Continuation-Passing C Compiling Threads to Events Through Continuations
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Redacted for Privacy Professor Donald Guthrie, Jr
AN ABSTRACT OF THE THESIS OF John Anthony Battilega for the DOCTOR OF PHILOSOPHY (Name) (Degree) in Mathematics presented on May 4, 1973 (Major) (Date) Title: COMPUTATIONAL IMPROVEMENTS TO BENDERS DECOMPOSITION FOR GENERALIZED FIXED CHARGE PROBLEMS Abstract approved Redacted for privacy Professor Donald Guthrie, Jr. A computationally efficient algorithm has been developed for determining exact or approximate solutions for large scale gener- alized fixed charge problems. This algorithm is based on a relaxa- tion of the Benders decomposition procedure, combined with a linear mixed integer programming (MIP) algorithm specifically designed to solve the problem associated with Benders decomposition and a com- putationally improved generalized upper bounding (GUB) algorithm which solves a convex separable programming problem by generalized linear programming. A dynamic partitioning technique is defined and used to improve computational efficiency.All component algor- ithms have been theoretically and computationally integrated with the relaxed Benders algorithm for maximum efficiency for the gener- alized fixed charge problem. The research was directed toward the approximate solution of a particular class of large scale generalized fixed charge problems, and extensive computational results for problemsof this type are given.As the size of the problem diminishes, therelaxations can be enforced, resulting in a classical Bendersdecomposition, but with special purpose sub-algorithmsand improved convergence pro- perties. Many of the results obtained apply to the sub-algorithmsinde- pendently of the context in which theywere developed. The proce- dure for solving the associated MIP is applicableto any linear 0/1 problem of Benders form, and the techniquesdeveloped for the linear program are applicable to any large scale generalized GUB implemen- tation. -
Dynamic Functions in Dyalog
Direct Functions in Dyalog APL John Scholes – Dyalog Ltd. [email protected] A Direct Function (dfn) is a new function definition style, which bridges the gap between named function expressions such as and APL’s traditional ‘header’ style definition. Simple Expressions The simplest form of dfn is: {expr} where expr is an APL expression containing s and s representing the left and right argument of the function respectively. For example: A dfn can be used in any function context ... ... and of course, assigned a name: Dfns are ambivalent. Their right (and if present, left) arguments are evaluated irrespective of whether these are subsequently referenced within the function body. Guards A guard is a boolean-single valued expression followed by . A simple expression can be preceded by a guard, and any number of guarded expressions can occur separated by s. Guards are evaluated in turn (left to right) until one of them yields a 1. Its corresponding expr is then evaluated as the result of the dfn. A guard is equivalent to an If-Then-Else or Switch-Case construct. A final simple expr can be thought of as a default case: The s can be replaced with newlines. For readability, extra null phrases can be included. The parity example above becomes: Named dfns can be reviewed using the system editor: or , and note how you can comment them in the normal way using . The following example interprets a dice throw: Local Definition The final piece of dfn syntax is the local definition. An expression whose principal function is a simple or vector assignment, introduces a name that is local to the dfn. -
Xerox University Microfilms 300 North Zeeb Road Ann Arbor, Michigan 48106 76-15,823
INFORMATION TO USERS This material was produced from a microfilm copy of the original document. While the most advanced technological means to photograph and reproduce this document have been used, the quality is heavily dependent upon the quality of the original submitted. The following explanation of techniques is provided to help you understand markings or patterns which may appear on this reproduction. 1. The sign or "target" for pages apparently lacking from the document photographed is "Missing Page(s)". If it was possible to obtain the missing page(s) or section, they are spliced into the film along with adjacent pages. This may have necessitated cutting thru an image and duplicating adjacent pages to insure you complete continuity. 2. When an image on the film is obliterated with a large round black mark, it is an indication that the photographer suspected that the copy may have moved during exposure and thus cause a blurred image. You will find a good image of the page in the adjacent frame. 3. When a map, drawing or chart, etc., was part of the material being photographed the photographer followed a definite method in "sectioning" the material. It is customary to begin photoing at the upper left hand corner of a large sheet and to continue photoing from left to right in equal sections with a small overlap. If necessary, sectioning is continued again — beginning below the first row and continuing on until complete. 4. The majority of users indicate that the textual content is of greatest value, however, a somewhat higher quality reproduction could be made from "photographs" if essential to the understanding of the dissertation. -
