Lake Urmia Crisis and Roadmap for Ecological

Total Page:16

File Type:pdf, Size:1020Kb

Lake Urmia Crisis and Roadmap for Ecological LAKE URMIA CRISIS AND ROADMAP FOR ECOLOGICAL RESTORATION OF LAKE URMIA THREE PAPERS SUBMITTED BY Brad Marden Philip Micklin Wayne Wurtsbaugh TO UNITED NATIONS DEVELOPMENT PROGRAM IRANIAN DEPARTMENT OF ENVIRONMENT AND KALANTARI COMMISSION INTERNATIONAL TECHNICAL WETLANDS ROUND TABLE TEHRAN, IRAN MARCH 16-18, 2014 Executive Summary and Biography of Author Philip Micklin Biography: Philip Micklin has focused on water management issues in the former USSR since the late 1960s. He was a geography professor at Western Michigan University in Kalamazoo for 30 years before retiring in 1999. He received the University’s highest academic award in 1992, when named Distinguished Academic Scholar. Professor Micklin is particularly interested in the human induced desiccation of the Aral Sea and its environmental and human consequences as well as the related problems of water sharing and water management in and among the new, independent states of Central Asia. Dr. Micklin has visited and lived in the former USSR and Central Asia many times over the past 47 years: conducting research, attending conferences and working for the United Nations and U.S. Government. He has participated in several expeditions to the Aral Sea. He is chief editor and contributed 8 chapters to a new book on the Aral Sea published by Springer in January 2014. He just returned from Iran to which he had been invited to help with developing a rescue program for a large lake that is undergoing human induced drying. Summary: The Aral Sea is a terminal Lake lying amidst the vast deserts of Central Asia. Its drainage basin encompasses more than two million km2. At 67,500 km2 in 1960, the Aral Sea was the world's fourth largest inland water body in terms of surface area. The sea supported a major fishery and functioned as a key regional transportation route. The extensive deltas of the Syr and Amu, the seas two influent rivers, sustained a diversity of flora and fauna as well as irrigated agriculture, animal husbandry, hunting and trapping, fishing, and harvesting of reeds. Since 1960, the Aral has undergone rapid desiccation and salinization, overwhelming the result of unsustainable expansion of irrigation that dried up its two tributary rivers. The desiccation of the Aral Sea has had severe negative impacts. The vibrant commercial fishing industry ended in the early 1980s as the indigenous species that provided the basis for the fishery disappeared from rising salinity. The rich ecosystems of the Amu and Syr rivers have suffered considerable harm. Strong winds blow sand, salt and dust from the dried bottom of the Aral Sea onto surrounding lands causing harm to natural vegetation, crops, people and wild and domestic animals. However, it is possible to repair some the damage done to this water body. The former northern part of the Aral has been separated from the former southern part of the Sea by a dike and dam. This has led to a rise of the level and lowering of salinity that has allowed native fishes to return to this part of the sea and produced a flourishing fishing industry. The deltas of the two rivers have also received remediation measures to partially preserve their ecological and economic values. It is also possible to implement projects to preserve some parts of the southern (Large) Aral Sea, although these need much further environmental and economic analysis. What are the general lessons for Lake Urmia revival from the Aral experience? Be cautious with large-scale interference in the natural environment and try to understand the range and nature of both positive and negative consequences prior to proceeding with projects. Remediation projects should be staged, adjustable to changing conditions, and incorporate information feedback mechanisms based on careful research and monitoring. Preserve biological refugia where species can be preserved when natural environments deteriorate (e.g., Aral Sea and Lake Urmia) and which can serve to replenish the biological character of the larger environment when conditions there improve. Don’t give up on a degraded water body. Nature is resilient and with the proper effort and concern can be at least partially restored. Executive Summary and Biography of Author Wayne Wurtsbaugh Biography: Dr. Wayne Wurtsbaugh is a professor at Utah State University (USA) where he has taught limnology and water quality for 30 years. He has done aquatic research in Peru, Spain, Germany, Switzerland, and on two major salt lakes—Mar Chiquita in Argentina and the Great Salt Lake in Utah. Summary of Report: The area and volume of Lake Urmia, like all salt lakes, is balanced by the amount of inflowing water. For hundreds and perhaps thousands of years, the lake was in balance with its water supply from the watershed, but recent increases in agricultural, industrial and municipal water withdrawals have disturbed the balance and the lake is drying up. Consequently, the most urgent