Operating Systems & Virtualisation Security
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Uva-DARE (Digital Academic Repository)
UvA-DARE (Digital Academic Repository) On the construction of operating systems for the Microgrid many-core architecture van Tol, M.W. Publication date 2013 Link to publication Citation for published version (APA): van Tol, M. W. (2013). On the construction of operating systems for the Microgrid many-core architecture. General rights It is not permitted to download or to forward/distribute the text or part of it without the consent of the author(s) and/or copyright holder(s), other than for strictly personal, individual use, unless the work is under an open content license (like Creative Commons). Disclaimer/Complaints regulations If you believe that digital publication of certain material infringes any of your rights or (privacy) interests, please let the Library know, stating your reasons. In case of a legitimate complaint, the Library will make the material inaccessible and/or remove it from the website. Please Ask the Library: https://uba.uva.nl/en/contact, or a letter to: Library of the University of Amsterdam, Secretariat, Singel 425, 1012 WP Amsterdam, The Netherlands. You will be contacted as soon as possible. UvA-DARE is a service provided by the library of the University of Amsterdam (https://dare.uva.nl) Download date:27 Sep 2021 General Bibliography [1] J. Aas. Understanding the linux 2.6.8.1 cpu scheduler. Technical report, Silicon Graphics Inc. (SGI), Eagan, MN, USA, February 2005. [2] D. Abts, S. Scott, and D. J. Lilja. So many states, so little time: Verifying memory coherence in the Cray X1. In Proceedings of the 17th International Symposium on Parallel and Distributed Processing, IPDPS '03, page 10 pp., Washington, DC, USA, April 2003. -
Quantifying Security Impact of Operating-System Design
Copyright Notice School of Computer Science & Engineering COMP9242 Advanced Operating Systems These slides are distributed under the Creative Commons Attribution 3.0 License • You are free: • to share—to copy, distribute and transmit the work • to remix—to adapt the work • under the following conditions: 2019 T2 Week 09b • Attribution: You must attribute the work (but not in any way that Local OS Research suggests that the author endorses you or your use of the work) as @GernotHeiser follows: “Courtesy of Gernot Heiser, UNSW Sydney” The complete license text can be found at http://creativecommons.org/licenses/by/3.0/legalcode 1 COMP9242 2019T2 W09b: Local OS Research © Gernot Heiser 2019 – CC Attribution License Quantifying OS-Design Security Impact Approach: • Examine all critical Linux CVEs (vulnerabilities & exploits database) • easy to exploit 115 critical • high impact Linux CVEs Quantifying Security Impact of • no defence available to Nov’17 • confirmed Operating-System Design • For each establish how microkernel-based design would change impact 2 COMP9242 2019T2 W09b: Local OS Research © Gernot Heiser 2019 – CC Attribution License 3 COMP9242 2019T2 W09b: Local OS Research © Gernot Heiser 2019 – CC Attribution License Hypothetical seL4-based OS Hypothetical Security-Critical App Functionality OS structured in isolated components, minimal comparable Trusted inter-component dependencies, least privilege to Linux Application computing App requires: base • IP networking Operating system Operating system • File storage xyz xyz • Display -
High Performance Computing Systems
High Performance Computing Systems Multikernels Doug Shook Multikernels Two predominant approaches to OS: – Full weight kernel – Lightweight kernel Why not both? – How does implementation affect usage and performance? Gerolfi, et. al. “A Multi-Kernel Survey for High- Performance Computing,” 2016 2 FusedOS Assumes heterogeneous architecture – Linux on full cores – LWK requests resources from linux to run programs Uses CNK as its LWK 3 IHK/McKernel Uses an Interface for Heterogeneous Kernels – Resource allocation – Communication McKernel is the LWK – Only operable with IHK Uses proxy processes 4 mOS Embeds LWK into the Linux kernel – LWK is visible to Linux just like any other process Resource allocation is performed by sysadmin/user 5 FFMK Uses the L4 microkernel – What is a microkernel? Also uses a para-virtualized Linux instance – What is paravirtualization? 6 Hobbes Pisces Node Manager Kitten LWK Palacios Virtual Machine Monitor 7 Sysadmin Criteria Is the LWK standalone? Which kernel is booted by the BIOS? How and when are nodes partitioned? 8 Application Criteria What is the level of POSIX support in the LWK? What is the pseudo file system support? How does an application access Linux functionality? What is the system call overhead? Can LWK and Linux share memory? Can a single process span Linux and the LWK? Does the LWK support NUMA? 9 Linux Criteria Are LWK processes visible to standard tools like ps and top? Are modifications to the Linux kernel necessary? Do Linux kernel changes propagate to the LWK? -
The OKL4 Microvisor: Convergence Point of Microkernels and Hypervisors
