Cladistic Analysis of Medusozoa and Cnidarian Evolution

Total Page:16

File Type:pdf, Size:1020Kb

Cladistic Analysis of Medusozoa and Cnidarian Evolution Invertebrate Biology 123(1): 23–42. ᭧ 2004 American Microscopical Society, Inc. Cladistic analysis of Medusozoa and cnidarian evolution Antonio C. Marques1,a and Allen G. Collins2 1 Departamento de Zoologia, Instituto de Biocieˆncias, Universidade de Sa˜o Paulo. C.P. 11461, 05422-970, Sa˜o Paulo, SP, Brazil 2 ITZ, Ecology & Evolution, Tiera¨rtzliche Hochschule Hannover, Bu¨nteweg 17d, 30559 Hannover, Germany Abstract. A cladistic analysis of 87 morphological and life history characters of medusozoan cnidarians, rooted with Anthozoa, results in the phylogenetic hypothesis (Anthozoa (Hydrozoa (Scyphozoa (Staurozoa, Cubozoa)))). Staurozoa is a new class of Cnidaria consisting of Stau- romedusae and the fossil group Conulatae. Scyphozoa is redefined as including those medu- sozoans characterized by strobilation and ephyrae (Coronatae, Semaeostomeae, and Rhizosto- meae). Within Hydrozoa, Limnomedusae is identified as either the earliest diverging hydrozoan lineage or as the basal group of either Trachylina (Actinulida (Trachymedusae (Narcomedusae, Laingiomedusae))) or Hydroidolina (Leptothecata (Siphonophorae, Anthoathecata)). Cladistic results are highly congruent with recently published phylogenetic analyses based on 18S mo- lecular characters. We propose a phylogenetic classification of Medusozoa that is consistent with phylogenetic hypotheses based on our cladistic results, as well as those derived from 18S analyses. Optimization of the characters presented in this analysis are used to discuss evolu- tionary scenarios. The ancestral cnidarian probably had a sessile biradial polyp as an adult form. The medusa is inferred to be a synapomorphy of Medusozoa. However, the ancestral process (metamorphosis of the apical region of the polyp or lateral budding involving an en- tocodon) could not be inferred unequivocally. Similarly, character states for sense organs and nervous systems could not be inferred for the ancestral medusoid of Medusozoa. Additional key words: Staurozoa, Scyphozoa, Hydrozoa, Cubozoa Cnidarian species are often used as model organisms ships among its component groups are known with in evolutionary studies (of development, cell biology, precision (Marques 1996; Nielsen et al. 1996; Jenner gene families, etc.) because Cnidaria diverged rela- & Schram 1999; Nielsen 2001; Collins 2002). tively early in the history of Metazoa. The presump- Prior studies focusing on relationships among cni- tion in these studies is that cnidarian species may ex- darian classes contain many contradictions (Salvini- hibit relatively underived character states that can be Plawen 1978, 1987; Petersen 1990; Bridge et al. 1992; compared with those of other animals, particularly bi- Bridge et al. 1995; Schuchert 1993; Odorico & Miller laterians. As an example, a recent study made infer- 1997; Marques 2001; Nielsen 2001; Collins 2002). ences about the ancestral paired domain (a conserved However, in the last decade Anthozoa has emerged as DNA-binding domain present in developmental con- the most likely sister group of the remaining cnidari- trol genes) in animals based on the condition of Pax ans, first dubbed Tesserazoa (Salvini-Plawen 1978), genes in a hydrozoan cnidarian (Sun et al. 2001). but more commonly known as Medusozoa (Petersen Though character states in cnidarians are possibly an- 1979). Monophyly of the medusozoans is particularly cient, features under study in a given cnidarian species well supported by their shared possession of linear may certainly be derived at some level within Cnidaria mtDNA, in contrast to anthozoans and other metazo- and to assume the opposite could be misleading. Thus, ans (Bridge et al. 1992). To move toward a consensus the utility of comparative studies is enhanced as more view