Archaeocyathan Zonation of the Yangtze Platform: Implications for Regional and Global Correlation of Lower Cambrian Stages

Total Page:16

File Type:pdf, Size:1020Kb

Archaeocyathan Zonation of the Yangtze Platform: Implications for Regional and Global Correlation of Lower Cambrian Stages Geol. Mag.: page 1 of 22 c Cambridge University Press 2015 1 doi:10.1017/S0016756815000333 Archaeocyathan zonation of the Yangtze Platform: Implications for regional and global correlation of lower Cambrian stages ∗ AIHUA YANG †,MAOYANZHU‡, ANDREY YU ZHURAVLEV§, KEXING YUAN¶, JUNMING ZHANG‡ &YAQIANCHEN¶ ∗ State Key Laboratory for Mineral Deposits Research, School of Earth Sciences and Engineering, Nanjing University, 163 Xianlindadao Ave., Nanjing 210046, China ‡State Key Laboratory of Palaeobiology and Stratigraphy, Nanjing Institute of Geology and Paleontology, Chinese Academy of Sciences, Nanjing 210008, China §Department of Biological Evolution, Faculty of Biology, Moscow State University named after M.V.Lomonosov, Moscow, GSP-1, 119991, Russia ¶Kunming Prospecting Design Institute of China Nonferrous Metals Industry, Kunming 650051, China (Received 22 December 2014; accepted 1 May 2015) Abstract – Detailed analysis of the distribution of archaeocyaths in five lower Cambrian sections in South China has resulted in the erection of four new archaeocyathan zones and one new archaeocyathan bed. Listed in order of ascending age, these are: the Dailycyathus xiuqiensis Zone; the Dictyocyathus shaanxiensis Zone; the Spirillicyathus duplex Range Zone; the Sibirecyathus meitanensis Range Zone; and the Archaeocyathus yanjiaoensis beds. These new subdivisions permit a correlation of lower Cam- brian strata both within the area of the Yangtze Platform (South China) as well as between this region and Siberia, Australia, Western Europe and North America. Within the YangtzePlatform area, archaeo- cyaths of the Dailycyathus xiuqiensis and Dictyocyathus shaanxiensis zones co-occur with trilobites of the middle and upper Eoredlichia Trilobite Zone of the Qiongzhusian Stage. The Spirillicyathus duplex and the Sibirecyathus meitanensis Range Zone correspond to the Malungia, Yiliangella–Yunnanaspis and Drepanuroides Trilobite zones of the basal and middle Canglangpuan Stage, respectively. Finally, the Archaeocyathus yanjiaoensis beds belong to the Palaeolenus fengyangensis Trilobite Zone of the upper Canglangpuan Stage. Global correlations based on archaeocyath assemblage zones suggest that: (1) the middle–upper Qiongzhusian of South China correlates with the middle Atdabanian Stage of the Siberian Platform, the Warriootacyathus wilkawillinensis Archaeocyath Zone in South Australia, the middle Issendalenian Stage of Morocco and the lower Ovetian Stage in Spain; (2) the lower- most Canglangpuan Stage of South China correlates with the uppermost Atdabanian of the Siberian Platform, the Spirillicyathus tenuis – Jugalicyathus tardus archaeocyath zones in South Australia, the uppermost Issendalenian – lower Banian stages of Morocco, the middle Ovetian Stage of Spain and the middle Montezuman Stage of North America; (3) the middle Canglangpuan Stage approximates the lowermost Botoman Stage of the Siberian Platform, middle Banian Stage of Morocco, the uppermost Ovetian – lowermost Marianian stages of Spain and the upper Montezuman Stage of North America; (4) the uppermost Canglangpuan Stage is equivalent of the middle Toyonian Stage of the Siberian Platform, Archaeocyathus abacus beds in Australia, the middle Bilbilian Stage in Spain and the middle Dyeran Stage (Bolbolenellus euryparia Trilobite Zone) in North America. Keywords: lower Cambrian, archaeocyaths, biostratigraphy, South China. 