President's Message
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Taxonomic Status of the Genera Sorosporella and Syngliocladium Associated with Grasshoppers and Locusts (Orthoptera: Acridoidea) in Africa
Mycol. Res. 106 (6): 737–744 (June 2002). # The British Mycological Society 737 DOI: 10.1017\S0953756202006056 Printed in the United Kingdom. Taxonomic status of the genera Sorosporella and Syngliocladium associated with grasshoppers and locusts (Orthoptera: Acridoidea) in Africa Harry C. EVANS* and Paresh A. SHAH† CABI Bioscience UK Centre, Silwood Park, Ascot, Berks. SL5 7TA, UK. E-mail: h.evans!cabi.org Received 2 September 2001; accepted 28 April 2002. The occurrence of disease outbreaks associated with the genus Sorosporella on grasshoppers and locusts (Orthoptera: Acridoidea) in Africa is reported. Infected hosts, representing ten genera within five acridoid subfamilies, are characterized by red, thick-walled chlamydospores which completely fill the cadaver. On selective media, the chlamydospores, up to seven-years-old, germinated to produce a Syngliocladium anamorph which is considered to be undescribed. The new species Syngliocladium acridiorum is described and two varieties are delimited: var. acridiorum, on various grasshopper and locust genera from the Sahelian region of West Africa; and, var. madagascariensis, on the Madagascan migratory locust. The ecology of these insect-fungal associations is discussed. Sorosporella is treated as a synonym of Syngliocladium. INTRODUCTION synanamorph, Syngliocladium Petch. Subsequently, Hodge, Humber & Wozniak (1998) described two Between 1990 and 1993, surveys for mycopathogens of Syngliocladium species from the USA and emended the orthopteran pests were conducted in Africa and Asia as generic diagnosis, which also included Sorosporella as a part of a multinational, collaborative project for the chlamydosporic synanamorph. biological control of grasshoppers and locusts of the Based on these recent developments, the taxonomic family Acridoidea or Acrididae (Kooyman & Shah status of the collections on African locusts and 1992). -
Traditional Knowledge Regarding Edible Insects in Burkina Faso
Séré et al. Journal of Ethnobiology and Ethnomedicine (2018) 14:59 https://doi.org/10.1186/s13002-018-0258-z RESEARCH Open Access Traditional knowledge regarding edible insects in Burkina Faso Aminata Séré1, Adjima Bougma1, Judicaël Thomas Ouilly1, Mamadou Traoré2, Hassane Sangaré1, Anne Mette Lykke3, Amadé Ouédraogo4, Olivier Gnankiné5 and Imaël Henri Nestor Bassolé1* Abstract Background: Insects play an important role as a diet supplement in Burkina Faso, but the preferred insect species vary according to the phytogeographical zone, ethnic groups, and gender. The present study aims at documenting indigenous knowledge on edible insects in Burkina Faso. Methods: A structured ethno-sociological survey was conducted with 360 informants in nine villages located in two phytogeographical zones of Burkina Faso. Identification of the insects was done according to the classification of Scholtz. Chi-square tests and principal component analysis were performed to test for significant differences in edible insect species preferences among phytogeographical zones, villages, ethnic groups, and gender. Results: Edible insects were available at different times of the year. They were collected by hand picking, digging in the soil, and luring them into water traps. The edible insects collected were consumed fried, roasted, or grilled. All species were indifferently consumed by children, women, and men without regard to their ages. A total of seven edible insect species belonging to five orders were cited in the Sudanian zone of Burkina Faso. Macrotermes subhyalinus (Rambur), Cirina butyrospermi (Vuillet, 1911), Kraussaria angulifera (Krauss, 1877), Gryllus campestris (Linnaeus, 1758), and Carbula marginella (Thunberg) (35.66–8.47% of the citations) were most cited whereas Rhynchophorus phoenicis (Fabricius, 1801) and Oryctes sp. -
