Tesseract Pdf to Text C

Total Page:16

File Type:pdf, Size:1020Kb

Tesseract Pdf to Text C Tesseract pdf to text c Continue OpenCV 3.4.12-dev Open Source Computer Vision OCRTesseract класс обеспечивает интерфейс с tesseract-ocr API (v3.02.02) в СЗ. Подробнее... #include виртуальный пустотный пробег <opencv2 ext/ocr.hpp=>(Мат-изображение, std::string No3,output_text, std::вектор < rect=> component_rects No1 <2>-NULL, std::вектор < std::string=> No19,component_texts NULL, std::вектор < float=> No component_confidences-NULL, int component_level'0) CV_OVERRIDE Признать текст с помощью tesseract-ocr API. Больше... виртуальный пустотный пробег (Мат- Изображение, Мат-маска, std::string output_text No <3> <9>, std::вектор < rect=> component_rects No2 <6>-NULL, std::вектор < std::string=> component_texts No05-NULL, std::вектор < float=> No component_confidences-NULL, int component_level'0) CV_OVERRIDE Струнный пробег (InputArray image, int min_confidence, int component_level'0) Струнный запуск (InputArray image, InputArray mask, int min_confidence, int component_level'0) виртуальный набор пустотыWhiteList (const String No char_whitelist)-0 виртуальный «BaseOCR» () класс OCRTesseract предоставляет интерфейс с tesseract-ocr API (v3.02.02) в C. Обратите внимание, что он компилирован только при правильной установке tesseract-ocr. Примечание - создать () статический Ptr<OCRTesseract> cv::text::OCRTesseract::create (const char - datapath , NULL, const char - язык - NULL, const char - char_whitelist - NULL, int oem - OEM_DEFAULT, int psmode - PSM_AUTO ) статический Python:retval-cv.text.OCRTesseract_create (,datapath, language, char_whitelist, oem, psmode) создает экземпляр класса OCRTesseract. Параметры datapaththe имя родительского каталога tessdata закончился с /, или NULL использовать каталог системы по умолчанию. Languagean ISO 639-3 код или NULL будет по умолчанию англ. char_whitelistspecifies символов, используемых для распознавания. NULL по умолчанию 0123456789abcdefghijklmnopqrstuvwxyzABCDEFGHIJKLMNOP-RSTUVWXY. oemtesseract-ocr предлагает различные режимы двигателя OCR (OEM), по умолчанию tesseract::OEM_DEFAULT используется. Можно посмотреть документацию API tesseract-ocr для других возможных значений. psmodetesseract-ocr предлагает различные режимы сегментации страниц (PSM) tesseract::P SM-AUTO (полностью автоматический анализ макета). Можно посмотреть документацию API tesseract-ocr для других возможных значений. - бег () Виртуальная пустота cv::text:::OCRTesseract::run (Мат и изображение, std::string: output_text, std::component_rects вектор < rect=> std::вектор < std::string=> No component_texts - NULL, std::vector < float=> - component_confidences - NULL, int component_level - 0 ) виртуальный Python:retval- cv.text_OCRTesseract.run (изображение, min_confidence, component_level)retval-cv.text_OCRTesseract.run (изображение, маска, min_confidence, component_level) Распознать текст с tesseract-ocr API. Takes the image to the login and returns the recognized text to output_text settings. Optional also provides Rects for individual elements of the text. (e.g. words) and a list of these textual elements with their values of trust. Image settingsIt CV_8UC1 or CV_8UC3 output_textOutput or tesseract-ocr text. component_rectsIf provided that the method leads to the release of a recte list for individual text items found (such as words or text lines). component_textsIf provided that the method sticks out a list of text lines to recognize found individual text items (such as words or text lines). component_confidencesIf provided that the method sticks out a list of trust values to recognize found individual text items (such as words or text lines). component_levelOCR_LEVEL_WORD (by default), or OCR_LEVEL_TEXTLINE. Implementations cv::text::BaseOCR. - Running () Virtual void cv::text:::::OCRTesseract::run (mat and image, mat and mask, std::string output_text, std::vector'lt; rect; rect-component_rects - NULL, std:::'lt; std:::string'gt; - component_texts - NULL, std::vector'lt; float -component_confidences - NULL, int component_level and 0 ) Virtual Python:retval-cv.text_OCRTesseract.run (image, image, min_confidence, component_level)retval-cv.text_OCRTesseract.run (image, mask, min_confidence, component_level)) int min_confidence, int component_level and 0) Python:retval-cv.text_OCRTesseract.run (image, min_confidence, component_level) retval-cv.text_OCRTesseract.run (image, mask, min_confidence, component_level) Python:retval-cv.text_OCRTesseract.run (image, min_confidence) component_level-cv.text_OCRTesseract.run (image, cv.text_OCRTesseract mask, min_confidence, component_level) - setWhiteList () virtual void cv:::text::OCRTesseract::setWhiteList (const String and char_whitelist) Pure Virtual Python:None'cv.text_OCRTesseract.setWhiteList (char_whitelist) Documentation for this class was created from the following file: TesseractTesseract 4.1.1 Originally written by Ray Smith, Hewlett-Packard, developer (s)GoogleStable release4.1.1 / December 26, 2019; 9 months ago (2019-12-26) Repositorygithub.com/tesseract-ocr/tesseract Written inC and operating systemLinux, Windows and macOS (x86)Available winterface: English recognition: Afrikaans, Albanian, Arabic, Azerbaijani, Basque, Belarusian, Bengal, Bulgarian, Catalan, Czech, Cherokee, Croatian, Danish, Dutch, English, Espanyer Finnish, French, Galician, German, Greek, Hindi, Hungarian, Indonesian, Italian, Japanese, Kannada, Korean, Latvian, Lithuanian, Malayalam, Macedonian, Maltese, Malay, Norwegian, Polish, Portuguese, Romanian, Russian, Serbian, Slovak, Slovenian, Spanish, Swahili, Swedish, Tesseract is an optical character recognition engine for a variety of operating systems. This is free software released under an Apache license. Originally developed by Hewlett-Packard as proprietary software in the 1980s, it was released as an open source in 2005, and the development has been sponsored by Google since 2006. In 2006, Tesseract was considered one of the most accurate open source OCR engines. The History The Tesseract engine was originally developed as proprietary software at Hewlett Packard labs in Bristol, England and Greeley, Colorado, between 1985 and 1994, with some changes made in 1996 for Windows ports, and some migration from C to C in 1998. A lot of code was written in C, and then a few more were written in C. Since then, the whole code has been converted, at least to compilation with compiler C. In the next decade, very little work has been done. It was released as an open source in 2005 by Hewlett Packard and the University of Nevada, Las Vegas (UNLV). The development of Tesseract has been sponsored by Google since 2006. Features Tesseract in 1995 in the top three OCR engines in terms of character accuracy. It is available for Linux, Windows and Mac OS X. However, due to limited resources, it is only thoroughly tested by developers under Windows and Ubuntu. Tesseract before and including version 2 could only take TIFF images of the simple text of a single column as input. These early versions do not include layout analysis, so the input of multicost text, images, or equations has produced a distorted output. Starting with 3.00, Tesseract supports the formatting of the output text, hOCR positional information, and page layout analysis. Support for a number of new image formats has been added through the Leptonica library. Tesseract can determine whether the text is monospace or proportionally blurred. Initial versions of Tesseract could only recognize English-language text. Tesseract v2 added six additional Western languages (French, Italian, German, Spanish, Brazilian Portuguese, Dutch). Version 3 has greatly expanded language support, including ideographic (Chinese and Japanese) and left-left (e.g. Arabic, Hebrew) languages, as well as many other scenarios. New languages included Arabic, Bulgarian, Catalan, Chinese (simplified and traditional), Croatian, Czech, Danish, German (Frakturian), Greek, Finnish, Hebrew, Hindi, Hungarian, Indonesian, Japanese, Korean, Latvian, Lithuanian, Norwegian, Polish, Portuguese, Romanian, Russian, Serbian, Slovak V3.04, released in July 2015, added 39 more language/scenario, bringing the total number of support languages to more than 100. New language codes included: amh (Amharic), asm (Assam), aze_cyrl (Azerbaijan in Cyrillic), bod bod bos (Bosnian), ceb (Cebuano), cym (Welsh), dzo (Dzongkha), fas (Persian), gle (Irish), guj (Gujarati), hat (Gayt and Haitian Creole), iku (Inuktitut), jaw (javanese), kat (Georgian), kat_old (Old Georgian), kaz (Old Georgian), kaz Khm (Central Khmer), Kir (Kyrgyz), Mia (Burma), Nep (Nepal), Ori (Oria), Pan (Panjabi), Puy (Pashto), San (Sanskrit), Sin (Sinhala), srp_latn (Serbian in Latin), Sir (Syrian), Tg (Tajik), Tg (Tigr) , Wiig (Uighur), Urd (Urdu), Uzbek , uzb_cyrl (Uzbek) In addition, Tesseract can be taught to work in other languages. Tesseract can handle right-left text such as Arabic or Hebrew, many indfaacts as well as CJK pretty well. Precision rates are shown in this presentation for tesseract tutorial at DAS 2016, Santorini Ray Smith. Tesseract is suitable for use as a backend and can be used for more complex OCR tasks, including interface layout analysis such as OCRopus. Tesseract output will be of very low quality if the input images are not pre-processed according to it: Images (especially screenshots) should be increased so that the height of the text is at least 20 pixels, any rotation or skew must be corrected or the text is not recognized, low-frequency changes in brightness must be filtered