1. Introduction International Working groups on the lower Cambrian stages and series have concentrated on creating reliable The International Subcommission on Cambrian Strati- datum planes in order to establish global boundary graphy has been working towards the development of stratotype sections and points (GSSPs) for these units. globally recognizable subdivisions of the Cambrian Siberia and South China are two particularly important System for nearly three decades. A particularly import- regions yielding abundant and diverse archaeocyath, ant step has been the adoption of a chronostratigraphic trilobite and small shelly fossil (SSF) faunas (Zhu, framework consisting of four series and ten stages Babcock & Peng, 2006; Zhu et al. 2007; Rozanov et al. (Babcock et al. 2005; Peng, Babcock & Cooper, 2012). 2008). Among these, archaeocyaths are of particular Despite these developments there are as yet no formal interest and utility for global correlations due to rapid subdivisions of the former Lower Cambrian, and global species turnover, high diversity and global distribution. chronstratigraphic subdivisions and correlations of Although a number of global correlation charts based lower Cambrian (Terreneuvian Series and Series on archaeocyaths with references to trilobites and SSFs 2) strata continue to be problematic. Recently, the have been proposed (Debrenne, Rozanov & Zhuravlev, 1990; Zhuravlev, 1995; Zhuravlev & Riding, 2001), †Author for correspondence: [email protected] these charts are considered by some to be problematic http://journals.cambridge.org Downloaded: 12 Nov 2015 IP address: 218.94.142.98 2 A. YANG AND OTHERS due to potential archaeocyath taxonomic inconsist- Zhang, 1977, 1978, 1980, 1982, 1983; Zhang & Yuan, encies, a high level of regional endemicity, and a 1984, 1985; Debrenne & Jiang, 1989; Belyaeva & possible dependence on substrate control (microfacies) Yuan, 1995; Yang & Yuan, 2012; Tables 1 and 2). Yuan (e.g. Geyer & Shergold, 2000; Landing et al. 2013). & Zhang (1980, 1981, 1982) and Zhang (1989)recog- However, such criticism might be equally applied to nized four successive archaeocyathan assemblages in any early Cambrian taxa (e.g. trilobites; Pegel’, 2000; central and southwestern areas of South China. Based in Álvaro et al. 2003) while archaeocyath systematics part on the archaeocyathan fossil record in the Fucheng are sophisticated and well documented (Debrenne, section, Yuan et al.(2001) established the Qiongzhus- Zhuravlev & Kruse, 2002, 2015). ian, Canglangpuan and Tianheban assemblages. How- The first high-resolution biostratigraphic scale using ever, archaeocyath taxonomy used by these authors is archaeocyaths was established on the Siberian Plat- now in need of revision, and no biozones have yet form where the Tommotian, Atdabanian, Botoman and been proposed. Consequently, the evolutionary history Toyonian stages and their zonation were partly or en- of Chinese archaeocyaths as well as their potential for tirely developed on the succession of archaeocyath as- global correlation is not well understood. semblages (Zhuravleva, 1960; Rozanov et al. 1969; The aim of the present study is to develop a high- Zhuravleva, Korshunov & Rozanov, 1969; Rozanov & resolution archaeocyath zonation based on recent taxo- Sokolov, 1984). Local archaeocyathan zones are estab- nomic revisions of previously described material and lished in the Altay Sayan Foldbelt of southern Siberia on the examination of new specimens (A. H. Yang, un- and the Russian Far East for the Atdabanian, Botoman pub. Ph.D. thesis, CAS, Nanjing, 2005; Yang & Yuan, and Toyonian stages where the most continuous Boto- 2012), allowing the application of these data to a reli- man and Toyonian archaeocyath fossil record exists able global correlation. (Repina et al. 1964; Zhuravleva et al. 1967; Borod- ina et al. 1973; Okuneva & Repina, 1973; Belyaeva 2. Materials and methods et al. 1975; Osadchaya et al. 1979; Osadchaya, 1986; Belyaeva, 1988; Astashkin et al. 1995). Subsequently, Five lower Cambrian sections on the Yangtze Plat- lower Cambrian