“Activation of Arene-Heteroatom Bonds by Photoredox Catalysis with Visible Light”

Total Page:16

File Type:pdf, Size:1020Kb

“Activation of Arene-Heteroatom Bonds by Photoredox Catalysis with Visible Light” “Activation of arene-heteroatom bonds by photoredox catalysis with visible light” Dissertation zur Erlangung des Doktorgrades der Naturwissenschaften Dr. rer. nat. an der Fakultät für Chemie und Pharmazie der Universität Regensburg vorgelegt von Michal Májek aus Bratislava (Slowakische Republik) Regensburg 2015 The experimental part of this work was carried out between September 2012 and September 2015 at the University of Regensburg, Institute of Organic Chemistry under the supervision of Prof. Dr. Axel Jacobi von Wangelin. The thesis was submitted on: 6.11.2015 Date of the defense: 10.12.2015 Board of examiners: Prof. Dr. Olga García Mancheño (chairman) Prof. Dr. Axel Jacobi von Wangelin (1st referee) Prof. Dr. Burkhard König (2nd referee) Prof. Dr. Frank-Michael Matysik (examiner) Hey, now, baby, I’m beginning to see the light Wine in the morning and some breakfast at night Well, I’m beginning to see the light… Velvet Underground: Beginning to see the light (1968) Table of Contents: 1: Introduction 1.1 Chemistry and light 11 1.2 Chemical photocatalysis: Introduction 16 1.2.1 Chemical photocatalysis: Sensitizers 17 1.2.2 Chemical photocatalysis: Redox catalysis 19 1.2.3 Chemical photocatalysis: Scope of photoredox catalysis 25 1.3 Conclusions and outlook 32 1.4 Thesis scope 32 1.5 References 34 2: Organocatalytic visible light mediated synthesis of aryl sulfides 2.1 Introduction 41 2.2 Results and discussion 43 2.3 Conclusion 46 2.4 Experimental part 46 2.5 References 59 3: On the mechanism of photocatalytic reactions with eosin Y 3.1 Introduction 63 3.2 Results and discussion 66 3.3 Conclusion 76 3.4 Experimental and computational part 76 3.5 References 87 4: Visible photo-redox catalysis enables metal-free carbonylations 4.1 Introduction 91 4.2 Results and discussion 94 4.3 Conclusion 104 4.4 Experimental and computational part 104 4.5 References 124 5: Visible light-driven hydro/deutero defunctionalization of anilines 5.1 Introduction 129 5.2 Results and discussion 131 5.3 Conclusion 139 5.4 Experimental and computational part 139 5.5 References 147 6: Photocatalytic synthesis of pyrazoles 6.1 Introduction 151 6.2 Results and discussion 154 6.3 Conclusion 160 6.4 Experimental part 160 6.5 References 170 7: Visible-to-UV photon upconversion for photoredox catalysis 7.1 Introduction 173 7.2 Results and discussion 177 7.3 Conclusion 183 7.4 Computational part 184 7.5 References 188 8: Appendix 8.1 List of abbreviations 193 8.2 Summary 195 8.3 Zusammenfassung 196 8.4 Súhrn 197 8.5 Acknowledgements 198 8.6 CV and list of publications 199 8.7 List of figures 203 Chapter 1: Introduction Introduction 1.1: Chemistry and light Light-induced reactions are as old as is the Earth itself, preceding life by hundreds of millions of years. As a matter of fact, the most probable source of the simplest organic molecules such as formaldehyde, which became the building for more complex molecules, starting with carbohydrates, were photochemical processes. Spectrum of the young Sun contained much more of the energetic UV light, and there was no ozone layer to protect the surface of the Earth, therefore photochemistry started immediately as the accretion processes finished and the stardust settled on the surface of the Earth.1 Later on, living autotrophic organisms emerged on Earth, harnessing the light for the first time as an energy source for the living matter. Chlorophyll became integral for this process, as the first photocatalyst to use light energy for the separation of charges which is a hallmark of the modern, man-made photocatalysts as well.2 Photosynthesizing organisms switched eventually to water splitting, generating oxygen as the by-product. Hard UV irradiation, which was still present on the surface of the Earth damaged biomacromolecules, endangering the living forms present. Thymine dimer formation by [2+2] cycloaddition was especially dangerous, as it presented a mechanism for long lasting DNA damage.3 DNA repairing mechanisms were developed, but the rate of mutation was so high, that even if the organism survived, proper natural selection could not be operative. Increasing oxygen content in the atmosphere was the key to higher living forms, as it lead to the development of the ozone layer, which photochemicaly filters off the deadly, more energetic, part of UV