Recommended publications
  • Master Thesis
    Master thesis To obtain a Master of Science Degree in Informatics and Communication Systems from the Merseburg University of Applied Sciences Subject: Tunisian truck license plate recognition using an Android Application based on Machine Learning as a detection tool Author: Supervisor: Achraf Boussaada Prof.Dr.-Ing. Rüdiger Klein Matr.-Nr.: 23542 Prof.Dr. Uwe Schröter Table of contents Chapter 1: Introduction ................................................................................................................................. 1 1.1 General Introduction: ................................................................................................................................... 1 1.2 Problem formulation: ................................................................................................................................... 1 1.3 Objective of Study: ........................................................................................................................................ 4 Chapter 2: Analysis ........................................................................................................................................ 4 2.1 Methodological approaches: ........................................................................................................................ 4 2.1.1 Actual approach: ................................................................................................................................... 4 2.1.2 Image Processing with OCR: ................................................................................................................
    [Show full text]
  • An Accuracy Examination of OCR Tools
    International Journal of Innovative Technology and Exploring Engineering (IJITEE) ISSN: 2278-3075, Volume-8, Issue-9S4, July 2019 An Accuracy Examination of OCR Tools Jayesh Majumdar, Richa Gupta texts, pen computing, developing technologies for assisting Abstract—In this research paper, the authors have aimed to do a the visually impaired, making electronic images searchable comparative study of optical character recognition using of hard copies, defeating or evaluating the robustness of different open source OCR tools. Optical character recognition CAPTCHA. (OCR) method has been used in extracting the text from images. OCR has various applications which include extracting text from any document or image or involves just for reading and processing the text available in digital form. The accuracy of OCR can be dependent on text segmentation and pre-processing algorithms. Sometimes it is difficult to retrieve text from the image because of different size, style, orientation, a complex background of image etc. From vehicle number plate the authors tried to extract vehicle number by using various OCR tools like Tesseract, GOCR, Ocrad and Tensor flow. The authors in this research paper have tried to diagnose the best possible method for optical character recognition and have provided with a comparative analysis of their accuracy. Keywords— OCR tools; Orcad; GOCR; Tensorflow; Tesseract; I. INTRODUCTION Optical character recognition is a method with which text in images of handwritten documents, scripts, passport documents, invoices, vehicle number plate, bank statements, Fig.1: Functioning of OCR [2] computerized receipts, business cards, mail, printouts of static-data, any appropriate documentation or any II. OCR PROCDURE AND PROCESSING computerized receipts, business cards, mail, printouts of To improve the probability of successful processing of an static-data, any appropriate documentation or any picture image, the input image is often ‘pre-processed’; it may be with text in it gets processed and the text in the picture is de-skewed or despeckled.