archaeocyathan zonations were pro- form are selected and analysed in detail, namely: (1) posed for Spain (Perejón, 1984, 1994; Perejón & Fucheng near Nanzhen, Shaanxi Province; (2) Xinchao Moreno-Eiris, 2006), Canada, Greenland, Mexico and in Tongjiang County, Sichuan Province; (3) Shilixi near the United States (Debrenne & Peel, 1986; Zhuravlev in Meitan, Guizhou Province; (4) Yankong near Jinsha, Voronova et al. 1987; Debrenne, Gandin & Rowland, Guizhou Province; and (5) Wangjiaping near Yichang, 1989; Mansy, Debrenne & Zhuravlev, 1993; McMe- Hubei Province (Fig. 1). These sections are the refer- namin, Debrenne & Zhuravlev, 2000), South Australia ence sections for the lower Cambrian Qiongzhusian and (Gravestock, 1984; Zhuravlev & Gravestock, 1994; Canglangpuan stages in China, which are approximate Gravestock & Shergold, 2001), Morocco (Debrenne equivalents of stages 3 and 4 of the current International & Debrenne, 1995) and Mongolia (Zhuravlev, 1998). Chronostratigraphic Chart (Peng, Babcock & Cooper, These archaeocyathan zonations encompass the prin- 2012). cipal regions of archaeocyathan distribution and each Most of the 1400 archaeocyath-containing samples regional zonation works well – at a species level of under study were collected during field seasons of 1990, precision – within the former Cambrian palaeocontin- 2002 and 2003 from these sections. Of these, over 500 ents and adjacent terrane complexes, namely Siberia samples were collected from the Xiannudong Forma- (Siberian Platform and Kolyma Basin of Russia), the tion (Fucheng and Xinchao sections), 400 samples from Ural-Mongolian complex of terranes (the Urals, Altay the Mingxinsi Formation (Shilixi and Yankong sec- Sayan Foldbelt, Transbaikalia, Russian Far East, Kaza- tions) and 200 samples from the Tianheban Formation khstan, Kirgizia, Uzbekistan, Tajikistan and Mongolia), (Wangjiaping section). A preliminary analysis of some Laurentia (Canada, Greenland, Mexico and the United of these samples has been conducted by Yuan et al. States), Western Gondwana (Spain, France, Sardinia,
Recommended publications
  • Available Generic Names for Trilobites
    AVAILABLE GENERIC NAMES FOR TRILOBITES P.A. JELL AND J.M. ADRAIN Jell, P.A. & Adrain, J.M. 30 8 2002: Available generic names for trilobites. Memoirs of the Queensland Museum 48(2): 331-553. Brisbane. ISSN0079-8835. Aconsolidated list of available generic names introduced since the beginning of the binomial nomenclature system for trilobites is presented for the first time. Each entry is accompanied by the author and date of availability, by the name of the type species, by a lithostratigraphic or biostratigraphic and geographic reference for the type species, by a family assignment and by an age indication of the type species at the Period level (e.g. MCAM, LDEV). A second listing of these names is taxonomically arranged in families with the families listed alphabetically, higher level classification being outside the scope of this work. We also provide a list of names that have apparently been applied to trilobites but which remain nomina nuda within the ICZN definition. Peter A. Jell, Queensland Museum, PO Box 3300, South Brisbane, Queensland 4101, Australia; Jonathan M. Adrain, Department of Geoscience, 121 Trowbridge Hall, Univ- ersity of Iowa, Iowa City, Iowa 52242, USA; 1 August 2002. p Trilobites, generic names, checklist. Trilobite fossils attracted the attention of could find. This list was copied on an early spirit humans in different parts of the world from the stencil machine to some 20 or more trilobite very beginning, probably even prehistoric times. workers around the world, principally those who In the 1700s various European natural historians would author the 1959 Treatise edition. Weller began systematic study of living and fossil also drew on this compilation for his Presidential organisms including trilobites.