spectrum.4 Thus photochemistry was involved in all the key steps, which led to the existence of life itself, as well as for making the evolution possible, leading to the higher life forms, including the mankind. Natural phenomena concerning light were intensively studied from the earliest days of science. Theoretical discoveries from optics came, driven by the demand from the more practical fields such as navigation, as well as from the transcendent but popular fields as astrology. While most of the laws of optics were discovered in earlier modern ages, it was not until the discovery of quantum physics, that the photochemical phenomena could be explained, as the wave-particle dichotomy is necessary for such explanations. Even though theory was not sufficient at the time to give any predictions in this field, experimental observations of photochemical phenomena were reported. Bleaching of textiles by sunlight was one of the first technologies developed by ancient Egyptians several thousand years before Christ. Later on, the poor light-fastness of dyes became a problem, as most of the natural dyes faded over time after exposure to sunlight. First scientific report of organic photochemical reaction comes from 1685 (just 20 years after the foundation of first 10 Chapter 1 scientific journal) from England. The report concerns with the isolation of a light-labile dye, which gradually changed hue after the exposure to sunlight (it was an indigo- based dye isolated from a sea mollusk).5 This report is worth mentioning, as it presents for the first time the use of photochemistry for production of an industrial chemical (purple textile dye), as well as the correlation between the intensity of irradiation and the rate of the photochemical reaction: “The Letters, figures, or what else shall be made on the Linnen of Silk will presently appear of a pleasant light green colour, and, if placed in the Sun, will change into following colours… light green… deep green… Sea-green… Watchet-blew… Purplish- red… but the last and most beautifull colour, (after washing in scalding water and sope,) will be much a differing colour from all those mention’d i.e. of a fair bright Crimson, or neer to the Prince’s colour… in the heat of the day, in Summer, the colours will come on so fast, that the sucession of each colour, will scarce be distinguisht. ” (sic.) The developments in inorganic and organic analysis led to the discovery of new photochemical reactions in the 19th century: Döbereiner has discovered the photoreduction of iron(III) by oxalate ligands in 1831, reporting for the first time an example of a photo-induced electron-transfer.6 This reaction became later on the basis of the famous ferri-oxalate actinometer. Only a few years later, the photochemistry of a plant-derived organic compound santonin was discovered. The most important discovery that came from the investigation of the santonin chemistry was the discovery of the wavelength dependence of the photochemical transformations:7 “Das Santonin wird sowohl durch den unterlegten, als durch den blauen und violetten Strahl gefärbt (erster wirkt stärker als die gefärbten Strahlen); der gelbe, grüne und rote bringen nicht die mindeste Veränderung hervor…” (sic.) Towards the end of the 19th century, most important classes of the organic photochemical reactions were discovered: [2+2] cycloadditions,8 double bond cis-trans isomerizations9 and radical halogenations,10 reactions which are still mainly carried out by photochemistry in the laboratories of today. Photochemical discoveries until 1900, were by no means results of targeted research, but more of accidental “byproducts” of other lines of work, which the scientists of 19th century pursued. The change came with Giacomo Luigi Ciamician, a researcher from Bologna, who carried out an extensive screening of organic substrates for photochemistry. He dissolved different organic compounds in variety of solvents, let them expose to the strong Italian sunshine on the roof of his department, and analyzed the products by all the means available to him at the time. This lead to discovery of a large array of new reactions, and the 11 Introduction photochemistry seemed like a viable competitor to the coal tar-based organic chemistry of the early 20th century. Ciamician is probably most famous for his prophetic paper in Science, where he predicted a switchover of the human civilization from the fossil fuels to renewables as soon as 1912:11 “Where vegetation is rich, photochemistry may be left to the plants… On