need is to restore water to the lake. Other priorities include: (1) Making a careful bathymetric map so that the area and volume of the lake can be determined at any lake level. Without this information, managers are only guessing at the lake size and salinity if a given amount of water is available for its restoration. (2) Limnological monitoring of physical, chemical and biological parameters needs to be instituted as soon as possible. Parameters to be measured would include salinity, temperature, ionic composition, nutrients, phytoplankton biomass, Artemia populations, and several other metrics. This should be measured at 2-4 week intervals at several stations in the lake. Bird populations should be monitored twice a year. (3) Describing and prioritizing the organisms that people want to protect, and determining the lake levels and salinities that will be necessary to maintain them. With the limited amount of water that will be available, it will not be possible to protect all species, so careful consideration must be made of which ones are most important. The needs of the organisms must then be linked to water management. For example, the target elevation of 1274 m given in the current management plan will not likely provide a low enough salinity for Artemia, and hence birds like flamingos will not return to the lake. (4) It will be useful to describe different “beneficial uses” for various parts of the lake. These could include such things as ‘dust control’, ‘Artemia production’, ‘recreation’, ‘minerals production’. The exact beneficial uses will need to be determined by the population in the basin and the rest of Iran. The situation at Lake Urmia is dire and managers can hope for the best (a wet cycle returns), but they must plan for the worst. This should include planning dust control measures to minimize health problems in the surrounding cities, and crop damage. Preserving a minimal amount of biodiversity in the delta wetlands might be accomplished by diking to retain the freshwater for longer periods. Diked areas for brine shrimp can also be considered, but the long-term consequences of lake shrinkage and salt movements must be taken into consideration. Executive Summary and Biography of Author Brad Marden Biography: Brad Marden is Research Coordinator for Great Salt Lake Artemia, Inc., Executive Manager of Parliament Fisheries Inc. and he is adjunct professor of Health Sciences and teaches Human Anatomy and Physiology at Weber State University. Brad has done over 200 detailed ecological studies of the Great Salt Lake over the past 14 years. He has also directed ecological research projects on salt lakes in Siberia (Altai, Kurgan, Tyumen, and Omsk regions), Kazakhstan (Pavlodar region and Aral Sea), Uzbekistan (Aral Sea), Turkmenistan (Karabogoz Gol, Caspian Sea) from 1999 to 2014. Brad served for 11 years on the Great Salt Lake Technical Advisory Group, Division of Wildlife Resources, Department of Natural Resources, State of Utah. He was a member of the Scientific Advisory Panel for the Development of a Selenium Standard for the Open Waters of the Great Salt Lake. He was Principal Research Scientist on NATO Science for Peace projects in Central Asia/Uzbekistan and Russia 2002-2007. Brad recently visited Iran for a second time as a participant in the 32nd National, 1st International, Geosciences Congress: Lake Urmia Rescue and to assist with the rescue program for Lake Urmia. Summary of Report The crisis in Lake Urmia is clearly a disaster of hemispheric proportions. It is absolutely imperative to find solutions quickly and effectively and to proceed down a logical pathway for the restoration of Lake Urmia. The restoration process should be Iranian designed, engineered, and implemented. It should emphasize community involvement and widespread support among the populace. International experts can provide value for the restoration project and can save time and expense by applying knowledge learned from resource management experiences and ecological restoration projects in similar biotopes. The major problem is clearly one of water supply and demand. Initial efforts need to focus on the watershed and accurate assessments of the water supply, demand, demographics, and external influences on water availability—such as climate. Lessons learned from watershed (a.k.a. catchment area) assessment and water resources management experience from the Great Salt Lake, Utah, USA (GSL) can be translated into the existing water resource plan for the Lake Urmia catchment area. Water usage in the Lake Urmia catchment area needs a more rigorous assessment (especially illegal vs legal usages and diversions), and stricter regulations need to be imposed. Community involvement in water conservation should be emphasized. Improvement in the return of water to Lake Urmia allows the next sequence of priority projects be implemented. Embayments should be used to maximize the efficient use of returned water and can be used to return the many beneficial uses formerly performed by a much larger Lake Urmia.