Notes on Southern Africa Jerusalem Crickets (Orthoptera: Stenopelmatidae: Sia)
Zootaxa 3616 (1): 049–060 ISSN 1175-5326 (print edition) www.mapress.com/zootaxa/ Article ZOOTAXA Copyright © 2013 Magnolia Press ISSN 1175-5334 (online edition) http://dx.doi.org/10.11646/zootaxa.3616.1.4 http://zoobank.org/urn:lsid:zoobank.org:pub:C790EC39-8BE6-475A-9CA8-3FBC443D3F93 Notes on southern Africa Jerusalem crickets (Orthoptera: Stenopelmatidae: Sia) DAVID B. WEISSMAN1* & CORINNA S. BAZELET 2,3 1Department of Entomology, California Academy of Sciences, San Francisco, CA, 94118, U.S.A. 2Steinhardt Museum, Department of Zoology, Faculty of Life Sciences, Tel Aviv University, Tel Aviv 69978, ISRAEL. 3Department of Conservation Ecology and Entomology, Stellenbosch University, Private Bag X1, Matieland 7602, SOUTH AFRICA. *To whom correspondence should be addressed. E-mail: [email protected] Abstract The Old World Jerusalem cricket (JC) subfamily Siinae contains one genus, Sia, with two subgenera: Sia (Sia) with two fully winged species from southeast Asia, and Sia (Maxentius) with four wingless species from southern Africa. Because there is a dearth of published data about the behavior and biology of these insects, we present new field and laboratory research on southern African Sia (Maxentius), gather museum and literature information, and present guidelines for collecting and rearing specimens. While we make no taxonomic decisions, this review should be useful for future studies, including a needed taxonomic revision. We also compare results from these southern African JCs with recent investigations on related New World taxa, where fascinating biological traits and extensive cryptic biodiversity have been uncovered. DNA analysis reveals that these Old and New World JCs are polyphyletic. Key words: Stenopelmatoidea, Siinae, South Africa, Maxentius Introduction As presently understood, the orthopteran superfamily Stenopelmatoidea (=Gryllacridoidea) consists of six families (Eades et al. -
Pyrgomorphidae, Orthoptera) Uta Seibt
Suggested Pharmacophagy of the African Bushhopper Phymateus leprosus (Fabricius) (Pyrgomorphidae, Orthoptera) Uta Seibt. Gerhard Kasang* and Wolfgang Wickler Max-Planck-Institut für Verhaltensphysiologie. D-82319 Seewiesen, Federal Republic of Germany. E-mail: [email protected] * Author for correspondence and reprint requests Z. Naturforsch. 55c, 442-448 (2000); received December 13. 1999/March 7, 2000 Phymateus leprosus, Asclepiadaceae, Pharmacophagy The bushhopper Phymateus leprosus (Fabricius) in the field shows a special appetite for the milkweed Asclepias fruticosa. Asclepiadaceae, like Apocynaceae and Scrophulariaceae, contain cardiac glycosides. Raw and purified extracts of these plants phagostimulate larval and adult P. leprosus. We also screened natural and half-synthetic compounds found in those plant extracts. While saponins and sapogenins did not stimulate the animals, many cardiac glycosides and aglycones, offered on filter paper, proved to be phagostimulants. Introduction is called “Bosstink Springkaan“ in South Africa Various butterflies, grasshoppers and aphids because of its repulsive smell. Larvae and adults feed on Asclepiadaceae, Euphorbiaceae, Scrophu of this species eat many different (including culti lariaceae, Apocynaceae, or Solanaceae which con vated) plants (Taylor, 1956; Smit, 1964, Bishop, tain secondary compounds, like pyrrolizidine alka 1940; Kevan, 1949; Steyn, 1962; Annecke and loids (PAs), cardenolides (CAs) and cardiac Moran, 1982), but particularly they like to feed on glycosides (CGs) which are noxious to many ver Asclepias milkweeds and some other plants that tebrates. The compounds are stored, either chemi contain CAs, CGs as well as genins (Abisch and cally unchanged or enzymatically converted, in tis Reichstein, 1962; Hegnauer, 1964). sues and special glands of the insects, protecting Cardenolides are common in plants of the fami them from predators. -