of cnidarian phylogeny that will enlighten further taxa are investigated (Lowe et al. 2002) and as knowl- comparative studies using cnidarians, we present a cla- edge of phylogeny increases. In the case of Cnidaria, distic analysis of 87 morphological and life history neither its position within Metazoa nor the relation- characters to generate a hypothesis of relationships among medusozoan cnidarians. We compare the cla- distic results with those of recent phylogenetic analy- a Author for correspondence. E-mail: [email protected] ses of Medusozoa using molecular characters (Collins 24 Marques & Collins 2002), and present a classification that is consistent not available was coded as a question mark (?) and with phylogenetic hypotheses derived from both anal- non-comparable structures were coded in the matrix as yses. Finally, we make inferences about the evolution N. Polymorphic characters were treated as uncertain- of morphological and life history traits within Cnidaria ties. based on our cladistic analysis. Cladistic analyses were carried out using the branch and bound algorithm of the software PAUP* 4.0 Methods (Swofford 2001). First, we searched for most parsi- monious trees without weighting any of the characters. In our cladistic analysis, we used the class Anthozoa Strict and semi-strict consensus trees were calculated as an outgroup, a position supported by previous mor- from the trees obtained in these primary analyses. phological and molecular studies. As terminal taxa, we Then, a complementary analysis was performed using adopted the class Cubozoa (Werner 1975; Franc successive approximation weighting (Farris 1969, see 1994b), the fossil group Conulatae (Wade 1994), the also Carpenter 1988, 1994) by maximum values of re- 4 orders of Scyphozoa (after Franc 1994a), and the 8 scaled consistency indices (RC). Bootstrap indices subclasses of Hydrozoa (following Bouillon 1994a,b were calculated for 500 replicate searches using both with 2 exceptions). Higher-level hydrozoan taxonomy weighted and unweighted characters, and Bremer sup- has suffered from the legacy of early specialists of port indices were calculated using unweighted char- hydroids and hydromedusae, who developed indepen- acters. dent naming schemes. To be inclusive, we use the names Anthoathecata and Leptothecata (Cornelius Results 1992) rather than relicts of older classifications, such as Anthomedusae, Athecata, Leptomedusae, and The- The unweighted analysis of the data matrix (Appen- cata. As in any parsimony analysis, all terminals are dix 2) yielded 48 trees (14 trees using ‘‘amb-’’ option considered to be monophyletic. Although hydrocorals of PAUP; Lϭ126; CIϭ0.730; RIϭ0.728), for which and velellids are sometimes classified as higher taxo- the strict and semistrict consensus trees have the same nomic groups of Hydrozoa (e.g., Milleporina, Stylas- highly polytomic topology, including only 3 mono- terina, Chondrophora, etc.), these groups are well es- phyletic groups: (1) (Coronatae (Semaeostomeae, Rhi- tablished as part of Anthoathecata, based on their zostomeae)); (2) (Siphonophorae, Anthoathecata); and morphology (e.g., Bouillon 1985; Schuchert 1996) and (3) (Actinulida, Trachymedusae (Narcomedusae, Lain- on molecular evidence (Collins 2002). Hydridae and giomedusae)). The successive weighting analysis re- Otohydra are difficult hydrozoan groups and were con- sulted in 3 fully resolved trees (3 using ‘‘amb-’’; sidered here to be part of Anthoathecata and Actinu- Lϭ76.65; CIϭ0.928; RIϭ0.925), in which Limnome- lida respectively. Neither of these inclusions impact dusae appears in 3 different positions: (1) sister-group our scoring of Anthoathecata and Actinulida. That of all other hydrozoans; (2) sister-group of (Actinulida said, if future work indicates that any of our terminal (Trachymedusae (Narcomedusae, Laingiomedusae))); taxa are not monophyletic, our analyses should be and (3) sister group of (Leptothecata (Siphonophorae, emended accordingly. Anthoathecata)). The phylogenetic hypothesis (strict For each taxon, we scored 87 characters, of which consensus) generated by this cladistic analysis (Fig. 1) 48 were informative (Appendices 1 and 2). Non- suggests that Hydrozoa is the monophyletic sister informative characters either have incomplete docu- group of all other medusozoans. Within Hydrozoa, mentation or were judged to be shared by all terminals. Limnomedusae has an unstable position, whereas the We hope that including these characters here will in- other hydrozoan groups form 2 clades (Actinulida spire further studies. Scoring characters for supraspe- (Trachymedusae (Narcomedusae, Laingiomedusae))) cific taxa requires some generalizations unless one in- and (Leptothecata (Siphonophorae, Anthoathecata)). cludes only characters that are constant for all species Non-hydrozoan medusozoans are also monophyletic, in higher taxa or relies on a phylogenetic hypothesis but Scyphozoa, as traditionally circumscribed is not. of the group that permits optimization of all ancestral Instead, 3 scyphozoan groups form a clade (Coronatae states (Whiting et al. 1997). In general, the character (Rhizostomeae, Semaeostomeae)) that is the sister states scored were represented uniformly in each of the group to the clade ((Stauromedusae, Conulatae) Cu- terminals (see Appendix 1 for exceptions and discus- bozoa). sion). Because of the taxonomic breadth of this study, This cladogram (Fig. 1) represents hypotheses that characters and their states were taken mostly from the are both consistent with and contradictory to various literature. Characters were coded as binary or multi- views of cnidarian relationships that have been pro- state and considered unordered. Information that was posed in the past. Conulatae, which is comprised of Cladistic analysis of Medusozoa 25
Recommended publications
  • Atlas of the Neuromuscular System in the Trachymedusa Aglantha Digitale: Insights from the Advanced Hydrozoan
    Received: 11 September 2019 Revised: 17 November 2019 Accepted: 18 November 2019 DOI: 10.1002/cne.24821 RESEARCH ARTICLE Atlas of the neuromuscular system in the Trachymedusa Aglantha digitale: Insights from the advanced hydrozoan Tigran P. Norekian1,2,3 | Leonid L. Moroz1,4 1Whitney Laboratory for Marine Biosciences, University of Florida, St. Augustine, Florida Abstract 2Friday Harbor Laboratories, University of Cnidaria is the sister taxon to bilaterian animals, and therefore, represents a key refer- Washington, Friday Harbor, Washington ence lineage to understand early origins and evolution of the neural systems. The 3Institute of Higher Nervous Activity and Neurophysiology, Russian Academy of hydromedusa Aglantha digitale is arguably the best electrophysiologically studied jelly- Sciences, Moscow, Russia fish because of its system of giant axons and unique fast swimming/escape behaviors. 4 Department of Neuroscience and McKnight Here, using a combination of scanning electron microscopy and immunohistochemistry Brain Institute, University of Florida, Gainesville, Florida together with phalloidin labeling, we systematically characterize both neural and mus- cular systems in Aglantha, summarizing and expanding further the previous knowledge Correspondence Leonid L. Moroz, The Whitney Laboratory, on the microscopic neuroanatomy of this crucial reference species. We found that the University of Florida, 9505 Ocean Shore Blvd., majority, if not all (~2,500) neurons, that are labeled by FMRFamide antibody are dif- St. Augustine, FL. Email: [email protected] ferent from those revealed by anti-α-tubulin immunostaining, making these two neuro- nal markers complementary to each other and, therefore, expanding the diversity of Funding information National Science Foundation, Grant/Award neural elements in Aglantha with two distinct neural subsystems.