    [Show full text]
  • Copertina Guida Ai TRILOBITI V3 Esterno
    Enrico Bonino nato in provincia di Bergamo nel 1966, Enrico si è laureato in Geologia presso il Dipartimento di Scienze della Terra dell'Università di Genova. Attualmente risiede in Belgio dove svolge attività come specialista nel settore dei Sistemi di Informazione Geografica e analisi di immagini digitali. Curatore scientifico del Museo Back to the Past, ha pubblicato numerosi volumi di paleontologia in lingua italiana e inglese, collaborando inoltre all’elaborazione di testi e pubblicazioni scientifiche a livello nazonale e internazionale. Oltre alla passione per questa classe di artropodi, i suoi interessi sono orientati alle forme di vita vissute nel Precambriano, stromatoliti, e fossilizzazioni tipo konservat-lagerstätte. Carlo Kier nato a Milano nel 1961, Carlo si è laureato in Legge, ed è attualmente presidente della catena di alberghi Azul Hotel. Risiede a Cancun, Messico, dove si dedica ad attività legate all'ambiente marino. All'età di 16 anni, ha iniziato una lunga collaborazione con il Museo di Storia Naturale di Milano, ed è a partire dal 1970 che prese inizio la vera passione per i trilobiti, dando avvio a quella che oggi è diventata una delle collezioni paleontologiche più importanti al mondo. La sua instancabile attività di ricerca sul terreno in varie parti del globo e la collaborazione con professionisti del settore, ha permesso la descrizione di nuove specie di trilobiti ed artropodi. Una forte determinazione e la costruzione di un nuovo complesso alberghiero (AZUL Sensatori) hanno infine concretizzzato la realizzazione
    [Show full text]
  • Comprehensive Review of Cambrian Himalayan
    http://www.diva-portal.org Postprint This is the accepted version of a paper published in Papers in Palaeontology. This paper has been peer- reviewed but does not include the final publisher proof-corrections or journal pagination. Citation for the original published paper (version of record): Popov, L E., Holmer, L E., Hughes, N C., Ghobadi Pour, M., Myrow, P M. (2015) Himalayan Cambrian brachiopods. Papers in Palaeontology, 1(4): 345-399 http://dx.doi.org/10.1002/spp2.1017 Access to the published version may require subscription. N.B. When citing this work, cite the original published paper. Permanent link to this version: http://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-255813 HIMALAYAN CAMBRIAN BRACHIOPODS BY LEONID E. POPOV1, LARS E. HOLMER2, NIGEL C. HUGHES3 MANSOUREH GHOBADI POUR4 AND PAUL M. MYROW5 1Department of Geology, National Museum of Wales, Cathays Park, Cardiff CF10 3NP, United Kingdom, <[email protected]>; 2Institute of Earth Sciences, Palaeobiology, Uppsala University, SE-752 36 Uppsala, Sweden, <[email protected]>; 3Department of Earth Sciences, University of California, Riverside, CA 92521, USA <[email protected]>; 4Department of Geology, Faculty of Sciences, Golestan University, Gorgan, Iran and Department of Geology, National Museum of Wales, Cathays Park, Cardiff CF10 3NP, United Kingdom <[email protected]>; 5 Department of Geology, Colorado College, Colorado Springs, CO 80903, USA <[email protected]> Abstract: A synoptic analysis of previously published material and new finds reveals that Himalayan Cambrian brachiopods can be referred to 18 genera, of which 17 are considered herein. These contain 20 taxa assigned to species, of which five are new: Eohadrotreta haydeni, Aphalotreta khemangarensis, Hadrotreta timchristiorum, Prototreta? sumnaensis and Amictocracens? brocki.