arid lands there will spring up industrial colonies without smoke and without smokestacks; forests of glass tubes will extend over plains and glass buildings will rise everywhere; inside of these will take place the photochemical processes that hitherto have been the guarded secret of the plants, but that will have been mastered by human industry…And if in a distant future the supply of coal becomes completely exhausted, civilization will not be checked for that, for life and civilization will continue as long as sun shines! If our black and nervous civilization, based on coal, shall be followed by a quieter civilization based on the utilization of solar energy, that will not be harmful to progress and to human happiness.” Figure 1. Giacomo Ciamician. 100 years after Ciamician’s article, industry uses vast number of photochemical processes. Photochemistry is on one hand being used in water treatment as an ecologic process, but on the other hand the radical halogenations, once the biggest photochemical process, were used to produce products such as HCH with enormous environmental footprints.
Recommended publications
  • Landolt-Börnstein Indexes of Organic Compounds Subvolumes A-I by V
    Landolt-Börnstein Indexes of Organic Compounds Subvolumes A-I By V. Vill, C. Bauhofer, G. Peters, H. Sajus, P. Weigner, LCI-Publisher and Chemistry Department of the University of Hamburg All printed index material has been used to build up the comprehensive Scidex database index developed by LCI Publisher GmbH, Hamburg For further information please visit www.lci-publisher.com From this database a CD-ROM and two online versions were derived. The first is attached to each of the printed subvolumes and the latter are offered for free use at the following addresses: Scidex Database online with graphical structure search on http://lb.chemie.uni-hamburg.de/ Or the easy to use html version on http://lb.chemie.uni-hamburg.de/static/ Landolt-Börnstein Numerical Data and Functional Relationships in Science and Technology New Series / Editor in Chief: W. Martienssen Index of Organic Compounds Subvolume A Compounds with 1 to 7 Carbon Atoms Editor: V. Vill Authors: V. Vill, G. Peters, H. Sajus 1 3 ISBN 3-540-66203-0 Springer-Verlag Berlin Heidelberg New York Library of Congress Cataloging in Publication Data Zahlenwerte und Funktionen aus Naturwissenschaften und Technik, Neue Serie Editor in Chief: W. Martienssen Index of Organic Compounds A: Editor: V. Vill At head of title: Landolt-Börnstein. Added t.p.: Numerical data and functional relationships in science and technology. Tables chiefly in English. Intended to supersede the Physikalisch-chemische Tabellen by H. Landolt and R. Börnstein of which the 6th ed. began publication in 1950 under title: Zahlenwerte und Funktionen aus Physik, Chemie, Astronomie, Geophysik und Technik.
    [Show full text]
  • The Synthesis of Chiral Building Blocks Using Beta-Hydroxy Sulfoxide Dianions
    Loyola University Chicago Loyola eCommons Master's Theses Theses and Dissertations 1992 The Synthesis of Chiral Building Blocks Using Beta-Hydroxy Sulfoxide Dianions Carla M. Edwards Loyola University Chicago Follow this and additional works at: https://ecommons.luc.edu/luc_theses Part of the Organic Chemistry Commons Recommended Citation Edwards, Carla M., "The Synthesis of Chiral Building Blocks Using Beta-Hydroxy Sulfoxide Dianions" (1992). Master's Theses. 3908. https://ecommons.luc.edu/luc_theses/3908 This Thesis is brought to you for free and open access by the Theses and Dissertations at Loyola eCommons. It has been accepted for inclusion in Master's Theses by an authorized administrator of Loyola eCommons. For more information, please contact [email protected]. This work is licensed under a Creative Commons Attribution-Noncommercial-No Derivative Works 3.0 License. Copyright © 1992 Carla M. Edwards The Synthesis of Chiral Building Blocks Using Beta­ Hydroxy Sulfoxide Dianions by Carla M. Edwards A Thesis Submitted to the Faculty of the Graduate School of Loyola University of Chicago in Partial Fulfillment of the Requirements for the Degree of Master of Science May 1992 Copyright by Carla Marie Edwards, 1992 All rights reserved 11 TABLE OF CONTENTS PAGE COPYRIGHT PAGE................................................................................... n ACKNOWLEDGEMENTS........................................................................... XVll VITA...........................................................................................................
