Detection of the Geminga Pulsar with MAGIC Hints at a Power-Law Tail Emission Beyond 15 Gev MAGIC Collaboration: V

Total Page:16

File Type:pdf, Size:1020Kb

Detection of the Geminga Pulsar with MAGIC Hints at a Power-Law Tail Emission Beyond 15 Gev MAGIC Collaboration: V A&A 643, L14 (2020) Astronomy https://doi.org/10.1051/0004-6361/202039131 & c ESO 2020 Astrophysics LETTER TO THE EDITOR Detection of the Geminga pulsar with MAGIC hints at a power-law tail emission beyond 15 GeV MAGIC Collaboration: V. A. Acciari1,2, S. Ansoldi3, L. A. Antonelli4, A. Arbet Engels5, K. Asano6, D. Baack7, A. Babic´8, A. Baquero9, U. Barres de Almeida10, J. A. Barrio9, J. Becerra González1,2, W. Bednarek11, L. Bellizzi12, E. Bernardini13, M. Bernardos14, A. Berti15, J. Besenrieder16, W. Bhattacharyya13, C. Bigongiari4, A. Biland5, O. Blanch17, G. Bonnoli12, Ž. Bošnjak8, G. Busetto18, R. Carosi17, G. Ceribella16;?, M. Cerruti20, Y. Chai16, A. Chilingarian21, S. Cikota8, S. M. Colak17, E. Colombo1,2, J. L. Contreras9, J. Cortina14, S. Covino4, G. D’Amico16, V. D’Elia4, P. Da Vela19,36, F. Dazzi4, A. De Angelis18, B. De Lotto3, M. Delfino17,37, J. Delgado17,37, C. Delgado Mendez14, D. Depaoli15, T. Di Girolamo15, F. Di Pierro15, L. Di Venere15, E. Do Souto Espiñeira17, D. Dominis Prester22, A. Donini3, D. Dorner23, M. Doro18, D. Elsaesser7, V. Fallah Ramazani24, A. Fattorini7, G. Ferrara4, L. Foffano18, M. V. Fonseca9, L. Font25, C. Fruck16, S. Fukami6, R. J. García López1,2, M. Garczarczyk13, S. Gasparyan26, M. Gaug25, N. Giglietto15, F. Giordano15, P. Gliwny11, N. Godinovic´27, J. G. Green4, D. Green16, D. Hadasch6, A. Hahn16, L. Heckmann16, J. Herrera1,2, J. Hoang9, D. Hrupec28, M. Hütten16, T. Inada6, S. Inoue29, K. Ishio16, Y. Iwamura6, J. Jormanainen24, L. Jouvin17, Y. Kajiwara30, M. Karjalainen1,2, D. Kerszberg17, Y. Kobayashi6, H. Kubo30, J. Kushida31, A. Lamastra4, D. Lelas27, F. Leone4, E. Lindfors24, S. Lombardi4, F. Longo3,38, R. López-Coto18, M. López-Moya9;?, A. López-Oramas1,2, S. Loporchio15, B. Machado de Oliveira Fraga10, C. Maggio25, P. Majumdar32, M. Makariev33, M. Mallamaci18, G. Maneva33, M. Manganaro22, K. Mannheim23, L. Maraschi4, M. Mariotti18, M. Martínez17, D. Mazin6,16, S. Mender7, S. Micanovi´ c´22, D. Miceli3, T. Miener9, M. Minev33, J. M. Miranda12, R. Mirzoyan16, E. Molina20, A. Moralejo17, D. Morcuende9, V. Moreno25, E. Moretti17, P. Munar-Adrover25, V. Neustroev34, C. Nigro17, K. Nilsson24, D. Ninci17, K. Nishijima31, K. Noda6, S. Nozaki30, Y. Ohtani6, T. Oka30, J. Otero-Santos1,2, M. Palatiello3, D. Paneque16, R. Paoletti12, J. M. Paredes20, L. Pavletic´22, P. Peñil9, C. Perennes18, M. Persic3,39, P. G. Prada Moroni19, E. Prandini18, C. Priyadarshi17, I. Puljak27, W. Rhode7, M. Ribó20, J. Rico17, C. Righi4, A. Rugliancich19, L. Saha9, N. Sahakyan26, T. Saito6, S. Sakurai6, K. Satalecka13, F. G. Saturni4, B. Schleicher23, K. Schmidt7, T. Schweizer16;?, J. Sitarek11, I. Šnidaric´35, D. Sobczynska11, A. Spolon18, A. Stamerra4, D. Strom16, M. Strzys6, Y. Suda16, T. Suric´35, M. Takahashi6, F. Tavecchio4, P. Temnikov33, T. Terzic´22, M. Teshima16,6, N. Torres-Albà20, L. Tosti15, S. Truzzi12, A. Tutone4, J. van Scherpenberg16, G. Vanzo1,2, M. Vazquez Acosta1,2, S. Ventura12, V. Verguilov33, C. F. Vigorito15, V. Vitale15, I. Vovk6, M. Will16, D. Zaric´27, K. Hirotani40;?, and P. M. Saz Parkinson41,42 (Affiliations can be found after the references) Received 9 August 2020 / Accepted 18 September 2020 ABSTRACT We report the detection of pulsed gamma-ray emission from the Geminga pulsar (PSR J0633+1746) between 15 GeV and 75 GeV. This is the first time a middle-aged pulsar has been detected up to these energies. Observations were carried out with the MAGIC telescopes between 2017 and 2019 using