    [Show full text]
  • Revision of the Genus Cyathus (Basidiomycota) from the Herbaria of Northeast Brazil
    Mycosphere 5 (4): 531–540 (2014) ISSN 2077 7019 www.mycosphere.org Article Mycosphere Copyright © 2014 Online Edition Doi 10.5943/mycosphere/5/4/5 Revision of the genus Cyathus (Basidiomycota) from the herbaria of northeast Brazil Cruz RHSF1, Assis NM2, Silva MA3 and Baseia IG4 1Programa de Pós-Graduação em Sistemática e Evolução, Centro de Biociências, Universidade Federal do Rio Grande do Norte, Avenida Senador Salgado Filho, 3000, Natal-RN 59.078-970 Brazil, [email protected] 2Departamento de Botânica e Zoologia, Centro de Biociências, Universidade Federal do Rio Grande do Norte, Avenida Senador Salgado Filho, 3000, Natal-RN 59.078-970 Brazil, [email protected] 3Departamento de Micologia, Universidade Federal de Pernambuco, Avenida Professor Moraes Rego 1235, Recife-PE 50.670-901 Brazil, [email protected] 4Departamento de Botânica e Zoologia, Centro de Biociências, Universidade Federal do Rio Grande do Norte, Avenida Senador Salgado Filho, 3000, Natal-RN 59.078-970 Brazil, [email protected] Cruz RHSF, Assis NM, Silva MA, Baseia IG 2014 – Revision of the genus Cyathus (Basidiomycota) from the herbaria of northeast Brazil. Mycosphere 5(4), 531−540, Doi 10.5943/mycosphere/5/4/5 Abstract Seventy exsiccates of the genus Cyathus deposited in JPB, UESC, URM and UFRN herbaria were studied and nine species were identified: Cyathus badius, C. berkeleyanus, C. earlei, C. gracilis, C. limbatus, C. pallidus, C. poeppigii, C. setosus and C. striatus. Cyathus berkeleyanus and C. poeppigii are recorded for the first time for northeastern Brazil. Descriptions, taxonomic remarks and illustrations of the studied material are presented. Key words – herbarium collection – Nidulariaceae – Gasteromycetes – taxonomic review Introduction The genus Cyathus Haller belongs to the family Nidulariaceae, included in the agaricoid clade of Basidiomycota (Matheny et al.
    [Show full text]
  • 001-012 Primeras Páginas
    PUBLICACIONES DEL INSTITUTO GEOLÓGICO Y MINERO DE ESPAÑA Serie: CUADERNOS DEL MUSEO GEOMINERO. Nº 9 ADVANCES IN TRILOBITE RESEARCH ADVANCES IN TRILOBITE RESEARCH IN ADVANCES ADVANCES IN TRILOBITE RESEARCH IN ADVANCES planeta tierra Editors: I. Rábano, R. Gozalo and Ciencias de la Tierra para la Sociedad D. García-Bellido 9 788478 407590 MINISTERIO MINISTERIO DE CIENCIA DE CIENCIA E INNOVACIÓN E INNOVACIÓN ADVANCES IN TRILOBITE RESEARCH Editors: I. Rábano, R. Gozalo and D. García-Bellido Instituto Geológico y Minero de España Madrid, 2008 Serie: CUADERNOS DEL MUSEO GEOMINERO, Nº 9 INTERNATIONAL TRILOBITE CONFERENCE (4. 2008. Toledo) Advances in trilobite research: Fourth International Trilobite Conference, Toledo, June,16-24, 2008 / I. Rábano, R. Gozalo and D. García-Bellido, eds.- Madrid: Instituto Geológico y Minero de España, 2008. 448 pgs; ils; 24 cm .- (Cuadernos del Museo Geominero; 9) ISBN 978-84-7840-759-0 1. Fauna trilobites. 2. Congreso. I. Instituto Geológico y Minero de España, ed. II. Rábano,I., ed. III Gozalo, R., ed. IV. García-Bellido, D., ed. 562 All rights reserved. No part of this publication may be reproduced or transmitted in any form or by any means, electronic or mechanical, including photocopy, recording, or any information storage and retrieval system now known or to be invented, without permission in writing from the publisher. References to this volume: It is suggested that either of the following alternatives should be used for future bibliographic references to the whole or part of this volume: Rábano, I., Gozalo, R. and García-Bellido, D. (eds.) 2008. Advances in trilobite research. Cuadernos del Museo Geominero, 9.