The Spineless Tagless G-Machine Version
Implementing lazy functional languages on sto ck hardware the Spineless Tagless Gmachine Version Simon L Peyton Jones Department of Computing Science University of Glasgow G QQ simonp jdcsglasgowacuk July Abstract The Spineless Tagless Gmachine is an abstract machine designed to supp ort non strict higherorder functional languages This presentation of the machine falls into three parts Firstly we give a general discussion of the design issues involved in implementing nonstrict functional languages Next we present the STG language an austere but recognisablyfunctional language which as well as a denotational meaning has a welldened operational semantics The STG language is the abstract machine co de for the Spineless Tagless Gmachine Lastly we discuss the mapping of the STG language onto sto ck hardware The success of an abstract machine mo del dep ends largely on how ecient this mapping can b e made though this topic is often relegated to a short section Instead we give a detailed discussion of the design issues and the choices we have made Our principal target is the C language treating the C compiler as a p ortable assembler This pap er is to app ear in the Journal of Functional Programming Changes in Version large new section on comparing the STG machine with other designs Section proling material Section index Changes in Version prop er statement of the initial state of the machine Sec tion reformulation of CAF up dates Section new format for state transition rules separating the guards which govern the applicability of -
Ginger Documentation Release 1.0
Ginger Documentation Release 1.0 sfkl / gjh Nov 03, 2017 Contents 1 Contents 3 2 Help Topics 27 3 Common Syntax 53 4 Design Rationales 55 5 The Ginger Toolchain 83 6 Low-Level Implementation 99 7 Release Notes 101 8 Indices and tables 115 Bibliography 117 i ii Ginger Documentation, Release 1.0 This documentation is still very much work in progress The aim of the Ginger Project is to create a modern programming language and its ecosystem of libraries, documen- tation and supporting tools. The Ginger language draws heavily on the multi-language Poplog environment. Contents 1 Ginger Documentation, Release 1.0 2 Contents CHAPTER 1 Contents 1.1 Overview of Ginger Author Stephen Leach Email [email protected] 1.1.1 Background Ginger is our next evolution of the Spice project. Ginger itself is a intended to be a rigorous but friendly programming language and supporting toolset. It includes a syntax-neutral programming language, a virtual machine implemented in C++ that is designed to support the family of Spice language efficiently, and a collection of supporting tools. Spice has many features that are challenging to support efficiently in existing virtual machines: pervasive multiple values, multiple-dispatch, multiple-inheritance, auto-loading and auto-conversion, dynamic virtual machines, implicit forcing and last but not least fully dynamic typing. The virtual machine is a re-engineering of a prototype interpreter that I wrote on holiday while I was experimenting with GCC’s support for FORTH-like threaded interpreters. But the toolset is designed so that writing alternative VM implementations is quite straightforward - and we hope to exploit that to enable embedding Ginger into lots of other systems. -
Hardware Synthesis from a Recursive Functional Language
Hardware Synthesis from a Recursive Functional Language Kuangya Zhai Richard Townsend Lianne Lairmore Martha A. Kim Stephen A. Edwards Columbia University, Department of Computer Science Technical Report CUCS-007-15 April 1, 2015 ABSTRACT to SystemVerilog. We use a single functional intermedi- Abstraction in hardware description languages stalled at the ate representation based on the Glasgow Haskell Compiler's register-transfer level decades ago, yet few alternatives have Core [23], allowing us to use Haskell and GHC as a source had much success, in part because they provide only mod- language. Reynolds [24] pioneered the methodology of trans- est gains in expressivity. We propose to make a much larger forming programs into successively restricted subsets, which jump: a compiler that synthesizes hardware from behav- inspired our compiler and many others [2, 15, 23]. ioral functional specifications. Our compiler translates gen- Figure 1 depicts our compiler's framework as a series of eral Haskell programs into a restricted intermediate repre- transformations yielding a hardware description. One pass sentation before applying a series of semantics-preserving eliminates polymorphism by making specialized copies of transformations, concluding with a simple syntax-directed types and functions. To implement recursion, our compiler translation to SystemVerilog. Here, we present the overall gives groups of recursive functions a stack and converts them framework for this compiler, focusing on the IRs involved into tail form. These functions are then scheduled over time and our method for translating general recursive functions by rewriting them to operate on infinite streams that model into equivalent hardware. We conclude with experimental discrete clock cycles. -