An Inventory of Short Horn Grasshoppers in the Menoua Division, West Region of Cameroon
AGRICULTURE AND BIOLOGY JOURNAL OF NORTH AMERICA ISSN Print: 2151-7517, ISSN Online: 2151-7525, doi:10.5251/abjna.2013.4.3.291.299 © 2013, ScienceHuβ, http://www.scihub.org/ABJNA An inventory of short horn grasshoppers in the Menoua Division, West Region of Cameroon Seino RA1, Dongmo TI1, Ghogomu RT2, Kekeunou S3, Chifon RN1, Manjeli Y4 1Laboratory of Applied Ecology (LABEA), Department of Animal Biology, Faculty of Science, University of Dschang, P.O. Box 353 Dschang, Cameroon, 2Department of Plant Protection, Faculty of Agriculture and Agronomic Sciences (FASA), University of Dschang, P.O. Box 222, Dschang, Cameroon. 3 Département de Biologie et Physiologie Animale, Faculté des Sciences, Université de Yaoundé 1, Cameroun 4 Department of Biotechnology and Animal Production, Faculty of Agriculture and Agronomic Sciences (FASA), University of Dschang, P.O. Box 222, Dschang, Cameroon. ABSTRACT The present study was carried out as a first documentation of short horn grasshoppers in the Menoua Division of Cameroon. A total of 1587 specimens were collected from six sites i.e. Dschang (265), Fokoue (253), Fongo – Tongo (267), Nkong – Ni (271), Penka Michel (268) and Santchou (263). Identification of these grasshoppers showed 28 species that included 22 Acrididae and 6 Pyrgomorphidae. The Acrididae belonged to 8 subfamilies (Acridinae, Catantopinae, Cyrtacanthacridinae, Eyprepocnemidinae, Oedipodinae, Oxyinae, Spathosterninae and Tropidopolinae) while the Pyrgomorphidae belonged to only one subfamily (Pyrgomorphinae). The Catantopinae (Acrididae) showed the highest number of species while Oxyinae, Spathosterninae and Tropidopolinae showed only one species each. Ten Acrididae species (Acanthacris ruficornis, Anacatantops sp, Catantops melanostictus, Coryphosima stenoptera, Cyrtacanthacris aeruginosa, Eyprepocnemis noxia, Gastrimargus africanus, Heteropternis sp, Ornithacris turbida, and Trilophidia conturbata ) and one Pyrgomorphidae (Zonocerus variegatus) were collected in all the six sites. -
Senthil Kumar Orthopteran Diversity 1442A
CATALOGUE ZOOS' PRINT JOURNAL 21(8): 2347-2349 Fauna of Protected Areas - 29: ORTHOPTERAN FAUNA OF THE GIBBON WILDLIFE SANCTUARY, ASSAM N. Senthilkumar, Nizara D. Barthakur and N.J. Borah Rain Forest Research Institute, Jorhat, Assam 785001, India ABSTRACT All the specimens were examined carefully and identified A checklist of 25 species of Orthoptera recorded from the specimens were labeled and preserved in insect boxes. A cotton Gibbon Wildlife Sanctuary is presented here along with a wad immersed in preservative (Phenol, Naphthalene, and Para series of indices such as Simpson's, Hill's, Margalef's, Mehinick's and evenness. The order is comprised of 25 dichlorobenzene in equal ratio) was kept in the corner of the species of 21 genera and 12 families. This preliminary box to restrict ant and fungal attack. The specimens collected study indicates many more species yet to be recorded from were identified using various publications of Kirby (1914), Henry the area. (1932), Chopard (1969), Rentz (1979), Tanton and Shishodia (1972), Ingrisch (1990, 2002), Ingrisch and Shishodia (1997, 1998, KEYWORDS Gibbon Wildlife Sanctuary, northeastern India, Orthoptera 2000), Shishodia (2000a,b), Shishodia and Tandon (1990), Naskrecki (1994, 1996a,b, 2000), Naskrecki and Otte (1999), and Gibbon Wild Life Sanctuary is located in Jorhat district of Senthilkumar et al. (2001, 2002). Assam, India. The Sanctuary covers an area of 19.49km2 of tropical semi evergreen forest on the flat plains of Brahmaputra As a measure of á-diversity (diversity within a habitat), the river. It extends between 26040'-26045'N & 94020'-94025'E. The most popular and widely used Shannon’s diversity index (H') altitudinal range is 100-120m. -