    [Show full text]
  • Diversity and Community Structure of Pelagic Cnidarians in the Celebes and Sulu Seas, Southeast Asian Tropical Marginal Seas
    Deep-Sea Research I 100 (2015) 54–63 Contents lists available at ScienceDirect Deep-Sea Research I journal homepage: www.elsevier.com/locate/dsri Diversity and community structure of pelagic cnidarians in the Celebes and Sulu Seas, southeast Asian tropical marginal seas Mary M. Grossmann a,n, Jun Nishikawa b, Dhugal J. Lindsay c a Okinawa Institute of Science and Technology Graduate University (OIST), Tancha 1919-1, Onna-son, Okinawa 904-0495, Japan b Tokai University, 3-20-1, Orido, Shimizu, Shizuoka 424-8610, Japan c Japan Agency for Marine-Earth Science and Technology (JAMSTEC), Yokosuka 237-0061, Japan article info abstract Article history: The Sulu Sea is a semi-isolated, marginal basin surrounded by high sills that greatly reduce water inflow Received 13 September 2014 at mesopelagic depths. For this reason, the entire water column below 400 m is stable and homogeneous Received in revised form with respect to salinity (ca. 34.00) and temperature (ca. 10 1C). The neighbouring Celebes Sea is more 19 January 2015 open, and highly influenced by Pacific waters at comparable depths. The abundance, diversity, and Accepted 1 February 2015 community structure of pelagic cnidarians was investigated in both seas in February 2000. Cnidarian Available online 19 February 2015 abundance was similar in both sampling locations, but species diversity was lower in the Sulu Sea, Keywords: especially at mesopelagic depths. At the surface, the cnidarian community was similar in both Tropical marginal seas, but, at depth, community structure was dependent first on sampling location Marginal sea and then on depth within each Sea. Cnidarians showed different patterns of dominance at the two Sill sampling locations, with Sulu Sea communities often dominated by species that are rare elsewhere in Pelagic cnidarians fi Community structure the Indo-Paci c.
    [Show full text]
  • Research Funding (Total $2,552,481) $15,000 2019
    CURRICULUM VITAE TENNESSEE AQUARIUM CONSERVATION INSTITUTE 175 BAYLOR SCHOOL RD CHATTANOOGA, TN 37405 RESEARCH FUNDING (TOTAL $2,552,481) $15,000 2019. Global Wildlife Conservation. Rediscovering the critically endangered Syr-Darya Shovelnose Sturgeon. $10,000 2019. Tennessee Wildlife Resources Agency. Propagation of the Common Logperch as a host for endangered mussel larvae. $8,420 2019. Tennessee Wildlife Resources Agency. Monitoring for the Laurel Dace. $4,417 2019. Tennessee Wildlife Resources Agency. Examining interactions between Laurel Dace (Chrosomus saylori) and sunfish $12,670 2019. Trout Unlimited. Southern Appalachian Brook Trout propagation for reintroduction to Shell Creek. $106,851 2019. Private Donation. Microplastic accumulation in fishes of the southeast. $1,471. 2019. AZFA-Clark Waldram Conservation Grant. Mayfly propagation for captive propagation programs. $20,000. 2019. Tennessee Valley Authority. Assessment of genetic diversity within Blotchside Logperch. $25,000. 2019. Riverview Foundation. Launching Hidden Rivers in the Southeast. $11,170. 2018. Trout Unlimited. Propagation of Southern Appalachian Brook Trout for Supplemental Reintroduction. $1,471. 2018. AZFA Clark Waldram Conservation Grant. Climate Change Impacts on Headwater Stream Vertebrates in Southeastern United States $1,000. 2018. Hamilton County Health Department. Step 1 Teaching Garden Grants for Sequoyah School Garden. $41,000. 2018. Riverview Foundation. River Teachers: Workshops for Educators. $1,000. 2018. Tennessee Valley Authority. Youth Freshwater Summit $20,000. 2017. Tennessee Valley Authority. Lake Sturgeon Propagation. $7,500 2017. Trout Unlimited. Brook Trout Propagation. $24,783. 2017. Tennessee Wildlife Resource Agency. Assessment of Percina macrocephala and Etheostoma cinereum populations within the Duck River Basin. $35,000. 2017. U.S. Fish and Wildlife Service. Status surveys for conservation status of Ashy (Etheostoma cinereum) and Redlips (Etheostoma maydeni) Darters.