the low-energy threshold Sum-Trigger-II system. After quality selection cuts, ∼80 h of observational data were used for this analysis. To compare with the emission at lower energies below the sensitivity range of MAGIC, 11 years of Fermi-LATdata above 100 MeV were also analysed. From the two pulses per rotation seen by Fermi-LAT, only the second one, P2, is detected in the MAGIC energy range, with a significance of 6:3σ. The spectrum measured by MAGIC is well-represented by a simple power law of spectral index Γ = 5:62 ± 0:54, which smoothly extends the Fermi-LATspectrum. A joint fit to MAGIC and Fermi-LATdata rules out the existence of a sub-exponential cut-off in the combined energy range at the 3:6σ significance level. The power-law tail emission detected by MAGIC is interpreted as the transition from curvature radiation to Inverse Compton Scattering of particles accelerated in the northern outer gap. Key words. gamma rays: stars – pulsars: general – pulsars: individual: PSR J0633+1746 – pulsars: individual: Geminga ? Corresponding authors; e-mail: [email protected] Article published by EDP Sciences L14, page 1 of6 A&A 643, L14 (2020) 1. Introduction Rubidium oscillator, which provides an absolute time stamp pre- cision of 200 ns. Geminga (PSR J0633+1746) is an archetype of the radio- The detection of the Geminga pulsar with MAGIC was pos- quiet gamma-ray pulsar population (Bignami & Caraveo 1996; sible thanks to the implementation of the Sum-Trigger-II sys- Caraveo 2014). First detected by SAS-2 and COS-B (Fichtel tem. The standard MAGIC trigger requires that the signals of et al. 1975; Hermsen et al. 1977; Bignami & Caraveo 1992) three neighbouring camera pixels exceed a preset threshold of as a bright gamma-ray source with no counterpart at any other ∼4:0 photo electrons (phe.). In the Sum-Trigger-II, the pixels are wavelength and subsequently associated with an X-ray source grouped into hexagonal-shape cells of 19 pixels each. The ana- (Bignami et al. 1983), it was ultimately identified as a pulsar logue sum of all pixel signals within any given cell is compared by ROSAT and EGRET (Halpern & Holt 1992; Bertsch et al. against a discriminator threshold of ∼18 phe. Integrating the sig- ' 1992). It has a period of P 237 ms and a characteristic nal from a large area leads to a better signal-to-noise ratio (S/N) ∼ age of 300 ky. Two independent measurements of the distance for very low energy showers. To counteract the effect of noise reported 157+59 pc (Caraveo et al. 1996) and 250+120 pc (Faherty −34 −62 after-pulses, which are typical for photo-multiplier tubes, the et al. 2007), respectively. This makes Geminga one of the closest individual pixel amplitudes are clipped when exceeding 8:5 phe. known pulsars. The trigger geometry, thresholds, and clipping values were opti- The Fermi-LATdetector measured the pulsed gamma-ray mised by Monte Carlo (MC) simulations with the aim of min- spectrum of Geminga using one year of data and found that imizing the trigger threshold (Dazzi et al., in prep.). Compared it can be described by a power law with an exponential cut- to the standard trigger, the trigger energy threshold of the Sum- ± off at 2:46 0:04 GeV (Abdo et al. 2010). The increase of Trigger-II is about 50% lower. For a spectral index of −5, which Fermi-LATstatistics in the following years favoured a softer is similar to that of Geminga as reported here, the peak of the sub-exponential cut-off (Abdo et al. 2013; Ahnen et al. 2016). gamma energy distribution (threshold) is approximately 15 GeV. Subsequent ground-based observations by the Imaging Atmo- The MAGIC data were processed with the Magic Standard spheric Cherenkov Telescopes (IACT) VERITAS (Aliu et al. Analysis Software (MARS, Zanin et al. 