Orthoptera, Acrididae) at Non-Outbreaking and Outbreaking Situations
SHORT COMMUNICATION Longevity and fecundity of Dichroplus maculipennis (Orthoptera, Acrididae) at non-outbreaking and outbreaking situations Yanina Mariottini1, María Laura De Wysiecki1 & Carlos Ernesto Lange1,2 1Centro de Estudios Parasitológicos y de Vectores (UNLP- CCT La Plata- CONICET). Calle 2 Nº 584, Código postal 1900, La Plata, Argentina. [email protected], [email protected] 2Comisión de Investigaciones Científicas provincia de Buenos Aires. [email protected] ABSTRACT. Longevity and fecundity of Dichroplus maculipennis (Orthoptera, Acrididae) at non-outbreaking and outbreaking situations. Dichroplus maculipennis is one of the most characteristic and damaging grasshopper species of Argentina, mainly in areas of the Pampas and Patagonia regions. We estimated and compared the longevity and fecundity of adult female D. maculipennis under controlled conditions (30°C, 14L:10D, 40% RH) from individuals collected as last instar nymphs (VI) in the field and with a known recent history of low and high density conditions. Densities of D. maculipennis at the collecting sites were 0.95 individuals per m2 in 2006 and 46 ind/m2 in 2009, representing non-outbreaking and outbreaking situations, respectively. Adult female longev- ity in 2006 (67.96 ± 3.2 days) was significantly higher (p < 0.05) than in 2009 (37.44 ± 1.98 days). The number of egg-pods per female was 3.32 ± 0.44 for 2006 and 1.62 ± 0.26 for 2009. The average fecundity in 2006 (89.29 ± 11.9 eggs/female) was signifi- cantly greater (p < 0.05) than that in 2009 (36.27 ± 5.82 eggs/female). While it was observed that the oviposition rate was higher in 2006, this difference was not significant (p > 0.05). -
Comparative FISH Analysis in Five Species of Eyprepocnemidine
Heredity (2003) 90, 377–381 & 2003 Nature Publishing Group All rights reserved 0018-067X/03 $25.00 www.nature.com/hdy Comparative FISH analysis in five species of Eyprepocnemidine grasshoppers J Cabrero1, A Bugrov2,3, E Warchałowska-S´liwa4,MDLo´pez-Leo´n1, F Perfectti1 and JPM Camacho1 1Departamento de Gene´tica, Universidad de Granada, 18071 Granada, Spain; 2Institute of Systematics and Ecology of Animals, Siberian Branch of Russian Academy of Sciences, 630091 Novosibirsk, Russia; 3Novosibirsk State University, 630090 Novosibirsk, Russia; 4Department of Experimental Zoology, Institute of Systematics and Evolution of Animals, Polish Academy of Sciences, 31-016 Krako´w, Poland The chromosomal localization of ribosomal DNA, and a species, however, lacked the 180 bp tandem repeat, and 180 bp satellite DNA isolated from Spanish Eyprepocnemis showed rDNA clusters in one (S9 in Thisoicetrinus pteros- plorans specimens, has been analysed in five Eyprepocne- tichus), two (S9 and S10 in Eyprepocnemis unicolor;M8 and midinae species collected in Russia and Central Asia. S11 in Heteracris adspersa), or three (S9,S10, and S11 in Caucasian E. plorans individuals carried each of the two Shirakiacris shirakii) chromosome pairs. The implications of DNAs, but the rDNA was limited to only two chromosomes these findings for the evolution of these two chromosome (S9 and S11) in sharp contrast to Spanish specimens that markers in this group of species are discussed. show 4–8 rDNA clusters and to Moroccan specimens which Heredity (2003) 90, 377–381. doi:10.1038/sj.hdy.6800255 carry rDNA in almost all chromosomes. The four remaining Keywords: rDNA; satDNA; heterochromatin; grasshopper; nucleolus organizer region Introduction change (Maggini et al, 1991), and the amplification of minor rDNA loci (Dubcovsky and Dvo¨rak, 1995). -
Millet Research Reports
