeloo,Universiteit The van The Netherlands Amsterdam, Netherlands Faculty of Science,University Amsterdam, of The Groningen, Netherlands Kapteyn Astronomical Institute,Case Groningen, The Western Reserve Netherlands University, Cleveland, OH, USA Colorado School of Mines, Golden, CO,Department USA of Physics and Astronomy, LehmanLouisiana College, City State University, University Baton of Rouge, New LA, York, Bronx, USA Michigan NY, Technological USA University, Houghton, MI, USA New York University, New York, NY, USA Pennsylvania State University, University Park, PA, USA University of Chicago, Enrico Fermi Institute,University Chicago, of IL, Delaware, USA Department of PhysicsUniversity and of Astronomy, Bartol Wisconsin-Madison, Department Research Institute, of Newark, Physics DE,—– and USA WIPAC, Madison, WI, USA Fermi National Accelerator Laboratory, Fermilab, Batavia,Max-Planck-Institut IL, für USA Radioastronomie, Bonn, Germany 푒 푐 푎 푏 푑 푓 Monte Carlo simulations for Auger using the VO auger 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94