2013). To improve the 2015) and MAGIC (Ahnen et al. 2016) could not detect any sig- analysis performance close to the Sum-Trigger-II energy thresh- nificant emission above 100 GeV and 50 GeV, respectively. A old, we developed a new algorithm in which the calibration and ∼ 2 deg steady halo around Geminga was first detected by the the image cleaning are performed in an iterative procedure. The MILAGRO experiment (Abdo et al. 2009), and later reported by rest of the higher level analysis followed the standard pipeline the HAWC (Abeysekara et al. 2017) and Fermi-LAT(Manconi described in Aleksic´ et al.(2016b). This comprises the recon- et al. 2019) collaborations at energies above 5 TeV and 8 GeV, struction of the energy and direction of the incoming gamma respectively. rays and the suppression of the hadronic background. Boosted In this paper, we report the detection of pulsed gamma-ray decision trees and look-up tables were built for these purposes, emission from the Geminga pulsar by the MAGIC telescopes. using gamma-ray simulated shower events following the trajec- This makes Geminga the first middle-aged pulsar detected by tory of Geminga in the sky and background events from dedi- IACTs and the third pulsar detected by these type of telescopes cated observations. after the Crab (Aliu et al. 2008) and Vela (Abdalla et al. 2018). For the timing analysis, the pulsar rotational phases of the This detection had become possible thanks to the use of the new events were computed using the Tempo2 package (Hobbs et al. low-energy trigger system, dubbed Sum-Trigger-II (Dazzi et al., 2006). An ephemeris for Geminga covering the MAGIC obser- in prep.; García et al. 2014), designed to improve the perfor- vations was obtained from the analysis of Fermi-LATdata (Kerr mance of the telescopes in the sub-100 GeV energy range. et al. 2015). In Sect.2 we present the MAGIC observations and the tech- nical innovations that were imperative for this detection. The analysis of Fermi-LATdata is described in Sect.3. The resulting 3. Fermi-LAT data and analysis MAGIC and Fermi-LATlight curves and spectra are presented in Sect.4 and discussed in Sect.5. Finally, we compare our To characterise the Geminga emission at energies lower than observations with the predictions of the pulsar outer gap model those accessible to MAGIC, we analysed 10:6 years (from MJD (Cheng et al.
Recommended publications
  • Active Galactic Nuclei: a Brief Introduction
    Active Galactic Nuclei: a brief introduction Manel Errando Washington University in St. Louis The discovery of quasars 3C 273: The first AGN z=0.158 2 <latexit sha1_base64="4D0JDPO4VKf1BWj0/SwyHGTHSAM=">AAACOXicbVDLSgMxFM34tr6qLt0Ei+BC64wK6kIoPtCNUMU+oNOWTJq2wWRmSO4IZZjfcuNfuBPcuFDErT9g+hC09UC4h3PvJeceLxRcg20/W2PjE5NT0zOzqbn5hcWl9PJKUQeRoqxAAxGoskc0E9xnBeAgWDlUjEhPsJJ3d9rtl+6Z0jzwb6ETsqokLZ83OSVgpHo6754xAQSf111JoK1kTChN8DG+uJI7N6buYRe4ZBo7di129hJ362ew5NJGAFjjfm3V4m0nSerpjJ21e8CjxBmQDBogX08/uY2ARpL5QAXRuuLYIVRjooBTwZKUG2kWEnpHWqxiqE+MmWrcuzzBG0Zp4GagzPMB99TfGzGRWnekZya7rvVwryv+16tE0DysxtwPI2A+7X/UjASGAHdjxA2uGAXRMYRQxY1XTNtEEQom7JQJwRk+eZQUd7POfvboej+TOxnEMYPW0DraRA46QDl0ifKogCh6QC/oDb1bj9ar9WF99kfHrMHOKvoD6+sbuhSrIw==</latexit> <latexit sha1_base64="H7Rv+ZHksM7/70841dw/vasasCQ=">AAACQHicbVDLSgMxFM34tr6qLt0Ei+BCy0TEx0IoPsBlBWuFTlsyaVqDSWZI7ghlmE9z4ye4c+3GhSJuXZmxFXxdCDk599zk5ISxFBZ8/8EbGR0bn5icmi7MzM7NLxQXly5slBjGayySkbkMqeVSaF4DAZJfxoZTFUpeD6+P8n79hhsrIn0O/Zg3Fe1p0RWMgqPaxXpwzCVQfNIOFIUro1KdMJnhA+yXfX832FCsteVOOzgAobjFxG+lhGTBxpe+HrBOBNjiwd5rpZsky9rFUn5BXvgvIENQQsOqtov3QSdiieIamKTWNogfQzOlBgSTPCsEieUxZde0xxsOaurMNNPPADK85pgO7kbGLQ34k/0+kVJlbV+FTpm7tr97Oflfr5FAd6+ZCh0nwDUbPNRNJIYI52nijjCcgew7QJkRzitmV9RQBi7zgguB/P7yX3CxVSbb5f2z7VLlcBjHFFpBq2gdEbSLKugUVVENMXSLHtEzevHuvCfv1XsbSEe84cwy+lHe+wdR361Q</latexit> The power source of quasars • The luminosity (L) of quasars, i.e. how bright they are, can be as high as Lquasar ~ 1012 Lsun ~ 1040 W. • The energy source of quasars is accretion power: - Nuclear fusion: 2 11 1 ∆E =0.007 mc =6 10 W s g−