Millet Research Reports covered 47 towns and villages in 23 Local Government Areas of Kaduna, Plateau, and Nassarawa States, that Germplasm represent the dauro-producing areas of Nigeria. Twenty- three farmers were interviewed. The collection was made by traveling along the highways and other motorable Dauro Millet Germplasm Collection roads, stopping every 20 km to examine dauro millet in Nigeria farms. The coarse grid sampling method was followed, and samples were selected from farmers' fields. The I I Angarawai 1, M C Dike 2, T O Ajiboye 3, and objective of sampling was to collect at least one panicle of O Ajayi 3 (1. Lake Chad Research Institute, PMB every variant occurring in the target population (individual 1293, Maiduguri, Nigeria; 2. Institute for Agri- fields) with a frequency greater than 0.05, as suggested by cultural Research, Ahmadu Bello University, PMB Marshall and Brown (1975). Of the 34 samples collected, 1044, Zaria, Nigeria: 3. International Crops Research 25 were dauro and 9 were maiwa (Table 1). Samples were Institute for the Semi-Arid Tropics, PMB 3491, listed in the sequence in which they were collected and Kano, Nigeria) prefixed DM97 ( dauro millet collected in 1997) and MM97 (maiwa millet collected in 1997). Introduction Differences between dauro and maiwa Three types of pearl millet [ Pennisetum glaucum (L.) R. Pearl millet types in Nigeria differ so much that Stapf and Br.] are cultivated on about 5 million hectares in Nigeria Hubbard (1934) classified short-duration millet as (FAO 1992). Gero, the photoperiod-insensitive early- Pennisetum typhoides (Stapf and Hubb.) and long-duration maturing type, is grown in the relatively dry (Sudano- millet as P. -
Grasshoppers and Locusts (Orthoptera: Caelifera) from the Palestinian Territories at the Palestine Museum of Natural History
Zoology and Ecology ISSN: 2165-8005 (Print) 2165-8013 (Online) Journal homepage: http://www.tandfonline.com/loi/tzec20 Grasshoppers and locusts (Orthoptera: Caelifera) from the Palestinian territories at the Palestine Museum of Natural History Mohammad Abusarhan, Zuhair S. Amr, Manal Ghattas, Elias N. Handal & Mazin B. Qumsiyeh To cite this article: Mohammad Abusarhan, Zuhair S. Amr, Manal Ghattas, Elias N. Handal & Mazin B. Qumsiyeh (2017): Grasshoppers and locusts (Orthoptera: Caelifera) from the Palestinian territories at the Palestine Museum of Natural History, Zoology and Ecology, DOI: 10.1080/21658005.2017.1313807 To link to this article: http://dx.doi.org/10.1080/21658005.2017.1313807 Published online: 26 Apr 2017. Submit your article to this journal View related articles View Crossmark data Full Terms & Conditions of access and use can be found at http://www.tandfonline.com/action/journalInformation?journalCode=tzec20 Download by: [Bethlehem University] Date: 26 April 2017, At: 04:32 ZOOLOGY AND ECOLOGY, 2017 https://doi.org/10.1080/21658005.2017.1313807 Grasshoppers and locusts (Orthoptera: Caelifera) from the Palestinian territories at the Palestine Museum of Natural History Mohammad Abusarhana, Zuhair S. Amrb, Manal Ghattasa, Elias N. Handala and Mazin B. Qumsiyeha aPalestine Museum of Natural History, Bethlehem University, Bethlehem, Palestine; bDepartment of Biology, Jordan University of Science and Technology, Irbid, Jordan ABSTRACT ARTICLE HISTORY We report on the collection of grasshoppers and locusts from the Occupied Palestinian Received 25 November 2016 Territories (OPT) studied at the nascent Palestine Museum of Natural History. Three hundred Accepted 28 March 2017 and forty specimens were collected during the 2013–2016 period. -
Phylogeny of Ensifera (Hexapoda: Orthoptera) Using Three Ribosomal Loci, with Implications for the Evolution of Acoustic Communication