    [Show full text]
  • Treatment of Lion´S Mane Jellyfish Stings- Hot Water Immersion Versus Topical Corticosteroids
    THE SAHLGRENSKA ACADEMY Treatment of Lion´s Mane jellyfish stings- hot water immersion versus topical corticosteroids Degree Project in Medicine Anna Nordesjö Programme in Medicine Gothenburg, Sweden 2016 Supervisor: Kai Knudsen Department of Anesthesia and Intensive Care Medicine 1 CONTENTS Abstract ................................................................................................................................................... 3 Introduction ............................................................................................................................................. 3 Background ............................................................................................................................................. 4 Jellyfish ............................................................................................................................................... 4 Anatomy .......................................................................................................................................... 4 Nematocysts .................................................................................................................................... 4 Jellyfish in Scandinavian waters ......................................................................................................... 5 Lion’s Mane jellyfish, Cyanea capillata .......................................................................................... 5 Moon jelly, Aurelia aurita ..............................................................................................................
    [Show full text]
  • Species Composition of the Free Living Multicellular Invertebrate Animals
    Historia naturalis bulgarica, 21: 49-168, 2015 Species composition of the free living multicellular invertebrate animals (Metazoa: Invertebrata) from the Bulgarian sector of the Black Sea and the coastal brackish basins Zdravko Hubenov Abstract: A total of 19 types, 39 classes, 123 orders, 470 families and 1537 species are known from the Bulgarian Black Sea. They include 1054 species (68.6%) of marine and marine-brackish forms and 508 species (33.0%) of freshwater-brackish, freshwater and terrestrial forms, connected with water. Five types (Nematoda, Rotifera, Annelida, Arthropoda and Mollusca) have a high species richness (over 100 species). Of these, the richest in species are Arthropoda (802 species – 52.2%), Annelida (173 species – 11.2%) and Mollusca (152 species – 9.9%). The remaining 14 types include from 1 to 38 species. There are some well-studied regions (over 200 species recorded): first, the vicinity of Varna (601 spe- cies), where investigations continue for more than 100 years. The aquatory of the towns Nesebar, Pomorie, Burgas and Sozopol (220 to 274 species) and the region of Cape Kaliakra (230 species) are well-studied. Of the coastal basins most studied are the lakes Durankulak, Ezerets-Shabla, Beloslav, Varna, Pomorie, Atanasovsko, Burgas, Mandra and the firth of Ropotamo River (up to 100 species known). The vertical distribution has been analyzed for 800 species (75.9%) – marine and marine-brackish forms. The great number of species is found from 0 to 25 m on sand (396 species) and rocky (257 species) bottom. The groups of stenohypo- (52 species – 6.5%), stenoepi- (465 species – 58.1%), meso- (115 species – 14.4%) and eurybathic forms (168 species – 21.0%) are represented.
    [Show full text]
  • New Species of Stylasterid (Cnidaria: Hydrozoa: Anthoathecata: Stylasteridae) from the Northwestern Hawaiian Islands Author(S): Stephen D
    New Species of Stylasterid (Cnidaria: Hydrozoa: Anthoathecata: Stylasteridae) from the Northwestern Hawaiian Islands Author(s): Stephen D. Cairns Source: Pacific Science, 71(1):77-81. Published By: University of Hawai'i Press DOI: http://dx.doi.org/10.2984/71.1.7 URL: http://www.bioone.org/doi/full/10.2984/71.1.7 BioOne (www.bioone.org) is a nonprofit, online aggregation of core research in the biological, ecological, and environmental sciences. BioOne provides a sustainable online platform for over 170 journals and books published by nonprofit societies, associations, museums, institutions, and presses. Your use of this PDF, the BioOne Web site, and all posted and associated content indicates your acceptance of BioOne’s Terms of Use, available at www.bioone.org/page/ terms_of_use. Usage of BioOne content is strictly limited to personal, educational, and non-commercial use. Commercial inquiries or rights and permissions requests should be directed to the individual publisher as copyright holder. BioOne sees sustainable scholarly publishing as an inherently collaborative enterprise connecting authors, nonprofit publishers, academic institutions, research libraries, and research funders in the common goal of maximizing access to critical research. New Species of Stylasterid (Cnidaria: Hydrozoa: Anthoathecata: Stylasteridae) from the Northwestern Hawaiian Islands1 Stephen D. Cairns 2 Abstract: A new species of Crypthelia, C. kelleyi, is described from a seamount in the Northwestern Hawaiian Islands, making it the fifth species of stylasterid known from the Hawaiian Islands. Collected at 2,116 m, it is the fourth-deepest stylasterid species known. Once thought to be absent from Hawai- materials and methods ian waters (Boschma 1959), four stylasterid species have been reported from this archi- The specimen was collected on the Okeanos pelago, primarily on seamounts and off small Explorer expedition to the Northwestern islands in the Northwestern Hawaiian Islands Hawaiian Islands, which took place in August at depths of 293 – 583 m (Cairns 2005).