    [Show full text]
  • The Cherenkov Telescope Array Observatory Comes of Age
    The Organisation DOI: 10.18727/0722-6691/5194 The Cherenkov Telescope Array Observatory Comes of Age Federico Ferrini 1 Conceived around a decade ago by a the detection of a clear signal from Wolfgang Wild 1, 2 group of scientists, we are now on the the Crab nebula above 1 TeV with the cusp of constructing the largest observa- Whipple 10-m imaging atmospheric tory to study the gamma-ray Universe. Cherenkov telescope (IACT). Since then, 1 CTAO, Heidelberg (DE) and Bologna (IT) Here we present a short look back at the the instrumentation for, and techniques 2 ESO evolution and recent matu ration of the of, astronomy with IACTs have evolved CTA project, as well as an outline of our to the extent that a flourishing new scien- expectations for the near future. A com- tific discipline has been established, with The Cherenkov Telescope Array (CTA) is prehensive introduction to CTA, including the detection of more than 150 sources the next-generation ground-based the detection technique, its history, the and a major impact in astrophysics — observatory for gamma-ray astronomy extraordinary improvements with respect and, more widely, in physics. The current at very high energies. With up to 120 to previous experimental facilities, and the major arrays of IACTs (the High Energy telescopes on two sites, CTA will be the scientific objectives has been provided by Stereoscopic System [H.E.S.S.], the world’s largest and most sensitive Werner Hofmann, Spokesperson of the Major Atmospheric Gamma Imaging high-energy gamma-ray observatory CTA Consortium (Hofmann, 2017). Cherenkov Telescope [MAGIC], and the covering the entire sky.
    [Show full text]
  • MAGIC Observations of the Diffuse Γ-Ray Emission in the Vicinity of the Galactic Center? MAGIC Collaboration: V
    A&A 642, A190 (2020) Astronomy https://doi.org/10.1051/0004-6361/201936896 & c MAGIC Collaboration 2020 Astrophysics MAGIC observations of the diffuse γ-ray emission in the vicinity of the Galactic center? MAGIC Collaboration: V. A. Acciari1,2, S. Ansoldi3,24, L. A. Antonelli4, A. Arbet Engels5, D. Baack6, A. Babic´7, B. Banerjee8, U. Barres de Almeida9, J. A. Barrio10, J. Becerra González1,2, W. Bednarek11, L. Bellizzi12, E. Bernardini13,17, A. Berti14, J. Besenrieder15, W. Bhattacharyya13, C. Bigongiari4, A. Biland5, O. Blanch16, G. Bonnoli12, Ž. Bošnjak7, G. Busetto17, R. Carosi18, G. Ceribella15, Y. Chai15, A. Chilingaryan19, S. Cikota7, S. M. Colak16, U. Colin15, E. Colombo1,2, J. L. Contreras10, J. Cortina20, S. Covino4, V. D’Elia4, P. Da Vela18, F. Dazzi4, A. De Angelis17, B. De Lotto3, M. Delfino16,27, J. Delgado16,27, D. Depaoli14, F. Di Pierro14, L. Di Venere14, E. Do Souto Espiñeira16, D. Dominis Prester7, A. Donini3, D. Dorner21, M. Doro17, D. Elsaesser6, V. Fallah Ramazani22, A. Fattorini6, A. Fernández-Barral17, G. Ferrara4, D. Fidalgo10, L. Foffano17, M. V. Fonseca10, L. Font23, C. Fruck15;??, S. Fukami24, R. J. García López1,2, M. Garczarczyk13, S. Gasparyan19, M. Gaug23, N. Giglietto14, F. Giordano14, N. Godinovic´7, D. Green15, D. Guberman16, D. Hadasch24, A. Hahn15, J. Herrera1,2, J. Hoang10, D. Hrupec7, M. Hütten15, T. Inada24, S. Inoue24, K. Ishio15, Y. Iwamura24;??, L. Jouvin16, D. Kerszberg16, H. Kubo24, J. Kushida24, A. Lamastra4, D. Lelas7, F. Leone4, E. Lindfors22, S. Lombardi4, F. Longo3,28, M. López10, R. López-Coto17, A. López-Oramas1,2, S. Loporchio14, B. Machado de Oliveira Fraga9, C.