Molecular Phylogenetics and Evolution 38 (2006) 510–530 www.elsevier.com/locate/ympev Phylogeny of Ensifera (Hexapoda: Orthoptera) using three ribosomal loci, with implications for the evolution of acoustic communication M.C. Jost a,*, K.L. Shaw b a Department of Organismic and Evolutionary Biology, Harvard University, USA b Department of Biology, University of Maryland, College Park, MD, USA Received 9 May 2005; revised 27 September 2005; accepted 4 October 2005 Available online 16 November 2005 Abstract Representatives of the Orthopteran suborder Ensifera (crickets, katydids, and related insects) are well known for acoustic signals pro- duced in the contexts of courtship and mate recognition. We present a phylogenetic estimate of Ensifera for a sample of 51 taxonomically diverse exemplars, using sequences from 18S, 28S, and 16S rRNA. The results support a monophyletic Ensifera, monophyly of most ensiferan families, and the superfamily Gryllacridoidea which would include Stenopelmatidae, Anostostomatidae, Gryllacrididae, and Lezina. Schizodactylidae was recovered as the sister lineage to Grylloidea, and both Rhaphidophoridae and Tettigoniidae were found to be more closely related to Grylloidea than has been suggested by prior studies. The ambidextrously stridulating haglid Cyphoderris was found to be basal (or sister) to a clade that contains both Grylloidea and Tettigoniidae. Tree comparison tests with the concatenated molecular data found our phylogeny to be significantly better at explaining our data than three recent phylogenetic hypotheses based on morphological characters. A high degree of conflict exists between the molecular and morphological data, possibly indicating that much homoplasy is present in Ensifera, particularly in acoustic structures. In contrast to prior evolutionary hypotheses based on most parsi- monious ancestral state reconstructions, we propose that tegminal stridulation and tibial tympana are ancestral to Ensifera and were lost multiple times, especially within the Gryllidae. -
An Illustrated Key of Pyrgomorphidae (Orthoptera: Caelifera) of the Indian Subcontinent Region
Zootaxa 4895 (3): 381–397 ISSN 1175-5326 (print edition) https://www.mapress.com/j/zt/ Article ZOOTAXA Copyright © 2020 Magnolia Press ISSN 1175-5334 (online edition) https://doi.org/10.11646/zootaxa.4895.3.4 http://zoobank.org/urn:lsid:zoobank.org:pub:EDD13FF7-E045-4D13-A865-55682DC13C61 An Illustrated Key of Pyrgomorphidae (Orthoptera: Caelifera) of the Indian Subcontinent Region SUNDUS ZAHID1,2,5, RICARDO MARIÑO-PÉREZ2,4, SARDAR AZHAR AMEHMOOD1,6, KUSHI MUHAMMAD3 & HOJUN SONG2* 1Department of Zoology, Hazara University, Mansehra, Pakistan 2Department of Entomology, Texas A&M University, College Station, TX, USA 3Department of Genetics, Hazara University, Mansehra, Pakistan �[email protected]; https://orcid.org/0000-0003-4425-4742 4Department of Ecology & Evolutionary Biology, University of Michigan, Ann Arbor, MI, USA �[email protected]; https://orcid.org/0000-0002-0566-1372 5 �[email protected]; https://orcid.org/0000-0001-8986-3459 6 �[email protected]; https://orcid.org/0000-0003-4121-9271 *Corresponding author. �[email protected]; https://orcid.org/0000-0001-6115-0473 Abstract The Indian subcontinent is known to harbor a high level of insect biodiversity and endemism, but the grasshopper fauna in this region is poorly understood, in part due to the lack of appropriate taxonomic resources. Based on detailed examinations of museum specimens and high-resolution digital images, we have produced an illustrated key to 21 Pyrgomorphidae genera known from the Indian subcontinent. This new identification key will become a useful tool for increasing our knowledge on the taxonomy of grasshoppers in this important biogeographic region. Key words: dichotomous key, gaudy grasshoppers, taxonomy Introduction The Indian subcontinent is known to harbor a high level of insect biodiversity and endemism (Ghosh 1996), but is also one of the most poorly studied regions in terms of biodiversity discovery (Song 2010).