    [Show full text]
  • Fossils from South China Redefine the Ancestral Euarthropod Body Plan Cédric Aria1 , Fangchen Zhao1, Han Zeng1, Jin Guo2 and Maoyan Zhu1,3*
    Aria et al. BMC Evolutionary Biology (2020) 20:4 https://doi.org/10.1186/s12862-019-1560-7 RESEARCH ARTICLE Open Access Fossils from South China redefine the ancestral euarthropod body plan Cédric Aria1 , Fangchen Zhao1, Han Zeng1, Jin Guo2 and Maoyan Zhu1,3* Abstract Background: Early Cambrian Lagerstätten from China have greatly enriched our perspective on the early evolution of animals, particularly arthropods. However, recent studies have shown that many of these early fossil arthropods were more derived than previously thought, casting uncertainty on the ancestral euarthropod body plan. In addition, evidence from fossilized neural tissues conflicts with external morphology, in particular regarding the homology of the frontalmost appendage. Results: Here we redescribe the multisegmented megacheirans Fortiforceps and Jianfengia and describe Sklerolibyon maomima gen. et sp. nov., which we place in Jianfengiidae, fam. nov. (in Megacheira, emended). We find that jianfengiids show high morphological diversity among megacheirans, both in trunk ornamentation and head anatomy, which encompasses from 2 to 4 post-frontal appendage pairs. These taxa are also characterized by elongate podomeres likely forming seven-segmented endopods, which were misinterpreted in their original descriptions. Plesiomorphic traits also clarify their connection with more ancestral taxa. The structure and position of the “great appendages” relative to likely sensory antero-medial protrusions, as well as the presence of optic peduncles and sclerites, point to an overall
    [Show full text]
  • Durham Research Online
    Durham Research Online Deposited in DRO: 23 May 2017 Version of attached le: Accepted Version Peer-review status of attached le: Peer-reviewed Citation for published item: Betts, Marissa J. and Paterson, John R. and Jago, James B. and Jacquet, Sarah M. and Skovsted, Christian B. and Topper, Timothy P. and Brock, Glenn A. (2017) 'Global correlation of the early Cambrian of South Australia : shelly fauna of the Dailyatia odyssei Zone.', Gondwana research., 46 . pp. 240-279. Further information on publisher's website: https://doi.org/10.1016/j.gr.2017.02.007 Publisher's copyright statement: c 2017 This manuscript version is made available under the CC-BY-NC-ND 4.0 license http://creativecommons.org/licenses/by-nc-nd/4.0/ Additional information: Use policy The full-text may be used and/or reproduced, and given to third parties in any format or medium, without prior permission or charge, for personal research or study, educational, or not-for-prot purposes provided that: • a full bibliographic reference is made to the original source • a link is made to the metadata record in DRO • the full-text is not changed in any way The full-text must not be sold in any format or medium without the formal permission of the copyright holders. Please consult the full DRO policy for further details. Durham University Library, Stockton Road, Durham DH1 3LY, United Kingdom Tel : +44 (0)191 334 3042 | Fax : +44 (0)191 334 2971 https://dro.dur.ac.uk Accepted Manuscript Global correlation of the early Cambrian of South Australia: Shelly fauna of the Dailyatia odyssei Zone Marissa J.
    [Show full text]
  • Abstract Volume
    https://doi.org/10.3301/ABSGI.2019.04 Milano, 2-5 July 2019 ABSTRACT BOOK a cura della Società Geologica Italiana 3rd International Congress on Stratigraphy GENERAL CHAIRS Marco Balini, Università di Milano, Italy Elisabetta Erba, Università di Milano, Italy - past President Società Geologica Italiana 2015-2017 SCIENTIFIC COMMITTEE Adele Bertini, Peter Brack, William Cavazza, Mauro Coltorti, Piero Di Stefano, Annalisa Ferretti, Stanley C. Finney, Fabio Florindo, Fabrizio Galluzzo, Piero Gianolla, David A.T. Harper, Martin J. Head, Thijs van Kolfschoten, Maria Marino, Simonetta Monechi, Giovanni Monegato, Maria Rose Petrizzo, Claudia Principe, Isabella Raffi, Lorenzo Rook ORGANIZING COMMITTEE The Organizing Committee is composed by members of the Department of Earth Sciences “Ardito Desio” and of the Società Geologica Italiana Lucia Angiolini, Cinzia Bottini, Bernardo Carmina, Domenico Cosentino, Fabrizio Felletti, Daniela Germani, Fabio M. Petti, Alessandro Zuccari FIELD TRIP COMMITTEE Fabrizio Berra, Mattia Marini, Maria Letizia Pampaloni, Marcello Tropeano ABSTRACT BOOK EDITORS Fabio M. Petti, Giulia Innamorati, Bernardo Carmina, Daniela Germani Papers, data, figures, maps and any other material published are covered by the copyright own by the Società Geologica Italiana. DISCLAIMER: The Società Geologica Italiana, the Editors are not responsible for the ideas, opinions, and contents of the papers published; the authors of each paper are responsible for the ideas opinions and con- tents published. La Società Geologica Italiana, i curatori scientifici non sono responsabili delle opinioni espresse e delle affermazioni pubblicate negli articoli: l’autore/i è/sono il/i solo/i responsabile/i. ST3.2 Cambrian stratigraphy, events and geochronology Conveners and Chairpersons Per Ahlberg (Lund University, Sweden) Loren E.