UNIVERSITY of CAMBRIDGE Computer Laboratory
UNIVERSITY OF CAMBRIDGE Computer Laboratory Computer Science Tripos Part Ib Compiler Construction http://www.cl.cam.ac.uk/Teaching/1112/CompConstr/ David J Greaves [email protected] 2011–2012 (Lent Term) Notes and slides: thanks due to Prof Alan Mycroft and his predecessors. Summary The first part of this course covers the design of the various parts of a fairly basic compiler for a pretty minimal language. The second part of the course considers various language features and concepts common to many programming languages, together with an outline of the kind of run-time data structures and operations they require. The course is intended to study compilation of a range of languages and accordingly syntax for example constructs will be taken from various languages (with the intention that the particular choice of syntax is reasonably clear). The target language of a compiler is generally machine code for some processor; this course will only use instructions common (modulo spelling) to x86, ARM and MIPS—with MIPS being favoured because of its use in the Part Ib course “Computer Design”. In terms of programming languages in which parts of compilers themselves are to be written, the preference varies between pseudo-code (as per the ‘Data Structures and Algorithms’ course) and language features (essentially) common to C/C++/Java/ML. The following books contain material relevant to the course. Compilers—Principles, Techniques, and Tools A.V.Aho, R.Sethi and J.D.Ullman Addison-Wesley (1986) Ellis Horwood (1982) Compiler Design in Java/C/ML (3 -
The Λ Abroad a Functional Approach to Software Components
The ¸ Abroad A Functional Approach To Software Components Een functionele benadering van software componenten (met een samenvatting in het Nederlands) Proefschrift ter verkrijging van de graad van doctor aan de Universiteit Utrecht op gezag van de Rector Magni¯cus, Prof. dr W.H. Gispen, ingevolge het besluit van het College voor Promoties in het openbaar te verdedigen op dinsdag 4 november 2003 des middags te 12.45 uur door Daniel Johannes Pieter Leijen geboren op 7 Juli 1973, te Alkmaar promotor: Prof. dr S.D. Swierstra, Universiteit Utrecht. co-promotor: dr H.J.M. Meijer, Microsoft Research. The work in this thesis has been carried out under the auspices of the research school IPA (Institute for Programming research and Algorithmics), and has been ¯nanced by Ordina. Printed by Febodruk 2003. Cover illustration shows the heavily cratered surface of the planet Mercury, photographed by the mariner 10. ISBN 90-9017528-8 Contents Dankwoord ix 1 Overview 1 2 H/Direct: a binary language interface for Haskell 5 2.1 Introduction ................................ 5 2.2 Background ................................ 6 2.2.1 Using the host or foreign language ............... 7 2.2.2 Using an IDL ........................... 8 2.2.3 Overview ............................. 9 2.3 The Foreign Function Interface ..................... 12 2.3.1 Foreign static import and export ................ 12 2.3.2 Variations on the theme ..................... 13 2.3.3 Stable pointers and foreign objects ............... 14 2.3.4 Dynamic import ......................... 15 2.3.5 Dynamic export ......................... 15 2.3.6 Implementing dynamic export .................. 18 2.3.7 Related work ........................... 19 iv Contents 2.4 Translating IDL to Haskell ...................... -
Œuf: Minimizing the Coq Extraction TCB
Œuf: Minimizing the Coq Extraction TCB Eric Mullen Stuart Pernsteiner James R. Wilcox University of Washington, USA University of Washington, USA University of Washington, USA USA USA USA Zachary Tatlock Dan Grossman University of Washington, USA University of Washington, USA USA USA Abstract ACM Reference Format: Verifying systems by implementing them in the program- Eric Mullen, Stuart Pernsteiner, James R. Wilcox, Zachary Tatlock, ming language of a proof assistant (e.g., Gallina for Coq) lets and Dan Grossman. 2018. Œuf: Minimizing the Coq Extraction TCB. In Proceedings of 7th ACM SIGPLAN International Conference on us directly leverage the full power of the proof assistant for Certified Programs and Proofs (CPP’18). ACM, New York, NY, USA, verifying the system. But, to execute such an implementation 14 pages. https://doi.org/10.1145/3167089 requires extraction, a large complicated process that is in the trusted computing base (TCB). This paper presents Œuf, a verified compiler from a subset 1 Introduction of Gallina to assembly. Œuf’s correctness theorem ensures that compilation preserves the semantics of the source Gal- In the past decade, a wide range of verified systems have lina program. We describe how Œuf’s specification can be been implemented in Gallina, Coq’s functional programming used as a foreign function interface to reason about the inter- language [8, 19, 20, 25, 26, 44, 45]. This approach eases veri- action between compiled Gallina programs and surrounding fication because Coq provides extensive built-in support for shim code. Additionally, Œuf maintains a small TCB for its reasoning about Gallina programs. Unfortunately, building front-end by reflecting Gallina programs to Œuf source and a system directly in Gallina typically incurs a substantial automatically ensuring equivalence using computational de- trusted computing base (TCB) to actually extract, compile, notation. -