    [Show full text]
  • A Case Study with the Monospecific Genus Aegina
    MARINE BIOLOGY RESEARCH, 2017 https://doi.org/10.1080/17451000.2016.1268261 ORIGINAL ARTICLE The perils of online biogeographic databases: a case study with the ‘monospecific’ genus Aegina (Cnidaria, Hydrozoa, Narcomedusae) Dhugal John Lindsaya,b, Mary Matilda Grossmannc, Bastian Bentlaged,e, Allen Gilbert Collinsd, Ryo Minemizuf, Russell Ross Hopcroftg, Hiroshi Miyakeb, Mitsuko Hidaka-Umetsua,b and Jun Nishikawah aEnvironmental Impact Assessment Research Group, Research and Development Center for Submarine Resources, Japan Agency for Marine- Earth Science and Technology (JAMSTEC), Yokosuka, Japan; bLaboratory of Aquatic Ecology, School of Marine Bioscience, Kitasato University, Sagamihara, Japan; cMarine Biophysics Unit, Okinawa Institute of Science and Technology (OIST), Onna, Japan; dDepartment of Invertebrate Zoology, National Museum of Natural History, Smithsonian Institution, Washington, DC, USA; eMarine Laboratory, University of Guam, Mangilao, USA; fRyo Minemizu Photo Office, Shimizu, Japan; gInstitute of Marine Science, University of Alaska Fairbanks, Alaska, USA; hDepartment of Marine Biology, Tokai University, Shizuoka, Japan ABSTRACT ARTICLE HISTORY Online biogeographic databases are increasingly being used as data sources for scientific papers Received 23 May 2016 and reports, for example, to characterize global patterns and predictors of marine biodiversity and Accepted 28 November 2016 to identify areas of ecological significance in the open oceans and deep seas. However, the utility RESPONSIBLE EDITOR of such databases is entirely dependent on the quality of the data they contain. We present a case Stefania Puce study that evaluated online biogeographic information available for a hydrozoan narcomedusan jellyfish, Aegina citrea. This medusa is considered one of the easiest to identify because it is one of KEYWORDS very few species with only four large tentacles protruding from midway up the exumbrella and it Biogeography databases; is the only recognized species in its genus.