The OKL4 Microvisor: Convergence Point of Microkernels and Hypervisors Gernot Heiser, Ben Leslie Open Kernel Labs and NICTA and UNSW Sydney, Australia ok-labs.com ©2010 Open Kernel Labs and NICTA. All rights reserved. Microkernels vs Hypervisors > Hypervisors = “microkernels done right?” [Hand et al, HotOS ‘05] • Talks about “liability inversion”, “IPC irrelevance” … > What’s the difference anyway? ok-labs.com ©2010 Open Kernel Labs and NICTA. All rights reserved. 2 What are Hypervisors? > Hypervisor = “virtual machine monitor” • Designed to multiplex multiple virtual machines on single physical machine VM1 VM2 Apps Apps AppsApps AppsApps OS OS Hypervisor > Invented in ‘60s to time-share with single-user OSes > Re-discovered in ‘00s to work around broken OS resource management ok-labs.com ©2010 Open Kernel Labs and NICTA. All rights reserved. 3 What are Microkernels? > Designed to minimise kernel code • Remove policy, services, retain mechanisms • Run OS services in user-mode • Software-engineering and dependability reasons • L4: ≈ 10 kLOC, Xen ≈ 100 kLOC, Linux: ≈ 10,000 kLOC ServersServers ServersServers Apps Servers Device AppsApps Drivers Microkernel > IPC performance critical (highly optimised) • Achieved by API simplicity, cache-friendly implementation > Invented 1970 [Brinch Hansen], popularised late ‘80s (Mach, Chorus) ok-labs.com ©2010 Open Kernel Labs and NICTA. All rights reserved. 4 What’s the Difference? > Both contain all code executing at highest privilege level • Although hypervisor may contain user-mode code as well > Both need to abstract hardware resources • Hypervisor: abstraction closely models hardware • Microkernel: abstraction designed to support wide range of systems > What must be abstracted? • Memory • CPU • I/O • Communication ok-labs.com ©2010 Open Kernel Labs and NICTA. -
Capabilities
CS 261, Fall 2015 Scribe notes September 8: Capabilities Scribe: Riyaz Faizullabhoy 1 Motivation for Capabilities In The Confused Deputy, the compiler had two sets of rights: one from the user to access user files such as source code to compile, and another set granted to the compiler intended to access a special statistics file that would collect information about language feature usage. The compiler was installed in the SYSX directory, where it was granted access to write to any file in this directory. Naturally, the statistics file SYSX/STAT was also located in this directory such that the compiler (SYSX/FORT) could add language feature information. To achieve this, the compiler's privileges were set with a home files license that was allowed by the operating system to write to any file in the SYSX directory. A billing information file SYSX/BILL was also stored in SYSX { due to its sensitive nature, this billing file was not directly accessible to users. However, since the compiler was granted access to the entire SYSX directory, users could subvert their access restrictions on the billing information file by using the compiler like so: SYSX/FORT foo.f -o SYSX/BILL The above user-invoked command to the compiler would allow the compiler to first read the user's source code in foo.f, but then the compiler's privilege to SYSX would cause the SYSX/BILL file to be overwritten with the user's binary. In effect, the compiler is the confused deputy having to reconcile both its own and the user's set of privileges, but unfortunately allows for unintended behavior. -
Microkernel Vs
1 VIRTUALIZATION: IBM VM/370 AND XEN CS6410 Hakim Weatherspoon IBM VM/370 Robert Jay Creasy (1939-2005) Project leader of the first full virtualization hypervisor: IBM CP-40, a core component in the VM system The first VM system: VM/370 Virtual Machine: Origin 3 IBM CP/CMS CP-40 CP-67 VM/370 Why Virtualize 4 Underutilized machines Easier to debug and monitor OS Portability Isolation The cloud (e.g. Amazon EC2, Google Compute Engine, Microsoft Azure) IBM VM/370 Specialized Conversation Mainstream VM al Monitor OS (MVS, Another Virtual subsystem System DOS/VSE copy of VM machines (RSCS, RACF, (CMS) etc.) GCS) Hypervisor Control Program (CP) Hardware System/370 IBM VM/370 Technology: trap-and-emulate Problem Application Privileged Kernel Trap Emulate CP Classic Virtual Machine Monitor (VMM) 7 Virtualization: rejuvenation 1960’s: first track of virtualization Time and resource sharing on expensive mainframes IBM VM/370 Late 1970’s and early 1980’s: became unpopular Cheap hardware and multiprocessing OS Late 1990’s: became popular again Wide variety of OS and hardware configurations VMWare Since 2000: hot and important Cloud computing Docker containers Full Virtualization 9 Complete simulation of underlying hardware Unmodified guest OS Trap and simulate privileged instruction Was not supported by x86 (Not true anymore, Intel VT-x) Guest OS can’t see real resources Paravirtualization 10 Similar but not identical to hardware Modifications to guest OS Hypercall Guest OS registers handlers Improved performance VMware ESX Server 11 Full virtualization Dynamically rewrite privileged instructions Ballooning Content-based page sharing Denali 12 Paravirtualization 1000s of VMs Security & performance isolation Did not support mainstream OSes VM uses single-user single address space 13 Xen and the Art of Virtualization Xen 14 University of Cambridge, MS Research Cambridge XenSource, Inc. -
Operating Systems & Virtualisation Security Knowledge Area