    [Show full text]
  • Antimatter Gravity and the Universe Dragan Hajdukovic
    Antimatter gravity and the Universe Dragan Hajdukovic To cite this version: Dragan Hajdukovic. Antimatter gravity and the Universe. Modern Physics Letters A, World Scientific Publishing, 2019, 10.1142/S0217732320300013. hal-02106808v3 HAL Id: hal-02106808 https://hal.archives-ouvertes.fr/hal-02106808v3 Submitted on 21 Nov 2019 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. 1 Brief Review Antimatter gravity and the Universe Dragan Slavkov Hajdukovic Institute of Physics, Astrophysics and Cosmology Crnogorskih junaka 172, Cetinje, Montenegro [email protected] Abstract: The aim of this brief review is twofold. First, we give an overview of the unprecedented experimental efforts to measure the gravitational acceleration of antimatter; with antihydrogen, in three competing experiments at CERN (AEGIS, ALPHA and GBAR), and with muonium and positronium in other laboratories in the world. Second, we present the 21st Century’s attempts to develop a new model of the Universe with the assumed gravitational repulsion between matter and antimatter; so far, three radically different and incompatible theoretical paradigms have been proposed. Two of these 3 models, Dirac-Milne Cosmology (that incorporates CPT violation) and the Lattice Universe (based on CPT symmetry), assume a symmetric Universe composed of equal amounts of matter and antimatter, with antimatter somehow “hidden” in cosmic voids; this hypothesis produced encouraging preliminary results.
    [Show full text]
  • Urania Nr 5/2001
    Eta Carinae To zdjęcie mgławicy otaczającej gwiazdę // Carinae uzyskano za po­ mocą telskopu kosmicznego Hubble a (K. Davidson i J. Mors). Porównując je z innymi zdjęciami, a w szczególności z obrazem wyko­ nanym 17 miesięcy wcześniej, Auto­ rzy stwierdzili rozprężanie się mgła­ wicy z szybkością ok. 2,5 min km/h, co prowadzi do wniosku, że rozpo­ częła ona swe istnienie około 150 lat temu. To bardzo ciekawy i intrygujący wynik. Otóż największy znany roz­ błysk )j Carinae miał miejsce w roku 1840. Wtedy gwiazda ta stała się naj­ jaśniejszą gwiazdą południowego nie­ ba i jasność jej przez krótki czas znacznie przewyższała blask gwiaz­ dy Canopus. Jednak pyłowy dysk ob­ serwowany wokół)/ Carinae wydaje się być znacznie młodszy - jego wiek (ekspansji) jest oceniany na 100 lat, co może znaczyć, że powstał w cza­ sie innego, mniejszego wybuchu ob­ serwowanego w roku 1890. Więcej na temat tego intrygują­ cego obiektu przeczytać można we­ wnątrz numeru, w artykule poświę­ conym tej gwieździe. NGC 6537 Obserwacje przeprowadzone teleskopem Hubble’a pokazały istnienie wielkich falowych struktur w mgławicy Czerwonego Pająka (NGC 6537) w gwiazdozbiorze Strzelca.Ta gorąca i „wietrzna” mgławica powstała wokół jednej z najgorętszych gwiazd Wszech­ świata, której wiatr gwiazdowy wiejący z prędkością 2000-4500 kilometrów na sekundę wytwarza fale o wysokości 100 miliardów kilometrów. Sama mgławica rozszerza się z szybkością 300 km/s. Jest też ona wyjątkowo gorąca — ok. 10000 K. Sama gwiazda, która utworzyła mgławicę, jest obecnie białym karłem i musi mieć temperaturę nie niższą niż pół miliona stopni — jest tak gorąca, że nie widać jej w obszarach uzyskanych teleskopem Hubble’a, a świeci głównie w promieniowaniu X.