Recommended publications
  • Fresh- and Brackish-Water Cold-Tolerant Species of Southern Europe: Migrants from the Paratethys That Colonized the Arctic
    water Review Fresh- and Brackish-Water Cold-Tolerant Species of Southern Europe: Migrants from the Paratethys That Colonized the Arctic Valentina S. Artamonova 1, Ivan N. Bolotov 2,3,4, Maxim V. Vinarski 4 and Alexander A. Makhrov 1,4,* 1 A. N. Severtzov Institute of Ecology and Evolution, Russian Academy of Sciences, 119071 Moscow, Russia; [email protected] 2 Laboratory of Molecular Ecology and Phylogenetics, Northern Arctic Federal University, 163002 Arkhangelsk, Russia; [email protected] 3 Federal Center for Integrated Arctic Research, Russian Academy of Sciences, 163000 Arkhangelsk, Russia 4 Laboratory of Macroecology & Biogeography of Invertebrates, Saint Petersburg State University, 199034 Saint Petersburg, Russia; [email protected] * Correspondence: [email protected] Abstract: Analysis of zoogeographic, paleogeographic, and molecular data has shown that the ancestors of many fresh- and brackish-water cold-tolerant hydrobionts of the Mediterranean region and the Danube River basin likely originated in East Asia or Central Asia. The fish genera Gasterosteus, Hucho, Oxynoemacheilus, Salmo, and Schizothorax are examples of these groups among vertebrates, and the genera Magnibursatus (Trematoda), Margaritifera, Potomida, Microcondylaea, Leguminaia, Unio (Mollusca), and Phagocata (Planaria), among invertebrates. There is reason to believe that their ancestors spread to Europe through the Paratethys (or the proto-Paratethys basin that preceded it), where intense speciation took place and new genera of aquatic organisms arose. Some of the forms that originated in the Paratethys colonized the Mediterranean, and overwhelming data indicate that Citation: Artamonova, V.S.; Bolotov, representatives of the genera Salmo, Caspiomyzon, and Ecrobia migrated during the Miocene from I.N.; Vinarski, M.V.; Makhrov, A.A.
    [Show full text]
  • Baseline Assessment of the Lake Ohrid Region - Albania
    TOWARDS STRENGTHENED GOVERNANCE OF THE SHARED TRANSBOUNDARY NATURAL AND CULTURAL HERITAGE OF THE LAKE OHRID REGION Baseline Assessment of the Lake Ohrid region - Albania IUCN – ICOMOS joint draft report January 2016 Contents ........................................................................................................................................................................... i A. Executive Summary ................................................................................................................................... 1 B. The study area ........................................................................................................................................... 5 B.1 The physical environment ............................................................................................................. 5 B.2 The biotic environment ................................................................................................................. 7 B.3 Cultural Settings ............................................................................................................................ 0 C. Heritage values and resources/ attributes ................................................................................................ 6 C.1 Natural heritage values and resources ......................................................................................... 6 C.2 Cultural heritage values and resources....................................................................................... 12 D.
    [Show full text]
  • Oberhänsli, H., Boroffka, N., Sorrel, P., Krivonogov, S. (2007)
    Originally published as: Oberhänsli, H., Boroffka, N., Sorrel, P., Krivonogov, S. (2007): Climate variability during the past 2,000 years and past economic and irrigation activities in the Aral Sea basin. - Irrigation and Drainage Systems, 21, 3-4, 167-183 DOI: 10.1007/s10795-007-9031-5. Irrigation and Drainage Systems, 21, 3-4, 167-183, 10.1007/s10795-007-9031-5 1 Climate variability during the past 2000 years and past economic and irrigation 2 activities in the Aral Sea basin 3 4 Hedi Oberhänsli1, Nikolaus Boroffka2, Philippe Sorrel3, Sergey Krivonogov,4 5 6 1) GeoForschungsZentrum, Telegraphenberg, D-14473 Potsdam, Germany. 7 2) Deutsches Archäologisches Institut, Im Dol 2-6, D-14195 Berlin, Germany. 8 3) Laboratoire "Morphodynamique Continentale et Côtière" (UMR 6143 CNRS), 9 Université de Caen Basse-Normandie, 24 rue des Tilleuls, F-14000 CAEN, France. 10 4) United Institute of Geoloy, Geophysics and Mineralogy of the Russian Academy of 11 Sciences, Siberian Division, Novosibirsk regional Center of Geoinformational 12 Technologies, Academic Koptyug prospekt 3, 630090 Novosibirsk, Russia. 13 14 Abstract 15 The lake level history, here based on the relative abundance of Ca (gypsum), is used for 16 tracing past hydrological conditions in Central Asia. Lake level was close to a minimum 17 before approximately AD 300, at about AD 600, AD 1220 and AD 1400. Since 1960 the 18 lake level is lowering again. Lake water level was lowest during the 14th or early 15th 19 centuries as indicated by a coeval settlement, which today is still under water near the 20 well-dated mausoleum of Kerderi.