Operating Systems & Virtualisation Security Knowledge Area Issue 1.0 Herbert Bos Vrije Universiteit Amsterdam EDITOR Andrew Martin Oxford University REVIEWERS Chris Dalton Hewlett Packard David Lie University of Toronto Gernot Heiser University of New South Wales Mathias Payer École Polytechnique Fédérale de Lausanne The Cyber Security Body Of Knowledge www.cybok.org COPYRIGHT © Crown Copyright, The National Cyber Security Centre 2019. This information is licensed under the Open Government Licence v3.0. To view this licence, visit: http://www.nationalarchives.gov.uk/doc/open-government-licence/ When you use this information under the Open Government Licence, you should include the following attribution: CyBOK © Crown Copyright, The National Cyber Security Centre 2018, li- censed under the Open Government Licence: http://www.nationalarchives.gov.uk/doc/open- government-licence/. The CyBOK project would like to understand how the CyBOK is being used and its uptake. The project would like organisations using, or intending to use, CyBOK for the purposes of education, training, course development, professional development etc. to contact it at con- [email protected] to let the project know how they are using CyBOK. Issue 1.0 is a stable public release of the Operating Systems & Virtualisation Security Knowl- edge Area. However, it should be noted that a fully-collated CyBOK document which includes all of the Knowledge Areas is anticipated to be released by the end of July 2019. This will likely include updated page layout and formatting of the individual Knowledge Areas KA Operating Systems & Virtualisation Security j October 2019 Page 1 The Cyber Security Body Of Knowledge www.cybok.org INTRODUCTION In this Knowledge Area, we introduce the principles, primitives and practices for ensuring se- curity at the operating system and hypervisor levels. -
W4118: Multikernel
W4118: multikernel Instructor: Junfeng Yang References: Modern Operating Systems (3rd edition), Operating Systems Concepts (8th edition), previous W4118, and OS at MIT, Stanford, and UWisc Motivation: sharing is expensive Difficult to parallelize single-address space kernels with shared data structures . Locks/atomic instructions: limit scalability . Must make every shared data structure scalable • Partition data • Lock-free data structures • … . Tremendous amount of engineering Root cause . Expensive to move cache lines . Congestion of interconnect 1 Multikernel: explicit sharing via messages Multicore chip == distributed system! . No shared data structures! . Send messages to core to access its data Advantages . Scalable . Good match for heterogeneous cores . Good match if future chips don’t provide cache- coherent shared memory 2 Challenge: global state OS must manage global state . E.g., page table of a process Solution . Replicate global state . Read: read local copy low latency . Update: update local copy + distributed protocol to update remote copies • Do so asynchronously (“split phase”) 3 Barrelfish overview Figure 5 in paper CPU driver . kernel-mode part per core . Inter-Processor interrupt (IPI) Monitors . OS abstractions . User-level RPC (URPC) 4 IPC through shared memory #define CACHELINE (64) struct box{ char buf[CACHELINE-1]; // message contents char flag; // high bit == 0 means sender owns it }; __attribute__ ((aligned (CACHELINE))) struct box m __attribute__ ((aligned (CACHELINE))); send() recv() { { // set up message while(!(m.flag & 0x80)) memcpy(m.buf, …); ; m.flag |= 0x80; m.buf … //process message } } 5 Case study: TLB shootdown When is it necessary? Windows & Linux: send IPIs Barrelfish: sends messages to involved monitors . 1 broadcast message N-1 invalidates, N-1 fetches . -
Login Dec 07 Volume 33
COMPUTER SECURITY IS AN OLD problem which has lost none of its rele - GERNOT HEISER vance—as is evidenced by the annual Secu - rity issue of ;login: . The systems research community has increased its attention to security issues in recent years, as can be Your system is seen by an increasing number of security- related papers published in the mainstream secure? Prove it! systems conferences SOSP, OSDI, and Gernot Heiser is professor of operating systems at USENIX. However, the focus is primarily on the University of New South Wales (UNSW) in Sydney and leads the embedded operating-systems group at desktop and server systems. NICTA, Australia’s Centre of Excellence for research in information and communication technology. In 2006 he co-founded the startup company Open Kernel I argued two years ago in this place that security of Labs (OK), which is developing and marketing operat - embedded systems, whether mobile phones, smart ing-system and virtualization technology for embed - ded systems, based on the L4 microkernel. cards, or automobiles, is a looming problem of even bigger proportions, yet there does not seem to [email protected] be a great sense of urgency about it. Although there are embedded operating-system (OS) vendors NICTA is funded by the Australian government’s Backing Australia’s Ability initiative, in part working on certifying their offerings to some of the through the Australian Research Council. highest security standards, those systems do not seem to be aimed at, or even suitable for, mobile wireless devices. Establishing OS Security The accepted way to establish system security is through a process called assurance . -