    [Show full text]
  • Pos(ICRC2019)832 † ∗ [email protected] Speaker
    Probing Particle Diffusion around Two Nearby Pulsars with TeV Gamma-Ray Observations from HAWC PoS(ICRC2019)832 Hao Zhou∗ Los Alamos National Laboratory E-mail: [email protected] for the HAWC Collaborationy Nearby cosmic-ray accelerators, especially pulsar wind nebulae, are possible origins of the local multi-GeV positron excess. Pulsar Geminga and B0656+14, less than 300 pc from the Earth, have been postulated as the main sources of the positron excess. With one and half years of data, the HAWC gamma-ray observatory discovered very extended TeV gamma-ray structures produced from high-energy electrons and positrons around these two nearby middle-aged pulsars. Morphology studies suggest that the diffusion in the vicinity of these two pulsars is 100 times slower than the average in our Galaxy. This result provides important constraints on the origin of positron excess, but raises questions like why diffusion is so slow at high energies near these pulsars. With more than twice of data from the previous results, we now explore the possibility of energy-dependent diffusion at these sources. 36th International Cosmic Ray Conference -ICRC2019- July 24th - August 1st, 2019 Madison, WI, U.S.A. ∗Speaker. yFor a complete author list and acknowledgemets, see PoS(ICRC2019)1177 and http://www.hawc- observatory.org/collaboration/icrc2019.php c Copyright owned by the author(s) under the terms of the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License (CC BY-NC-ND 4.0). http://pos.sissa.it/ Probing Particle Diffusion with HAWC Hao Zhou 1. Introduction Pulsar wind nebulae are known as efficient particle accelerators of electrons and positrons.
    [Show full text]
  • Very High Energy Gamma Ray Observations with the MAGIC Telescope (A Biased Selection)
    Very High Energy Gamma Ray Observations with the MAGIC Telescope (a biased selection) Nepomuk Otte for the MAGIC collaboration • Imaging air shower Cherenkov technique – The MAGIC telescope • Observation of the AGN 3c279 • Observation of Neutron Stars with MAGIC • The Crab nebula and Pulsar (young pulsar) [astro-ph/0705.3244] • PSR B1951+32 (middle aged pulsar) [astro-ph/0702077] • PSR B1957+20 (millisecond pulsar) • LS I 61+303 [Science 2006] • Where to go next? A. Nepomuk Otte Max-Planck-Institut für Physik / Humboldt Universität Berlin 2 The non-thermal universe in VHE gamma-rays SNRs Pulsars Micro quasars AGNs and PWN X-ray binaries GRBs Origin of Space-time cosmic rays Dark matter & relativity Cosmology A. Nepomuk Otte Max-Planck-Institut für Physik / Humboldt Universität Berlin 3 VHE gamma-ray sources status ICRC 2007 71 known sources detections from ground Rowell A. Nepomuk Otte Max-Planck-Institut für Physik / Humboldt Universität Berlin 4 Imaging Air Cherenkov Technique Cherenkov light image of particle shower Gamma in telescope camera ray Particle ~ 10 km • fast light flash (nanoseconds) shower • 100 photons per m² (1 TeV Gamma Ray) t h g o li ~ 1 v o k n e r e h C reconstruct: ~ 120 m arrival direction, energy reject hadron background A. Nepomuk Otte Max-Planck-Institut für Physik / Humboldt Universität Berlin 5 CurrentCurrent generationgeneration CherenkovCherenkov telescopestelescopes MAGIC Veritas MAGIC (Germany, Spain, Italy) VERITAS 1 telescope 17 meters Ø (USA & England) 4 (7) telescopes Montosa 10 meters Ø Canyon, Roque de Arizona los Muchachos, Canary Islands CANGAROO III Cangaroo(Australia III & Japan) 4 telescopes 10 meters Ø H.E.S.S.