    [Show full text]
  • The Last Glacial-Interglacial Cycle in Lake Ohrid (Macedonia/Albania): Testing Diatom Response to Climate
    Biogeosciences, 7, 3083–3094, 2010 www.biogeosciences.net/7/3083/2010/ Biogeosciences doi:10.5194/bg-7-3083-2010 © Author(s) 2010. CC Attribution 3.0 License. The last glacial-interglacial cycle in Lake Ohrid (Macedonia/Albania): testing diatom response to climate J. M. Reed1, A. Cvetkoska2, Z. Levkov2, H. Vogel3, and B. Wagner3 1Department of Geography, University of Hull, Cottingham Rd., Hull HU6 7RX, UK 2Institute of Biology, Faculty of Natural Sciences, Gazi Baba bb, 1000 Skopje, Republic of Macedonia 3University of Cologne, Institute of Geology and Mineralogy, 50674 Cologne, Germany Received: 14 May 2010 – Published in Biogeosciences Discuss.: 17 June 2010 Revised: 15 September 2010 – Accepted: 21 September 2010 – Published: 13 October 2010 Abstract. Lake Ohrid is a site of global importance for variation or evolutionary selection pressure. The applica- palaeoclimate research. This study presents results of diatom tion of a simple dissolution index does not track preserva- analysis of a ca. 136 ka sequence, Co1202, from the northeast tion quality very effectively, underlining the importance of of the lake basin. It offers the opportunity to test diatom re- diatom accumulation data in future studies. sponse across two glacial-interglacial transitions and within the Last Glacial, while setting up taxonomic protocols for future research. The results are outstanding in demonstrat- 1 Introduction ing the sensitivity of diatoms to climate change, providing proxy evidence for temperature change marked by glacial- Ancient Lake Ohrid is a site of global importance for long- interglacial shifts between the dominant planktonic taxa, Cy- term palaeoclimate reconstruction, with its long sediment clotella fottii and C.
    [Show full text]
  • 20020011.Pdf
    Color profile: Generic CMYK printer profile Composite Default screen 1144 PERSPECTIVE Geological and evolutionary underpinnings for the success of Ponto-Caspian species invasions in the Baltic Sea and North American Great Lakes David F. Reid and Marina I. Orlova1 Abstract: Between 1985 and 2000, ~70% of new species that invaded the North American Great Lakes were endemic to the Ponto-Caspian (Caspian, Azov, and Black seas) basins of eastern Europe. Sixteen Ponto-Caspian species were also established in the Baltic Sea as of 2000. Many Ponto-Caspian endemic species are characterized by wide environmental tolerances and high phenotypic variability. Ponto-Caspian fauna evolved over millions of years in a series of large lakes and seas with widely varying salinities and water levels and alternating periods of isolation and open connections between the Caspian Sea and Black Sea depressions and between these basins and the Mediterranean Basin and the World Ocean. These conditions probably resulted in selection of Ponto-Caspian endemic species for the broad environmental tolerances and euryhalinity many exhibit. Both the Baltic Sea and the Great Lakes are geologi- cally young and present much lower levels of endemism. The high tolerance of Ponto-Caspian fauna to varying environmental conditions, their ability to survive exposure to a range of salinities, and the similarity in environmental conditions available in the Baltic Sea and Great Lakes probably contribute to the invasion success of these species. Human activities have dramatically increased the opportunities for transport and introduction and have played a cata- lytic role. Résumé : Entre 1985 et 2000, environ 70 % des espèces qui ont envahi pour la première fois les Grands-Lacs d’Amérique du Nord étaient endémiques aux bassins versants de la région pontocaspienne de l’Europe de l’Est, soit ceux de la mer Caspienne, de la mer d’Azov et de la mer Noire.