    [Show full text]
  • Enforcing Abstract Immutability
    Enforcing Abstract Immutability by Jonathan Eyolfson A thesis presented to the University of Waterloo in fulfillment of the thesis requirement for the degree of Doctor of Philosophy in Electrical and Computer Engineering Waterloo, Ontario, Canada, 2018 © Jonathan Eyolfson 2018 Examining Committee Membership The following served on the Examining Committee for this thesis. The decision of the Examining Committee is by majority vote. External Examiner Ana Milanova Associate Professor Rensselaer Polytechnic Institute Supervisor Patrick Lam Associate Professor University of Waterloo Internal Member Lin Tan Associate Professor University of Waterloo Internal Member Werner Dietl Assistant Professor University of Waterloo Internal-external Member Gregor Richards Assistant Professor University of Waterloo ii I hereby declare that I am the sole author of this thesis. This is a true copy of the thesis, including any required final revisions, as accepted by my examiners. I understand that my thesis may be made electronically available to the public. iii Abstract Researchers have recently proposed a number of systems for expressing, verifying, and inferring immutability declarations. These systems are often rigid, and do not support “abstract immutability”. An abstractly immutable object is an object o which is immutable from the point of view of any external methods. The C++ programming language is not rigid—it allows developers to express intent by adding immutability declarations to methods. Abstract immutability allows for performance improvements such as caching, even in the presence of writes to object fields. This dissertation presents a system to enforce abstract immutability. First, we explore abstract immutability in real-world systems. We found that developers often incorrectly use abstract immutability, perhaps because no programming language helps developers correctly implement abstract immutability.
    [Show full text]
  • CSI: Inferring Mobile ABR Video Adaptation Behavior Under HTTPS and QUIC
    CSI: Inferring Mobile ABR Video Adaptation Behavior under HTTPS and QUIC Shichang Xu Subhabrata Sen Z. Morley Mao University of Michigan AT&T Labs – Research University of Michigan Abstract Server Manifest Network Client Mobile video streaming services have widely adopted Adap- Chunks HTTP tive Bitrate (ABR) streaming to dynamically adapt the stream- Track ing quality to variable network conditions. A wide range of 720p 1 Buffer third-party entities such as network providers and testing 480p IP packets services need to understand such adaptation behavior for 360p 1 2 3 Index purposes such as QoE monitoring and network management. CSI The traditional approach involved conducting test runs and analyzing the HTTP-level information from the associated network traffic to understand the adaptation behavior under Figure 1. ABR streaming overview different network conditions. However, end-to-end traffic encryption protocols such as HTTPS and QUIC are being increasingly used by streaming services, hindering such tra- Rate (ABR) streaming (predominantly HLS [75] and DASH [31]) ditional traffic analysis approaches. has been widely adopted in industry for delivering satisfac- To address this, we develop CSI (Chunk Sequence Infer- tory Quality of Experience (QoE) over dynamic cellular net- encer), a general system that enables third-parties to conduct work conditions. The server encodes each video into multiple active measurements and infer mobile ABR video adapta- versions with different picture quality levels and encoding tion behavior based on packet size and timing information bitrates (with higher bitrates for higher-quality encodings) still available in the encrypted traffic. We perform exten- called tracks, and splits each track into shorter chunks, each sive evaluations and demonstrate that CSI achieves high representing a few seconds worth of playback content (Fig- inference accuracy for video encodings of popular streaming ure 1).