Hype and Virtue
Hype and Virtue Timothy Roscoe∗ Kevin Elphinstone† Gernot Heiser†‡ National ICT Australia Abstract a source of a new class of problem. We lay out some of these directions towards the end of this paper. In this paper, we question whether hypervisors are really A challenge with any technological development which acting as a disruptive force in OS research, instead argu- creates intense interest simultaneously in both academia ing that they have so far changed very little at a techni- and venture capital circles is separating the long-term sci- cal level. Essentially, we have retained the conventional entific and engineering questions traditionally relegated to Unix-like OS interface and added a new ABI based on PC academic research from the short-term issues closely tied hardware which is highly unsuitable for most purposes. to particular business models, contexts, and in some cases Despite commercial excitement, focus on hypervisor de- individual companies. sign may be leading OS research astray. However, adopt- This is an unashamedly academic paper, deliberately ing a different approach to virtualization and recognizing bracketing short-term commercial pressures to concen- its value to academic research holds the prospect of open- trate instead on longer-term research questions in OS de- ing up kernel research to new directions. sign. We do not wish to devalue short-term research strongly embedded in current products and markets, but we emphasize that it is not our concern here. 1 Introduction In the next section we compare hypervisors to other kernels from a long-term research perspective (rather than Are hypervisors really a disruptive technology? Both the focusing on their short-term applications) and in Section 3 IT industry and the academic OS research community critique the new system interface offered by hypervisors. -
Multiprocessor Operating Systems CS 6410: Advanced Systems
Introduction Multikernel Tornado Conclusion Discussion Outlook References Multiprocessor Operating Systems CS 6410: Advanced Systems Kai Mast Department of Computer Science Cornell University September 4, 2014 Kai Mast — Multiprocessor Operating Systems 1/47 Introduction Multikernel Tornado Conclusion Discussion Outlook References Let us recall Multiprocessor vs. Multicore Figure: Multiprocessor [10] Figure: Multicore [10] Kai Mast — Multiprocessor Operating Systems 2/47 Introduction Multikernel Tornado Conclusion Discussion Outlook References Let us recall Message Passing vs. Shared Memory Shared Memory Threads/Processes access the same memory region Communication via changes in variables Often easier to implement Message Passing Threads/Processes don’t have shared memory Communication via messages/events Easier to distribute between different processors More robust than shared memory Kai Mast — Multiprocessor Operating Systems 3/47 Introduction Multikernel Tornado Conclusion Discussion Outlook References Let us recall Miscellaneous Cache Coherence Inter-Process Communication Remote-Procedure Call Preemptive vs. cooperative Multitasking Non-uniform memory access (NUMA) Kai Mast — Multiprocessor Operating Systems 4/47 Introduction Multikernel Tornado Conclusion Discussion Outlook References Current Systems are Diverse Different Architectures (x86, ARM, ...) Different Scales (Desktop, Server, Embedded, Mobile ...) Different Processors (GPU, CPU, ASIC ...) Multiple Cores and/or Multiple Processors Multiple Operating Systems on a System (Firmware, -
Runtime Data Driven Partitioning of Linux Code
This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication. The final version of record is available at http://dx.doi.org/10.1109/TDSC.2017.2745574 1 How to Fillet a Penguin: Runtime Data Driven Partitioning of Linux Code Oliver Schwahn, Stefan Winter, Nicolas Coppik, and Neeraj Suri Abstract—In many modern operating systems (OSs), there exists no isolation between different kernel components, i.e., the failure of one component can affect the whole kernel. While microkernel OSs introduce address space separation for large parts of the OS, their improved fault isolation comes at the cost of performance. Despite significant improvements in modern microkernels, monolithic OSs like Linux are still prevalent in many systems. To achieve fault isolation in addition to high performance and code reuse in these systems, approaches to move only fractions of kernel code into user mode have been proposed. These approaches solely rely on static code analyses for deciding which code to isolate, neglecting dynamic properties like invocation frequencies. We propose to augment static code analyses with runtime data to achieve better estimates of dynamic properties for common case operation. We assess the impact of runtime data on the decision what code to isolate and the impact of that decision on the performance of such “microkernelized” systems. We extend an existing tool chain to implement automated code partitioning for existing monolithic kernel code and validate our approach in a case study of two widely used Linux device drivers and a file system.