    [Show full text]
  • Gas-Liquid-Solid Three-Phase Catalyzed S-Methylation Of
    Yuchen Wu et al., J.Chem.Soc.Pak., Vol. 42, No. 06, 2020 846 Gas-Liquid-Solid Three-Phase Catalyzed S-Methylation of Thiophenol with Dimethyl Carbonate in a Fixed-Bed Reactor: Catalytic Performances of Activated Alumina Supported Alkali Metal Carbonate Catalysts Yuchen Wu, Fenghua Zhang, Fei Li*, Heng Jiang, Rui Wang, Hong Gong College of Chemistry, Chemical Engineering and Environmental Engineering, Liaoning Shihua University, NO.1, West Dandong Road, Fushun 113001, Liaoning, People’s Republic of China. [email protected]* (Received on 12th September 2019, accepted in revised form 11th August 2020) Summary: The catalytic performances of activated alumina and its supported alkali metal carbonate catalysts for the reaction of thiophenol with dimethyl carbonate to prepare thioanisole (PhSMe) were investigated on a fixed bed reactor under the condition of atmospheric pressure. The properties of activated alumina and its loading alkali metal carbonate catalysts were characterized via IR, BET and XRD. The effect of loading amount of alkali metal carbonate, calcination temperature, reaction temperature and liquid volume hourly space velocity (LVHSV) of reactants on the catalytic performances of the catalysts was also examined. The yield of PhSMe was 93.5% when activated alumina was used as catalyst alone at 120 °C, however, the catalytic activities of the catalysts after loading 5-15 wt% K2CO3 were greatly improved, and the yield of PhSMe was 99-100%. Compared to activated alumina, the catalytic performances of catalysts after loading different alkali metal carbonate are greatly improved. The improvement of catalytic performance can be attributed to that carbonate may occupy the Lewis acid sites of the activated alumina surface, making it easier for the catalyst to activate thiophenol, thus giving benzenethiolate a stronger nucleophilic attack ability.
    [Show full text]
  • Synthetic Studies Toward Aziridinomitosenes and 9-Oxo-Pyrrolo[1,2-A]Indole Mitosanes Related to the Mitomycin and FR Heterocycles
    Synthetic Studies Toward Aziridinomitosenes and 9-Oxo-pyrrolo[1,2-a]indole Mitosanes Related to the Mitomycin and FR Heterocycles by Susan D. Wiedner A dissertation submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy (Chemistry) in The University of Michigan 2009 Doctoral Committee: Professor Edwin Vedejs, Chair Professor David Sherman Associate Professor Anna Mapp Associate Professor John Wolfe © Susan D. Wiedner 2009 To my grandfather, Francis Jerome Trick ii Acknowledgements I would first like to thank my advisor, Professor Edwin Vedejs, for advising me over the last six years. His drive for understanding chemical problems and discovering new chemistry imparted on me a desire to understand, analyze, and circumvent multiple synthetic difficulties which I encountered during my graduate work. Without his guidance and example, I would not have been successful. Furthermore, I would like to thank him for the opportunity to discover my “talents” during this incredibly challenging and rewarding research experience. I also want to thank past and present Vedejs group members. A special thanks goes to Tim, Trisha, and Drew for helping me transition into the lab during my first and second year. Thank you Jeremy and Musong for your previous work on the FK317 project. Thanks John, Aleks, Li, Dan and Eoghan for many discussions about chemistry. I especially want to thank Bob and Val for their insightful suggestions regarding my project, for reading and editing my thesis, and for their friendship. Most importantly, I would like to thank my family. My husband Eric has been by my side for most of my graduate career and I could not have gotten through this challenging process without his support and love.