    [Show full text]
  • Cordylophora Caspia (Pallas, 1771)
    Método de Evaluación Rápida de Invasividad (MERI) para especies exóticas en México Cordylophora caspia (Pallas, 1771) Cordylophora caspia (Pallas, 1771) Foto: Horia R. Galea Fuente: WoRMS taxa. Cordylophora caspia es una importante fuente animal de ensuciamiento y atasco de sistemas industriales de refrigeración de agua. Compite con especies nativas por espacio y alimento. Grandes colonias densas pueden modificar los hábitats bentónicos, provocando cambios estructurales en las comunidades pelárgicas y bentónicas (MAAMA, 2013). Información taxonómica Reino: Animalia Phylum: Cnidaria Clase: Hydrozoa Orden: Anthoathecata Familia: Cordylophoridae Género: Cordylophora Especie: Cordylophora caspia (Pallas, 1771) Nombre común: Hidroide esturialino, freshwater hydroid, euryhaline hydroid. Resultado: 0.5281 Categoría de riesgo: Muy alto 1 Método de Evaluación Rápida de Invasividad (MERI) para especies exóticas en México Cordylophora caspia (Pallas, 1771) Descripción de la especie Hidroide colonial de color marrón claro, que puede alcanzar hasta 10 cm de altura. La colonia puede tener ramificaciones ocasionalmente por lados alternativos; las ramas están rodeadas en la base y tiene pólipos terminales, de color blanquecino o rosa pálido, con tentáculos incoloros, en número de 12 a 16, repartidos irregularmente sobre la superficie del pólipo. La boca nace en una probóscide cónica pero truncada. Cada rama tiene órganos reproductivos en número de uno a tres, en forma de pera de tallos cortos (MAAMA, 2013). Distribución original Región Ponto-Caspiana
    [Show full text]
  • Aquatic Nuisance Species Management Plan
    NORTH CAROLINA ria ut N e Mystery er Prim es S Wat ros in na e Ch il Aquatic ish F on Nuisance Li rn Sna Species Nor the kehead Marbled Cray fish Hydrill a h Spo fis tted Jelly MANAGEMENT PLAN NORTH CAROLINA AQUATIC NUISANCE SPECIES MANAGEMENT PLAN Prepared by the NC Aquatic Nuisance Species Management Plan Committee October 1, 2015 Approved by: Steve Troxler, Commissioner North Carolina Department of Agriculture and Consumer Services Donald R. van der Vaart, Secretary North Carolina Department of Environmental Quality Gordon Myers, Executive Director North Carolina Wildlife Resources Commission TABLE OF CONTENTS Acknowledgements Executive Summary I. Introduction .....................................................................................................................................................................................................................1 The difference between Aquatic Invasive Species (AIS) and Aquatic Nuisance Species (ANS) ................................................................5 Plan Purpose, Scope and Development ............................................................................................................................................................................. 5 Aquatic Invasive Species Vectors and Impacts ............................................................................................................................................................... 6 Interactions with Other Plan ................................................................................................................................................................................................
    [Show full text]
  • Hydrozoan Insights in Animal Development and Evolution Lucas Leclère, Richard Copley, Tsuyoshi Momose, Evelyn Houliston
    Hydrozoan insights in animal development and evolution Lucas Leclère, Richard Copley, Tsuyoshi Momose, Evelyn Houliston To cite this version: Lucas Leclère, Richard Copley, Tsuyoshi Momose, Evelyn Houliston. Hydrozoan insights in animal development and evolution. Current Opinion in Genetics and Development, Elsevier, 2016, Devel- opmental mechanisms, patterning and evolution, 39, pp.157-167. 10.1016/j.gde.2016.07.006. hal- 01470553 HAL Id: hal-01470553 https://hal.sorbonne-universite.fr/hal-01470553 Submitted on 17 Feb 2017 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Current Opinion in Genetics and Development 2016, 39:157–167 http://dx.doi.org/10.1016/j.gde.2016.07.006 Hydrozoan insights in animal development and evolution Lucas Leclère, Richard R. Copley, Tsuyoshi Momose and Evelyn Houliston Sorbonne Universités, UPMC Univ Paris 06, CNRS, Laboratoire de Biologie du Développement de Villefranche‐sur‐mer (LBDV), 181 chemin du Lazaret, 06230 Villefranche‐sur‐mer, France. Corresponding author: Leclère, Lucas (leclere@obs‐vlfr.fr). Abstract The fresh water polyp Hydra provides textbook experimental demonstration of positional information gradients and regeneration processes. Developmental biologists are thus familiar with Hydra, but may not appreciate that it is a relatively simple member of the Hydrozoa, a group of mostly marine cnidarians with complex and diverse life cycles, exhibiting extensive phenotypic plasticity and regenerative capabilities.