    [Show full text]
  • Recent Anthropogenic Impact in Ancient Lake Ohrid (Macedonia/Albania): a Palaeolimnological Approach
    J Paleolimnol (2014) 52:139–154 DOI 10.1007/s10933-014-9783-5 ORIGINAL PAPER Recent anthropogenic impact in ancient Lake Ohrid (Macedonia/Albania): a palaeolimnological approach Julia Lorenschat • Xiaosen Zhang • Flavio S. Anselmetti • Jane M. Reed • Martin Wessels • Antje Schwalb Received: 19 September 2013 / Accepted: 27 June 2014 / Published online: 6 July 2014 Ó Springer Science+Business Media Dordrecht 2014 Abstract Ancient lakes, which are important centres contaminated with As. Fe and Ni concentrations often of biodiversity and endemism, are threatened by a exceeded reported maximum limits above which wide variety of human impacts. To assess environ- harmful effects on sediment-dwelling organisms are mental impact on ancient Lake Ohrid we have taken expected. Productivity in the (pristine) south-eastern short sediment cores from two contrasting site loca- part of Lake Ohrid (Sveti Naum) is generally lower tions, comprising a site of urban pollution and an than in the north, probably due to the strong influence apparently pristine area. Recent impacts on water of spring discharge. Low ostracode and diatom quality and ecology were assessed using sediment, concentrations, low abundance of the epilimnetic geochemical, ostracode, and diatom data derived from diatom Cyclotella ocellata, and low values of TOC analysis of two 210Pb-dated sediment cores spanning and TIC indicate a lower productivity from the early the period from 1918 to 2009. According to the index 1920s to the late 1980s. Since the mid 1970s, increased of geoaccumulation, sediments were often moderately relative abundance of C. ocellata and increasing diatom concentration indicate increasing productivity in the south-eastern part. Rising numbers of ostracode Electronic supplementary material The online version of valves and higher TIC and TOC contents in both this article (doi:10.1007/s10933-014-9783-5) contains supple- mentary material, which is available to authorized users.
    [Show full text]
  • Evolution of Ancient Lake Ohrid: a Tectonic Perspective
    Biogeosciences, 7, 3377–3386, 2010 www.biogeosciences.net/7/3377/2010/ Biogeosciences doi:10.5194/bg-7-3377-2010 © Author(s) 2010. CC Attribution 3.0 License. Evolution of ancient Lake Ohrid: a tectonic perspective N. Hoffmann1, K. Reicherter1, T. Fernandez-Steeger´ 2, and C. Grutzner¨ 1 1Institute of Neotectonics and Natural Hazards, RWTH Aachen University, Aachen, Germany 2Chair of Engineering Geology and Hydrogeology, RWTH Aachen University, Aachen, Germany Received: 14 May 2010 – Published in Biogeosciences Discuss.: 16 June 2010 Revised: 3 September 2010 – Accepted: 21 September 2010 – Published: 29 October 2010 Abstract. Lake Ohrid Basin is a graben structure situated in 1 Introduction the Dinarides at the border of the Former Yugoslavian Re- public of Macedonia (FYROM) and Albania. It hosts one of Lake Ohrid (693 m a.s.l.) in the southwest of the Former Yu- the oldest lakes in Europe and is characterized by a basin and goslavian Republic of Macedonia (FYROM, in the following range-like geological setting together with the halfgraben referred to as Macedonia) and the east of Albania (Fig. 1) basins of Korca, Erseka and Debar. The basin is surrounded is regarded as one of the oldest lakes of Europe. Biologi- by Paleozoic metamorphics in the northeast and north and cal studies on endemic fauna give hints on a Pliocene age Mesozoic ultramafic, carbonatic and magmatic rocks in the (Stankovic, 1960). With a length of 30 km and a width of east, northwest, west and south. Paleocene to Pliocene units 15 km it covers an area of 360 km2 that is larger than the are present in the southwest.