    [Show full text]
  • Fluoroarenes for Use in the Medical Imaging Technique
    DIARYLIODONIUM SALTS AS PRECURSORS TO 18 ELECTRON-RICH [ F]FLUOROARENES FOR USE IN THE MEDICAL IMAGING TECHNIQUE – POSITRON EMISSION TOMOGRAPHY SATWINDER SINGH BHATT Submitted in fulfilment of the requirements for the degree of Doctor of Philosophy. Sir Bobby Robson Foundation PET Tracer Production Unit, School of Chemistry, Newcastle University January 2016 Contents Acknowledgements ....................................................................................... v List of Abbreviations ................................................................................... vii 1 Introduction ......................................................................................... 1 1.1 Positron Emission Tomography ................................................................. 1 1.2 Radioisotopes in PET Imaging ................................................................... 9 1.3 Fluorine in Pharmaceuticals .................................................................... 12 1.4 PET Imaging with Fluorine-18 ................................................................. 17 1.5 Cyclotron Production of Fluorine-18 ......................................................... 19 1.5.1 Radiochemical Terminology ................................................................. 21 1.5.2 Production of Electrophilic Fluorine-18 .................................................. 24 1.5.3 Production of Nucleophilic Fluorine-18 .................................................. 25 1.5.4 Radiopharmaceutical Production .........................................................
    [Show full text]
  • Structure Transformation Among Deca-, Dodeca- and Tridecavanadates and Their Properties for Thioanisole Oxidation
    Inorganics 2015, 3, 295-308; doi:10.3390/inorganics3020295 OPEN ACCESS inorganics ISSN 2304-6740 www.mdpi.com/journal/inorganics Article Structure Transformation among Deca-, Dodeca- and Tridecavanadates and Their Properties for Thioanisole Oxidation Yuji Kikukawa †, Kazuhiro Ogihara † and Yoshihito Hayashi * Department of Chemistry, Graduate School of Natural Science and Technology, Kanazawa University, Kakuma, Kanazawa 920-1192, Japan; E-Mails: [email protected] (Y.K.); [email protected] (K.O.) † These authors contributed equally to this work. * Author to whom correspondence should be addressed; E-Mail: [email protected]; Tel.: +81-76-264-5695; Fax: +81-76-264-5742. Academic Editors: Greta Ricarda Patzke and Pierre-Emmanuel Car Received: 15 April 2015 / Accepted: 11 June 2015 / Published: 17 June 2015 Abstract: The transformation of three types of polyoxovanadates, {(n-C4H9)4N}3[H3V10O28], {(n-C4H9)4N}4[V12O32] and {(n-C4H9)4N}3[V13O34] have been investigated according to the rational chemical equations, and the best transformation 3− conditions were reported. By the reaction of [H3V10O28] with 0.33 equivalents of 4− {(n-C4H9)4N}OH in acetonitrile at 80 °C, [V12O32] was formed with 92% yield. 3− The reaction in nitroethane with 0.69 equivalents of p-toluenesulfonic acid gave [V13O34] with 91% yield. The 51V NMR observation of each reaction suggests the complete 3− 4− 3− transformations of [H3V10O28] to [V12O32] and to [V13O34] proceeded without the formation of any byproducts and it provides the reliable synthetic route. Decavanadates 4− 3− were produced by the hydrolysis of [V12O32] or [V13O34] .