    [Show full text]
  • Life Cycle of Chrysaora Fuscescens (Cnidaria: Scyphozoa) and a Key to Sympatric Ephyrae1
    Life Cycle of Chrysaora fuscescens (Cnidaria: Scyphozoa) and a Key to Sympatric Ephyrae1 Chad L. Widmer2 Abstract: The life cycle of the Northeast Pacific sea nettle, Chrysaora fuscescens Brandt, 1835, is described from gametes to the juvenile medusa stage. In vitro techniques were used to fertilize eggs from field-collected medusae. Ciliated plan- ula larvae swam, settled, and metamorphosed into scyphistomae. Scyphistomae reproduced asexually through podocysts and produced ephyrae by undergoing strobilation. The benthic life history stages of C. fuscescens are compared with benthic life stages of two sympatric species, and a key to sympatric scyphome- dusa ephyrae is included. All observations were based on specimens maintained at the Monterey Bay Aquarium jelly laboratory, Monterey, California. The Northeast Pacific sea nettle, Chry- tained at the Monterey Bay Aquarium, Mon- saora fuscescens Brandt, 1835, ranges from terey, California, for over a decade, with Mexico to British Columbia and generally ap- cultures started by F. Sommer, D. Wrobel, pears along the California and Oregon coasts B. B. Upton, and C.L.W. However the life in late summer through fall (Wrobel and cycle remained undescribed. Chrysaora fusces- Mills 1998). Relatively little is known about cens belongs to the family Pelagiidae (Gersh- the biology or ecology of C. fuscescens, but win and Collins 2002), medusae of which are when present in large numbers it probably characterized as having a central stomach plays an important role in its ecosystem giving rise to completely separated and because of its high biomass (Shenker 1984, unbranched radiating pouches and without 1985). Chrysaora fuscescens eats zooplankton a ring-canal.
    [Show full text]
  • CNIDARIA Corals, Medusae, Hydroids, Myxozoans
    FOUR Phylum CNIDARIA corals, medusae, hydroids, myxozoans STEPHEN D. CAIRNS, LISA-ANN GERSHWIN, FRED J. BROOK, PHILIP PUGH, ELLIOT W. Dawson, OscaR OcaÑA V., WILLEM VERvooRT, GARY WILLIAMS, JEANETTE E. Watson, DENNIS M. OPREsko, PETER SCHUCHERT, P. MICHAEL HINE, DENNIS P. GORDON, HAMISH J. CAMPBELL, ANTHONY J. WRIGHT, JUAN A. SÁNCHEZ, DAPHNE G. FAUTIN his ancient phylum of mostly marine organisms is best known for its contribution to geomorphological features, forming thousands of square Tkilometres of coral reefs in warm tropical waters. Their fossil remains contribute to some limestones. Cnidarians are also significant components of the plankton, where large medusae – popularly called jellyfish – and colonial forms like Portuguese man-of-war and stringy siphonophores prey on other organisms including small fish. Some of these species are justly feared by humans for their stings, which in some cases can be fatal. Certainly, most New Zealanders will have encountered cnidarians when rambling along beaches and fossicking in rock pools where sea anemones and diminutive bushy hydroids abound. In New Zealand’s fiords and in deeper water on seamounts, black corals and branching gorgonians can form veritable trees five metres high or more. In contrast, inland inhabitants of continental landmasses who have never, or rarely, seen an ocean or visited a seashore can hardly be impressed with the Cnidaria as a phylum – freshwater cnidarians are relatively few, restricted to tiny hydras, the branching hydroid Cordylophora, and rare medusae. Worldwide, there are about 10,000 described species, with perhaps half as many again undescribed. All cnidarians have nettle cells known as nematocysts (or cnidae – from the Greek, knide, a nettle), extraordinarily complex structures that are effectively invaginated coiled tubes within a cell.
    [Show full text]