    [Show full text]
  • Spatially Explicit Analysis of Gastropod Biodiversity in Ancient Lake Ohrid
    Biogeosciences, 8, 175–188, 2011 www.biogeosciences.net/8/175/2011/ Biogeosciences doi:10.5194/bg-8-175-2011 © Author(s) 2011. CC Attribution 3.0 License. Spatially explicit analysis of gastropod biodiversity in ancient Lake Ohrid T. Hauffe1, C. Albrecht1, K. Schreiber1, K. Birkhofer1, S. Trajanovski2, and T. Wilke1 1Department of Animal Ecology and Systematics, Justus Liebig University, Giessen, Germany 2Department of Zoobenthos, Hydrobiological Institute Ohrid, Ohrid, Macedonia Received: 21 May 2010 – Published in Biogeosciences Discuss.: 1 July 2010 Revised: 7 January 2011 – Accepted: 13 January 2011 – Published: 26 January 2011 Abstract. The quality of spatial analyses of biodiver- Ohrid is mainly driven by niche processes (e.g. environmen- sity is improved by (i) utilizing study areas with well de- tal factors), but also by neutral processes (e.g. dispersal limi- fined physiogeographical boundaries, (ii) limiting the im- tation and evolutionary histories of species). For niche-based pact of widespread species, and (iii) using taxa with het- mechanisms it is shown that large scale effects such as type erogeneous distributions. These conditions are typically met of water body or water depth are mainly responsible for the by ecosystems such as oceanic islands or ancient lakes and similarity of gastropod communities, whereas small scale ef- their biota. While research on ancient lakes has contributed fects like environmental gradients affect gastropod composi- significantly to our understanding of evolutionary processes, tions only marginally. In fact, neutral processes appear to be statistically sound studies of spatial variation of extant bio- more important than the small scale environmental factors, diversity have been hampered by the frequently vast size of thus emphasizing the importance of dispersal capacities and ancient lakes, their limited accessibility, and the lack of sci- evolutionary histories of species.
    [Show full text]
  • EWTON T KES SP N Lake Champlain
    ! N I P S A Lake Champlain to S E the World’s Lakes! K A T N TO EW language ECHO’S N arts Great Slave Great Bear Peipsi Hovsgol Baikal Superior Aral Sea Constance Ohrid Khanka Great Salt Champlain Prespa Sevan IssykKul Tahoe Caspian Sea Biwa Dead Sea Kinneret Dianchi Bhopal Chapala Chilika Chad Tana Laguna de Bay Maracaibo Tonle Sap Cocibolca Eastern Rift Lanao Bosumtwi Victoria Toba Tucurui Valley Lakes Tanganyika Malawi Titicaca Kariba Eyre Commonwealth of Australia-Geoscience Australia (1990), ESRI (2003). Australia (1990), Australia-Geoscience of Commonwealth Map Source: Lehner, B. & P. Doll (2003), Birkett, C.M & I.M. Mason (1985), Doll (2003), C.M & I.M. Mason (1985), Birkett, B. & P. Lehner, Map Source: Vostok Major World Lakes My Name A Lake Is A Lake By Many Other Names… Name Language (Country) 2. Lake Word Search: Find the 14 names for “lake” listed to the left in the word Lake English search below. Lago Spanish, Italian Laguna Spanish Hu Chinese S H O E H C O L Nuur Mongolian Ozero Russian EUOZEROA Danau Indonesian See German ELKRECLG Lac French RANLLDAU Ko, Sho Japanese Lough English (Ireland) LOUGHACN Loch English (United Kingdom) Kul Kyrgyz C K U Z O N K A B S R N C A B E 1. In most of Quebec, Canada, Lake Champlain is called: _____________________________ ? POGALUOT Watery Poetry A Haiku is a poem that consists of three lines: the fi rst line has fi ve syllables, the second line has seven, and the third line has fi ve syllables again.
    [Show full text]
  • Review and Annotated Bibliography of Ancient Lake Deposits (Precambrian to Pleistocene) G-I in the Western States As Jz;
    o 00 o H Review and Annotated Bibliography of Ancient Lake Deposits (Precambrian to Pleistocene) g-i in the Western States as Jz; GEOLOGICAL SURVEY BULLETIN 1080 02 O PH O z eq P S3 Review and Annotated Bibliography of Ancient Lake Deposits (Precambrian to Pleistocene) in the Western States By JOHN H. FETH GEOLOGICAL SURVEY BULLETIN 1080 UNITED STATES GOVERNMENT PRINTING OFFICE, WASHINGTON : 1964 UNITED STATES DEPARTMENT OF THE INTERIOR STEWART L. UDALL, Secretary GEOLOGICAL SURVEY Thomas B. Nolan, Director The U.S. Geological Survey Library catalog card for this publication appears after page 119. For sale by the Superintendent of Documents, U.S. Government Printing Office Washington, D.C. 20402 CONTENTS Page Abstract_________._.______-___--__--_---__-_-_------.--_-_-_-__ 1 Introduction.________________________----_-_-____--__-__---._-___- 2 Definitions__ _ _____________--__-_-_--__--_--___-___-___---______ 13 Maps.._____-_______--_-__--------------------------------------- 13 Criteria for the recognition of lake deposits. __-_______.___-_-__.-_____ 17 Definitive criteria____ _ _____-____-__-________---_-___-----_._ 17 Fossils. _-_--____---__-_.---_-------_-----__-_------_. 17 Evaporite deposits..._-_------_------_-------_--------_---. 20 Shore features_________---__-_-------__-_---_-_-_--_-_--_ 21 Suggestive criteria.______.-_-_--___-____---_.-____-__-____.--_. 21 Regional relations._.._-_..-____-..--...__..._..._._.._.... 21 Local evidence.___-__---_--------_--__---_-----_--------__ 22 Grain size, bedding, and lamination...._._.____.___.___.