    [Show full text]
  • Total Synthesis of a Virotoxin and Analogs for Conformational Studies
    Louisiana State University LSU Digital Commons LSU Doctoral Dissertations Graduate School 2012 Total synthesis of a virotoxin and analogs for conformational studies Benson Jumba Edagwa Louisiana State University and Agricultural and Mechanical College, [email protected] Follow this and additional works at: https://digitalcommons.lsu.edu/gradschool_dissertations Part of the Chemistry Commons Recommended Citation Edagwa, Benson Jumba, "Total synthesis of a virotoxin and analogs for conformational studies" (2012). LSU Doctoral Dissertations. 804. https://digitalcommons.lsu.edu/gradschool_dissertations/804 This Dissertation is brought to you for free and open access by the Graduate School at LSU Digital Commons. It has been accepted for inclusion in LSU Doctoral Dissertations by an authorized graduate school editor of LSU Digital Commons. For more information, please [email protected]. TOTAL SYNTHESIS OF A VIROTOXIN AND ANALOGS FOR CONFORMATIONAL STUDIES A Dissertation Submitted to the Graduate Faculty of the Louisiana State University and Agricultural and Mechanical College in partial fulfillment of the requirements for the degree of Doctor of Philosophy in The Department of Chemistry By Benson Jumba Edagwa BSc, Moi University, Kenya, 2005 May 2012 ACKNOWLEDGEMENTS I would like to express my gratitude to my advisor, Dr. Carol Taylor, for her invaluable guidance and support during my research studies. I would also like to thank my committee members Dr. William Crowe, Dr. Graca Vicente, Dr. Evgueni Nesterov and Dr. Frederick Enright for their advice and meaningful suggestions. Sincere thanks to Dr. Dale Treleaven and Dr. Thomas Weldeghiorghis for their help with NMR studies. My appreciation goes to my wife Teresa Mutahi for her moral support.
    [Show full text]
  • Syntheses and Evaluation of Phthalocyanine Derivatives For
    Louisiana State University LSU Digital Commons LSU Doctoral Dissertations Graduate School 2008 Syntheses and Evaluation of Phthalocyanine Derivatives for Applications in Photodynamic and Boron Neutron Capture Therapies for Cancer Hairong Li Louisiana State University and Agricultural and Mechanical College, [email protected] Follow this and additional works at: https://digitalcommons.lsu.edu/gradschool_dissertations Part of the Chemistry Commons Recommended Citation Li, Hairong, "Syntheses and Evaluation of Phthalocyanine Derivatives for Applications in Photodynamic and Boron Neutron Capture Therapies for Cancer" (2008). LSU Doctoral Dissertations. 3294. https://digitalcommons.lsu.edu/gradschool_dissertations/3294 This Dissertation is brought to you for free and open access by the Graduate School at LSU Digital Commons. It has been accepted for inclusion in LSU Doctoral Dissertations by an authorized graduate school editor of LSU Digital Commons. For more information, please [email protected]. SYNTHESES AND EVALUATION OF PHTHALOCYANINE DERIVATIVES FOR APPLICATIONS IN PHOTODYNAMIC AND BORON NEUTRON CAPTURE THERAPIES FOR CANCER A Dissertation Submitted to the Graduate Faculty of the Louisiana State University and Agricultural and Mechanical College in partial fulfillment of the requirement for the degree of Doctor of Philosophy in The Department of Chemistry By Hairong Li B.S., Nankai University, 2001 M.S., Nankai University, 2004 December, 2008 DEDICATION To my parents: Mingzhen Tang and Baiwen Li. Thank you for being wonderful parents; for giving me life, unconditional love, support, education, guidance, most importantly the freedom to make my own decisions. You have always been my source of strength and inspiration. I can never thank you enough for what you have done in my life.