Algol and Haskell
Spring 2014 Introduction to Haskell Shachar Itzhaky & Mooly Sagiv (original slides by Kathleen Fisher & John Mitchell) Part I: Lambda Calculus Computation Models • Turing Machines • Wang Machines • Counter Programs • Lambda Calculus Untyped Lambda Calculus Chapter 5 Benjamin Pierce Types and Programming Languages Basics • Repetitive expressions can be compactly represented using functional abstraction • Example: – (5 * 4* 3 * 2 * 1) + (7 * 6 * 5 * 4 * 3 * 2 *1) = – factorial(5) + factorial(7) – factorial(n) = if n = 0 then 1 else n * factorial(n-1) – factorial= n. if n = 0 then 0 else n factorial(n-1) Untyped Lambda Calculus t ::= terms x variable x. t abstraction t t application Terms can be represented as abstract syntax trees Syntactic Conventions • Applications associates to left e1 e2 e3 (e1 e2) e3 • The body of abstraction extends as far as possible • x. y. x y x x. (y. (x y) x) Free vs. Bound Variables • An occurrence of x is free in a term t if it is not in the body on an abstraction x. t – otherwise it is bound – x is a binder • Examples – z. x. y. x (y z) – (x. x) x • Terms w/o free variables are combinators – Identify function: id = x. x Operational Semantics ( x. t12) t2 [x ↦t2] t12 (-reduction) FV: t P(Var) is the set free variables of t FV(x) = {x} FV( x. t) = FV(t) – {x} FV (t1 t2) = FV(t1) FV(t2) [x↦s] x = s [x↦s] y = y if y x [x↦s] (y. t1) = y. [x ↦s] t1 if y x and yFV(s) [x↦s] (t1 t2) = ([x↦s] t1) ([x↦s] t2) Operational Semantics ( x. -
A Located Lambda Calculus
A located lambda calculus Ezra elias kilty Cooper Philip Wadler University of Edinburgh Abstract how to perform a splitting transformation to produce code for each Several recent language designs have offered a unified language for location. However, each of these works relied on concurrently- programming a distributed system; we call these “location-aware” running servers. Ours is the first work we’re aware of that shows languages. These languages provide constructs that allow the pro- how to implement a located language on top of a stateless server grammer to control the location (the choice of host, for example) model. where a piece of code should run, which can be useful for secu- Our technique involves three essential transformations: defunc- rity or performance reasons. On the other hand, a central mantra tionalization a` la Reynolds, CPS transformation, and a “trampo- of web engineering insists that web servers should be “stateless”: line” that allows tunnelling server-to-client requests within server that no “session state” should be maintained on behalf of individ- responses. ual clients—that is, no state that pertains to the particular point of We have implemented a version of this feature in the Links lan- the interaction at which a client program resides. Thus far, most guage (Cooper et al. 2006). In the current version, only calls to top- implementations of unified location-aware languages have ignored level functions can pass control between client and server. Here this precept, usually keeping a process for each client running on we provide a formalization and show how to relax the top level- the server, or otherwise storing state information in memory. -
Defining C Preprocessor Macro Libraries with Functional Programs
Computing and Informatics, Vol. 35, 2016, 819{851 DEFINING C PREPROCESSOR MACRO LIBRARIES WITH FUNCTIONAL PROGRAMS Boldizs´ar Nemeth´ , M´at´e Karacsony´ Zolt´an Kelemen, M´at´e Tejfel E¨otv¨osLor´andUniversity Department of Programming Languages and Compilers H-1117 P´azm´anyP´eters´et´any1/C, Budapest, Hungary e-mail: fnboldi, kmate, kelemzol, [email protected] Abstract. The preprocessor of the C language provides a standard way to generate code at compile time. However, writing and understanding these macros is difficult. Lack of typing, statelessness and uncommon syntax are the main reasons of this difficulty. Haskell is a high-level purely functional language with expressive type system, algebraic data types and many useful language extensions. These suggest that Haskell code can be written and maintained easier than preprocessor macros. Functional languages have certain similarities to macro languages. By using these similarities this paper describes a transformation that translates lambda expres- sions into preprocessor macros. Existing compilers for functional languages gener- ate lambda expressions from the source code as an intermediate representation. As a result it is possible to write Haskell code that will be translated into preprocessor macros that manipulate source code. This may result in faster development and maintenance of complex macro metaprograms. Keywords: C preprocessor, functional programming, Haskell, program transfor- mation, transcompiler Mathematics Subject Classification 2010: 68-N15 1 INTRODUCTION Preprocessor macros are fundamental elements of the C programming language. Besides being useful to define constants and common code snippets, they also allow 820 B. N´emeth,M. Kar´acsony,Z. Kelemen, M. Tejfel developers to extend the capabilities of the language without having to change the compiler itself.