    [Show full text]
  • Smithsonian Miscellaneous Collections
    SMITHSONIAN MISCELLANEOUS COLLECTIONS VOLUME 53, NUMBER 6 CAMBRIAN GEOLOGY AND PALEONTOLOGY No. 6.-0LENELLUS AND OTHER GENERA OF THE MESONACID/E With Twenty-Two Plates CHARLES D. WALCOTT (Publication 1934) CITY OF WASHINGTON PUBLISHED BY THE SMITHSONIAN INSTITUTION AUGUST 12, 1910 Zl^i £orb (gaitimovt (pnee BALTIMORE, MD., U. S. A. CAMBRIAN GEOLOGY AND PALEONTOLOGY No. 6.—OLENELLUS AND OTHER GENERA OF THE MESONACID^ By CHARLES D. WALCOTT (With Twenty-Two Plates) CONTENTS PAGE Introduction 233 Future work 234 Acknowledgments 234 Order Opisthoparia Beecher 235 Family Mesonacidas Walcott 236 Observations—Development 236 Cephalon 236 Eye 239 Facial sutures 242 Anterior glabellar lobe 242 Hypostoma 243 Thorax 244 Nevadia stage 244 Mesonacis stage 244 Elliptocephala stage 244 Holmia stage 244 Piedeumias stage 245 Olenellus stage 245 Peachella 245 Olenelloides ; 245 Pygidium 245 Delimitation of genera 246 Nevadia 246 Mesonacis 246 Elliptocephala 247 Callavia 247 Holmia 247 Wanneria 248 P.'edeumias 248 Olenellus 248 Peachella 248 Olenelloides 248 Development of Mesonacidas 249 Mesonacidas and Paradoxinas 250 Stratigraphic position of the genera and species 250 Abrupt appearance of the Mesonacidse 252 Geographic distribution 252 Transition from the Mesonacidse to the Paradoxinse 253 Smithsonian Miscellaneous Collections, Vol. 53, No. 6 232 SMITHSONIAN MISCELLANEOUS COLLECTIONS VOL. 53 Description of genera and species 256 Nevadia, new genus 256 weeksi, new species 257 Mcsonacis Walcott 261 niickwitzi (Schmidt) 262 torelli (Moberg) 264 vermontana
    [Show full text]
  • Fluted Bird's Nest Fungus, Cyathus Striatus
    A Horticulture Information article from the Wisconsin Master Gardener website, posted 19 Sept 2014 Fluted Bird’s Nest Fungus, Cyathus striatus There are many fungi in several genera called bird’s nest fungi because of the resemblance of their fruiting bodies to a tiny nest fi lled with eggs. One of the most common in Wisconsin is Cyathus striatus, the fl uted bird’s nest fungus. This species is widespread throughout temperate regions of the world, developing on dead wood in open forests, typically growing individually or in clusters on small twigs and fallen branches or other wood debris. Because it also grows readily in bark or wood mulch, it is frequently found in landscaped yards and gardens. Other species grow on plant remains or cow or horse dung. C. striatus, and others, are most commonly Fruiting bodies of fl uted bird’s nest seen in the autumn fungus, Cyathus striatus. when damp conditions promote their development, but they can be seen anytime conditions are appropriate. Even though each individual is small and inconspicuous, this species often grows in huge clusters, making A large cluster of fl uted bird’s nest fungi growing them more noticeable – on bark mulch. although they blend in so well with their background that it is very easy to overlook them. All of the bird’s nest fungi look like miniature nests (generally only ¼ inch in diameter) fi lled with four or fi ve tiny eggs. The cup-shaped “nest”, called a peridium, may be brown, gray or white, and smooth or textured inside and out.