    [Show full text]
  • Structural Determination of Torlon 4000T Polyamide-Imide by NMR Spectroscopy Robertson, Gilles; Guiver, Michael; Yoshikawa, M.; Brownstein, Sydney
    NRC Publications Archive Archives des publications du CNRC Structural determination of Torlon 4000T polyamide-imide by NMR spectroscopy Robertson, Gilles; Guiver, Michael; Yoshikawa, M.; Brownstein, Sydney This publication could be one of several versions: author’s original, accepted manuscript or the publisher’s version. / La version de cette publication peut être l’une des suivantes : la version prépublication de l’auteur, la version acceptée du manuscrit ou la version de l’éditeur. For the publisher’s version, please access the DOI link below./ Pour consulter la version de l’éditeur, utilisez le lien DOI ci-dessous. Publisher’s version / Version de l'éditeur: https://doi.org/10.1016/j.polymer.2003.12.029 Polymer, 45, 2004 NRC Publications Record / Notice d'Archives des publications de CNRC: https://nrc-publications.canada.ca/eng/view/object/?id=06c75579-15bb-4fb1-b403-590399c28976 https://publications-cnrc.canada.ca/fra/voir/objet/?id=06c75579-15bb-4fb1-b403-590399c28976 Access and use of this website and the material on it are subject to the Terms and Conditions set forth at https://nrc-publications.canada.ca/eng/copyright READ THESE TERMS AND CONDITIONS CAREFULLY BEFORE USING THIS WEBSITE. L’accès à ce site Web et l’utilisation de son contenu sont assujettis aux conditions présentées dans le site https://publications-cnrc.canada.ca/fra/droits LISEZ CES CONDITIONS ATTENTIVEMENT AVANT D’UTILISER CE SITE WEB. Questions? Contact the NRC Publications Archive team at [email protected]. If you wish to email the authors directly, please see the first page of the publication for their contact information.
    [Show full text]
  • WO 2018/013686 Al 18 January 2018 (18.01.2018) W !P O PCT
    (12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT) (19) World Intellectual Property Organization I International Bureau (10) International Publication Number (43) International Publication Date WO 2018/013686 Al 18 January 2018 (18.01.2018) W !P O PCT (51) International Patent Classification: Declarations under Rule 4.17: C07D 209/14 (2006.01) A61K 31/4045 (2006.01) — of inventorship (Rule 4.1 7(iv)) (21) International Application Number: Published: PCT/US20 17/04 1709 — with international search report (Art. (22) International Filing Date: 12 July 2017 (12.07.2017) (25) Filing Language: English (26) Publication Langi English (30) Priority Data: 62/361,3 16 12 July 2016 (12.07.2016) US (71) Applicant: CONCERT PHARMACEUTICALS, INC. [US/US]; 99 Hayden Avenue, Suite 500, Lexington, MA 02421 (US). (72) Inventor: SILVERMAN, I., Robert; 36 Orvis Road, Ar lington, MA 02474 (US). (74) Agent: ABELLEIRA, Susan, M. et al; Foley Hoag LLP, 155 Seaport Boulevard, Boston, MA 02210-2600 (US). (81) Designated States (unless otherwise indicated, for every kind of national protection available): AE, AG, AL, AM, AO, AT, AU, AZ, BA, BB, BG, BH, BN, BR, BW, BY, BZ, CA, CH, CL, CN, CO, CR, CU, CZ, DE, DJ, DK, DM, DO, DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, GT, HN, HR, HU, ID, IL, IN, IR, IS, JO, JP, KE, KG, KH, KN, KP, KR, KW, KZ, LA, LC, LK, LR, LS, LU, LY, MA, MD, ME, MG, MK, MN, MW, MX, MY, MZ, NA, NG, NI, NO, NZ, OM, PA, PE, PG, PH, PL, PT, QA, RO, RS, RU, RW, SA, SC, SD, SE, SG, SK, SL, SM, ST, SV, SY, TH, TJ, TM, TN, TR, TT, TZ, UA, UG, US, UZ, VC, VN, ZA, ZM, ZW.