    [Show full text]
  • Pos(ICRC2021)788
    ICRC 2021 THE ASTROPARTICLE PHYSICS CONFERENCE ONLINE ICRC 2021Berlin | Germany THE ASTROPARTICLE PHYSICS CONFERENCE th Berlin37 International| Germany Cosmic Ray Conference 12–23 July 2021 Very-high-energy gamma-ray emission from GRB 201216C detected by MAGIC Satoshi Fukami,0,∗ Alessio Berti,1 Serena Loporchio,2 Yusuke Suda,3 Lara Nava,4 PoS(ICRC2021)788 Koji Noda,0 Željka Bošnjak, 5 Katsuaki Asano0 and Francesco Longo6,ℎ on behalf of the MAGIC Collaboration† 0Institute for Cosmic Ray Research, The University of Tokyo, Kashiwanoha 5-1-5, Kashiwa, Japan 1Max Planck Institut for Physics,Föhringer Ring 6, Munich, Germany 2INFN MAGIC Group: INFN Sezione di Bari and Dipartimento Interateneo di Fisica dell’Università e del Politecnico di Bari, I-70125, Bari, Italy 3Physics Program, Graduate School of Advanced Science and Engineering, Hiroshima University, 739-8526 Hiroshima, Japan 4National Institute for Astrophysics (INAF), Street number, Merate, Italy 5 Faculty of Electrical Engineering and Computing, University of Zagreb, Zagreb, Croatia 6University of Trieste, Department of Physics, via Valerio 2, Trieste, Italy ℎINFN, Sezione di Trieste, via Valerio 2, Trieste, Italy E-mail: [email protected] Gamma-ray bursts (GRBs) are the most energetic phenomena in the Universe. Many aspects of GRB physics are still under debate, such as the origin of their gamma-ray emission above the GeV energy range. In 2019, MAGIC detected TeV gamma rays from the long GRB 190114C, whose emission can be well explained by synchrotron-self Compton emission by relativistic electrons. However, it is still unclear whether such a process is common in GRBs, given the reduced number of GRBs detected until now at the very high energies (VHE).
    [Show full text]
  • Stars, Constellations, and Dsos [50 Pts]
    Reach for the Stars B – KEY Bonus (+1) TRAPPIST-1 Part I: Stars, Constellations, and DSOs [50 pts] 1. Kepler’s SNR 2. Tycho’s SNR 3. M16 (Eagle Nebula) 4. Radiation pressure (wind) from young stars 5. Cas A 6. Extinction (from interstellar dust) 7. 30 Dor 8. [T10] Tarantula Nebula 9. LMC 10. Sgr A* 11. Gravitational interaction with orbiting stars (based on movement over time) 12. M42 (Orion Nebula) 13. [T8] Trapezium 14. (Charles) Messier 15. NGC 7293 (Helix Nebula) –OR– M57 (Ring Nebula) 16. TP-AGB (thermal pulse AGB) 17. Binary system –OR– stellar winds –OR– stellar rotation –OR– magnetic fields 18. Geminga 19. [T4] Jets from pulsar spin poles 20. X-ray 21. NGC 3603 22. Among the most massive & luminous stars known 23. T Tauri 24. FUors (FU Orionis stars) 25. NGC 602 26. Open cluster 27. LMC –AND– SMC 28. Irregular 29. Tidal forces –OR– gravity of MW 30. M1 (Crab Nebula) 31. PWN (pulsar wind nebula) 32. X-ray 33. M17 (Omega Nebula) 34. Omega Nebula –OR– Swan Nebula –OR– Checkmark Nebula –OR– Horseshoe Nebula 35. NGC 6618 36. Zeta Ophiuchi 37. Bow shock (from moving quickly through the ISM) 38. It “wobbles” across the sky (moves perpendicular to overall proper motion) 39. Procyon (α CMi) 40. Mizar –AND– Alcor 41. Mizar 42. Pollux (β Gem) 43. [T5] High rotational velocity 44. Altair (α Aql) –OR– Regulus (α Leo) –OR– Vega (α Lyr) 45. Polaris (α UMi) 46. Precession 47. Binary with observed Doppler shift of spectral lines 48. Beta Cephei variable (β Cep) 49.