    [Show full text]
  • The Weeks Formation Konservat-Lagerstätte and the Evolutionary Transition of Cambrian Marine Life
    Downloaded from http://jgs.lyellcollection.org/ by guest on October 1, 2021 Review focus Journal of the Geological Society Published Online First https://doi.org/10.1144/jgs2018-042 The Weeks Formation Konservat-Lagerstätte and the evolutionary transition of Cambrian marine life Rudy Lerosey-Aubril1*, Robert R. Gaines2, Thomas A. Hegna3, Javier Ortega-Hernández4,5, Peter Van Roy6, Carlo Kier7 & Enrico Bonino7 1 Palaeoscience Research Centre, School of Environmental and Rural Science, University of New England, Armidale, NSW 2351, Australia 2 Geology Department, Pomona College, Claremont, CA 91711, USA 3 Department of Geology, Western Illinois University, 113 Tillman Hall, 1 University Circle, Macomb, IL 61455, USA 4 Department of Zoology, University of Cambridge, Downing Street, Cambridge CB2 3EJ, UK 5 Museum of Comparative Zoology and Department of Organismic and Evolutionary Biology, Harvard University, 26 Oxford Street, Cambridge, MA 02138, USA 6 Department of Geology, Ghent University, Krijgslaan 281/S8, B-9000 Ghent, Belgium 7 Back to the Past Museum, Carretera Cancún, Puerto Morelos, Quintana Roo 77580, Mexico R.L.-A., 0000-0003-2256-1872; R.R.G., 0000-0002-3713-5764; T.A.H., 0000-0001-9067-8787; J.O.-H., 0000-0002- 6801-7373 * Correspondence: [email protected] Abstract: The Weeks Formation in Utah is the youngest (c. 499 Ma) and least studied Cambrian Lagerstätte of the western USA. It preserves a diverse, exceptionally preserved fauna that inhabited a relatively deep water environment at the offshore margin of a carbonate platform, resembling the setting of the underlying Wheeler and Marjum formations. However, the Weeks fauna differs significantly in composition from the other remarkable biotas of the Cambrian Series 3 of Utah, suggesting a significant Guzhangian faunal restructuring.
    [Show full text]
  • Arthropod Pattern Theory and Cambrian Trilobites
    Bijdragen tot de Dierkunde, 64 (4) 193-213 (1995) SPB Academie Publishing bv, The Hague Arthropod pattern theory and Cambrian trilobites Frederick A. Sundberg Research Associate, Invertebrate Paleontology Section, Los Angeles County Museum of Natural History, 900 Exposition Boulevard, Los Angeles, California 90007, USA Keywords: Arthropod pattern theory, Cambrian, trilobites, segment distributions 4 Abstract ou 6). La limite thorax/pygidium se trouve généralementau niveau du node 2 (duplomères 11—13) et du node 3 (duplomères les les 18—20) pour Corynexochides et respectivement pour Pty- An analysis of duplomere (= segment) distribution within the chopariides.Cette limite se trouve dans le champ 4 (duplomères cephalon,thorax, and pygidium of Cambrian trilobites was un- 21—n) dans le cas des Olenellides et des Redlichiides. L’extrémité dertaken to determine if the Arthropod Pattern Theory (APT) du corps se trouve généralementau niveau du node 3 chez les proposed by Schram & Emerson (1991) applies to Cambrian Corynexochides, et au niveau du champ 4 chez les Olenellides, trilobites. The boundary of the cephalon/thorax occurs within les Redlichiides et les Ptychopariides. D’autre part, les épines 1 4 the predicted duplomerenode (duplomeres or 6). The bound- macropleurales, qui pourraient indiquer l’emplacement des ary between the thorax and pygidium generally occurs within gonopores ou de l’anus, sont généralementsituées au niveau des node 2 (duplomeres 11—13) and node 3 (duplomeres 18—20) for duplomères pronostiqués. La limite prothorax/opisthothorax corynexochids and ptychopariids, respectively. This boundary des Olenellides est située dans le node 3 ou près de celui-ci. Ces occurs within field 4 (duplomeres21—n) for olenellids and red- résultats indiquent que nombre et distribution des duplomères lichiids.
    [Show full text]