    [Show full text]
  • Carboxy Fantrip Monomer Was Used in the Langmuir-Blodgett Synthesis of Poly(Carboxyfantrip)
    University of Nevada, Reno The Synthesis and Fabrication of Two-Dimensional Polymers A dissertation submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy in Chemistry by William Bailey Thompson Dr. Benjamin T. King/Dissertation Advisor May 2019 THE GRADUATE SCHOOL We recommend that the dissertation prepared under our supervision by William Bailey Thompson Entitled The Synthesis and Fabrication of Two-Dimensional Polymers be accepted in partial fulfillment of the requirements for the degree of Doctor of Philosophy Benjamin T. King , Advisor Christopher S. Jeffrey , Committee Member Robert S. Sheridan , Committee Member Lora Robinson , Committee Member Jonathan Weinstein , Graduate School Representative David W. Zeh, Ph.D., Dean, Graduate School May-2019 i Abstract The Synthesis and Fabrication of Two-Dimensional Polymers William Bailey Thompson Ph.D Advisor: Professor Benjamin T. King With the isolation of graphene, there has been a proverbial gold rush in the field of two- dimensional (2D) materials because their unique properties promise numerous applications. The synthesis of 2D materials is currently a hot field with many branches, one of them being synthetic two-dimensional polymers (2DPs). 2DPs share many similarities with other 2D materials but promise tunable properties for various applications. This dissertation focuses on the synthesis and use of monomers that can be fabricated into 2DPs by crystallization or Langmuir-Blodgett approach. Chapter One will explore how 2DPs are classified and showcase some of the current methods for the synthesis of 2DPs. The pros and cons of each method will be highlighted and potential applications of 2DPs will be discussed. Chapter Two describes the synthesis of the monomers fantrip and carboxyfantrip.
    [Show full text]
  • Subject Index
    Subject Index acetals 139 adamantyloxycarbonyl group 134, 142, S-acetamidomethyl group 146, 229, 238 149, 154, 205 acetic anhydride 261 additives see auxiliary nuc1eophiles acetimidylation 243 affinity chromatography 309 acetoacetic acid 90 aggregation of peptides 309 acetoacetyl group 94 alanine 169, 197 acetonitrile 182 L-alanyl-L-alanine p-nitrobenzyl ester 177 4-acetoxybenzyloxycarbonyl group 110 alcalase 302 acetylacetone see pentane-2,4-dione alcoholysis 259 acetyl-D-alloisoleucylglycyl ethyl ester alkoxyacetylenes 39, 41 175 alkylation 64, 69, 82, 142, 152, 193, 200, acetylamino acids 172 206,208 acetylation 65, 135, 136 alkyl dithiocarbamoyl group 102 S-acetyl cysteine 141 allyl bromide· 294 acetyl group 134, 182, 302 allyloxycarbonyl group 300 acetyl-imidazole 261 amanitin 239 acetyl-L-isoleucine 175 amino acid nitriles 309 acetyl-L-phenylalanyl-L-alanine methyl D-aminoacid-oxidase 27 ester 176 a-amino-w-azido acids 135 Q-acetyl-serine 136, 138 aminobenzyhydryl resin 258 N-acetyl-DL-threonine 137 S-p-aminobenzyl group 143 acid chlorides 10-12, 21, 29, 273 a-arninobutyric acid 208 acid fluorides 273 2-arnino-6-nitro-caproic acid 74, 134 acid hydrazides 17, 82 6-arninopenicillanic acid 91 acidolysis 2, 77, 79, 88, 107, 137 150, aminopeptidases 191 153, 156, 159, 176, 201, 203, 206, 216, aminosuccinimide derivatives 81, 170, 217,219,221,224,234,251,255,257, 187, 190, 191, 202, 203, 204, 260, 306 260, 293, 302, 306 2-arninothiophenol 93 activated esters, see active esters ammonium formate 306 active esters 3, 31, 34, 35, 51, 54, 55,
    [Show full text]