    [Show full text]
  • VERITAS Prospects for Geminga Pulsar
    VERITAS Prospects for Geminga Pulsar Emily Harris University of Pittsburgh, Department of Physics and Astronomy Columbia University, Nevis Laboratories (Dated: August 7, 2018) Recent observations of the positron excess in Earth's atmosphere by PAMELA and Fermi-LAT suggest that particle acceleration in nearby pulsar wind nebulae play an important role in the local interstellar medium. Measurements show that lepton acceleration by the Geminga pulsar wind nebula reaches multi-TeV energies, which then leads to gamma-ray emission detectable by Cherenkov telescopes such as VERITAS. The high energy emission, close proximity, and old age of Geminga indicates it may be the origin of the positron flux in local interstellar space. In this study, we aim to investigate the prospects for VERITAS detection of Geminga, which has an emission region greater than the field of view of the telescopes. We perform simulations of the gamma-ray emission region around Geminga using the 3-Dimensional Maximum Likelihood Method. We find that by simulating our pointing strategy along with our model of the lepton diffusion around Geminga, VERITAS will be able to detect Geminga with a high significance greater than 11σ. However, the skymaps produced by the tools currently available with the likelihood analysis do not accurately represent the quality of the expected data, and are rather dominated by statistical fluctuations. I. Introduction gamma-ray observatories and is located at the Fred Lawrence Whipple Observatory in Tuscon, Arizona. High-energy gamma-ray astronomy is a relatively It is an array of four 12-meter imaging atmospheric young field when compared to the history of astronomy Cherenkov telescopes (IACTs), with a field of view of in other wavelengths [1].
    [Show full text]
  • Tev Measurements of Young Pulsars and Supernova Remnants P.M
    OG 2.2.21 1 TeV Measurements of Young Pulsars and Supernova Remnants P.M. Chadwick, K. Lyons, T.J.L. McComb, K.J. Orford, M.G.G. O'Connell, J.L. Osborne, S.M. Rayner, S.E. Shaw, and K.E. Turver Department of Physics, Rochester Building, Science Laboratories, University of Durham, Durham, DH1 3LE, U.K. Abstract Observations have been made with the University of Durham Mark 6 telescope of a number of supernova remnants and young pulsars (Vela pulsar, PSR B1055±52, PSR J1105±6107, PSR J0537±6910 and PSR B0540±69). No VHE gamma ray emission, either steady or pulsed, has been detected from these objects. 1 Introduction The Compton Gamma Ray Observatory (CGRO) telescopes have detected pulsed gamma radiation from 7 pulsars so far: Crab, Vela, Geminga, PSR B1509±58, PSR B1706±44, PSR B1951+32 and PSR B1055±52 (see e.g. Thompson et al. 1997). Of these, the Crab and PSR B1706±44 are con®rmed VHE gamma ray emitters, and the Vela remnant has been detected by the CANGAROO group. Although the gamma ray emission from all the pulsars detected with the EGRET telescope is pulsed, thus far no imaging VHE gamma ray telescope has detected pulsed radiation at TeV energies from any of the EGRET pulsars. We have previously presented limits on VHE gamma ray emission from a number of Southern hemisphere pulsars using the University of Durham Mark 3 telescope (Brazier et al. 1990). We present here the results of VHE gamma ray observations of ®ve plerions using the Mark 6 imaging telescope; two EGRET sources (Vela and PSR B1055±52) and three X-ray emitting pulsars, PSR J1105±6107, PSR J0537±6910 and PSR B0540±69.
    [Show full text]
  • The Cherenkov Telescope Array Science Goals and Current Status
    EPJ Web of Conferences 209, 01038 (2019) https://doi.org/10.1051/epjconf /201920901038 RICAP-18 1 The Cherenkov Telescope Array 2 Science Goals and Current Status 1,a 2,b 3 The CTA Consortium , represented by Rene A. Ong 1 4 See https://www.cta-observatory.org/consortium_authors/authors_2018_09.html 2 5 Department of Physics and Astronomy, University of California, Los Angeles CA, 90095, USA 6 7 Abstract. The Cherenkov Telescope Array (CTA) is the major ground-based gamma-ray 8 observatory planned for the next decade and beyond. Consisting of two large atmospheric 9 Cherenkov telescope arrays (one in the southern hemisphere and one in the northern 10 hemisphere), CTA will have superior angular resolution, a much wider energy range, and 11 approximately an order of magnitude improvement in sensitivity, as compared to existing 12 instruments. The CTA science programme will be rich and diverse, covering cosmic 13 particle acceleration, the astrophysics of extreme environments, and physics frontiers 14 beyond the Standard Model. This paper outlines the science goals for CTA and covers 15 the current status of the project. 16 1 Introduction 17 The field of very high-energy gamma-ray (VHE, E > 20 GeV) astronomy has come of age in recent 18 years, due to a wealth of information from both ground-based and space-borne telescopes. Prior to 19 2000, the general expectation for the field was to detect the accelerators of the high-energy cosmic 20 rays, most likely supernova remnants (SNRs). However, the reality over the last two decades has 21 been the discovery of an astonishing variety of VHE gamma-ray sources, both within the Milky Way, 22 e.g.
    [Show full text]