    [Show full text]
  • Ecology and Evolution of the African Great Lakes and Their Faunas
    ES45CH23-Salzburger ARI 28 October 2014 13:26 Ecology and Evolution of the African Great Lakes and Their Faunas Walter Salzburger,1 Bert Van Bocxlaer,2,3,4 and Andrew S. Cohen5 1Zoological Institute, University of Basel, 4051 Basel, Switzerland; email: [email protected] 2National Museum of Natural History, Smithsonian Institution, Washington, DC 20013; email: [email protected] 3Department of Geology and Soil Science, Ghent University, 9000 Ghent, Belgium 4Department of Animal Ecology and Systematics, Justus Liebig University Giessen, D-35392 Giessen, Germany 5Department of Geosciences, University of Arizona, Tucson, Arizona 85721; email: [email protected] Annu. Rev. Ecol. Evol. Syst. 2014. 45:519–45 Keywords The Annual Review of Ecology, Evolution, and African Rift, species flock, adaptive radiation, speciation, morphological Systematics is online at ecolsys.annualreviews.org evolution, ecosystem functioning, biodiversity conservation This article’s doi: 10.1146/annurev-ecolsys-120213-091804 Abstract Copyright c 2014 by Annual Reviews. The Great Lakes of East Africa are collectively the earth’s most remarkable All rights reserved and species-rich freshwater feature. Intrinsic biological factors and extrinsic Access provided by University of Basel on 11/25/14. For personal use only. ecological opportunities allowed much of the lakes’ spectacular biological diversity to evolve through evolutionary (often adaptive) radiation and ex- Annu. Rev. Ecol. Evol. Syst. 2014.45:519-545. Downloaded from www.annualreviews.org plosive speciation. Beyond evolutionary patterns and processes that led to this remarkable biodiversity and its astonishing morphological disparity, we highlight ecosystem functioning and complex biotic interactions such as co- evolution. Comparative biogeographic patterns for vertebrates and inverte- brates are discussed, as are patterns of diversity and disparity through the late Cenozoic.
    [Show full text]
  • The World's Earliest Aral-Sea Type Disaster: the Decline of the Loulan
    www.nature.com/scientificreports OPEN The world’s earliest Aral-Sea type disaster: the decline of the Loulan Kingdom in the Tarim Basin Received: 25 August 2016 Steffen Mischke1, Chenglin Liu2, Jiafu Zhang3, Chengjun Zhang4, Hua Zhang2, Accepted: 19 January 2017 Pengcheng Jiao2 & Birgit Plessen5 Published: 27 February 2017 Remnants of cities and farmlands in China’s hyperarid Tarim Basin indicate that environmental conditions were significantly wetter two millennia ago in a region which is barren desert today. Historical documents and age data of organic remains show that the Loulan Kingdom flourished during the Han Dynasty (206 BCE–220 CE) but was abandoned between its end and 645 CE. Previous archaeological, geomorphological and geological studies suggest that deteriorating climate conditions led to the abandonment of the ancient desert cities. Based on analyses of lake sediments from Lop Nur in the eastern Tarim Basin and a review of published records, we show that the Loulan Kingdom decline resulted from a man-made environmental disaster comparable to the recent Aral Sea crisis rather than from changing climate. Lop Nur and other lakes within the Han Dynasty realm experienced rapidly declining water levels or even desiccation whilst lakes in adjacent regions recorded rising levels and relatively wet conditions during the time of the Loulan Kingdom decline. Water withdrawal for irrigation farming in the middle reaches of rivers likely caused water shortage downstream and eventually the widespread deterioration of desert oases a long time before man initiated the Aral Sea disaster in the 1960s. The Tarim Basin (Xinjiang Province) in northwestern China hosts the Taklamakan Sand Sea, the second largest sand desert of the world.
    [Show full text]