    [Show full text]
  • Durchleuchtet PDF Ist Der Standard Für Den Austausch Von Dokumenten, Denn PDF-Dateien Sehen Auf
    WORKSHOP PDF-Dateien © alphaspirit, 123RF © alphaspirit, PDF-Dateien verarbeiten und durchsuchbar machen Durchleuchtet PDF ist der Standard für den Austausch von Dokumenten, denn PDF-Dateien sehen auf Daniel Tibi, allen Rechnern gleich aus. Für Linux gibt es zahlreiche Tools, mit denen Sie alle Möglich- Christoph Langner, Hans-Georg Eßer keiten dieses Dateiformats ausreizen. okumente unterschiedlichster Art, in einem gedruckten Text, Textstellen mar- denen Sie über eine Texterkennung noch von Rechnungen über Bedie- kieren oder Anmerkungen hinzufügen. eine Textebene hinzufügen müssen. D nungsanleitungen bis hin zu Bü- Als Texterkennungsprogramm für Linux chern und wissenschaftlichen Arbeiten, Texterkennung empfiehlt sich die OCR-Engine Tesseract werden heute digital verschickt, verbrei- Um die Möglichkeiten des PDF-Formats [1]. Die meisten Distributionen führen das tet und genutzt – vorzugsweise im platt- voll auszureizen, sollten PDF-Dateien Programm in ihren Paketquellen: formunabhängigen PDF-Format. Durch- durchsuchbar sein. So durchstöbern Sie l Unter OpenSuse installieren Sie tesse­ suchbare Dokumente erleichtern das etwa gleich mehrere Dokumente nach be- ract­­ocr und eines der Sprachpakete, schnelle Auffinden einer bestimmten stimmten Wörtern und finden innerhalb z. B. tesseract­ocr­traineddata­german. Stelle in der Datei, Metadaten liefern zu- einer Datei über die Suchfunktion des (Das Paket für die englische Sprache sätzliche Informationen. PDF-Betrachters schnell die richtige Stelle. richtet OpenSuse automatisch mit ein.) Zudem gibt es zahlreiche Möglichkei- PDF-Dateien, die Sie mit LaTeX oder Libre- l Für Ubuntu und Linux Mint wählen ten, PDF-Dokumente zu bearbeiten: Ganz Office erstellen, lassen sich üblicherweise Sie tesseract­ocr und ein Sprachpaket, nach Bedarf lassen sich Seiten entfernen, bereits durchsuchen. Anders sieht es je- wie etwa tesseract­ocr­deu.
    [Show full text]
  • Igalia Desktop Summit, Berlin, Aug 2011
    Igalia Desktop Summit, Berlin, Aug 2011 Juan José Sánchez Penas | [email protected] | www.igalia.com About Igalia 2 ● Open source consultancy founded in 2001 ● Privately owned (independent), flat internal structure ● Headquarters: north west of Spain (A Coruña, Galicia) ● ~45 open source developers from many countries, working from different locations ● What we do: ● Development, consultancy, training,... ● We offer our upstream expertise to help others building platforms, products and solutions Juan José SánchezPenas | [email protected] | www.igalia.com What we do 3 ● Areas/Teams: Kernel/OS, multimedia, graphics, browsers, compilers, accessibility, ... ● Platforms/Technologies: GNOME, WebKit, MeeGo, Freedesktop.org, Qt, ... ● Experience: Many projects for relevant international companies Related to platform, middleware and app development Creation of and contribution to upstream components Juan José Sánchez | [email protected] | www.igalia.com Main affiliations 4 ● Members of GNOME Foundation's Advisory Board (2007) ● Patrons of FSF (2011) ● Members of Linux Foundation (2011) Juan José Sánchez | [email protected] | www.igalia.com Events 5 ● WebKitGTK+ Hackfest, A Coruña, 2009, 2010 and 2011 ● GUADEC Hispana, A Coruña, 2005 and 2010 ● GUADEMY, A Coruña, 2007 ● GTK+ Hackfest, A Coruña, October 2010 ● ATK Hackfest, A Coruña, May 2011 Juan José Sánchez | [email protected] | www.igalia.com WebKit 6 Juan José Sánchez | [email protected] | www.igalia.com WebKit 7 ● Key for integration of web technologies in the desktop ● Stable
    [Show full text]
  • Tecnologías Libres Para La Traducción Y Su Evaluación
    FACULTAD DE CIENCIAS HUMANAS Y SOCIALES DEPARTAMENTO DE TRADUCCIÓN Y COMUNICACIÓN Tecnologías libres para la traducción y su evaluación Presentado por: Silvia Andrea Flórez Giraldo Dirigido por: Dra. Amparo Alcina Caudet Universitat Jaume I Castellón de la Plana, diciembre de 2012 AGRADECIMIENTOS Quiero agradecer muy especialmente a la Dra. Amparo Alcina, directora de esta tesis, en primer lugar por haberme acogido en el máster Tecnoloc y el grupo de investigación TecnoLeTTra y por haberme animado luego a continuar con mi investigación como proyecto de doctorado. Sus sugerencias y comentarios fueron fundamentales para el desarrollo de esta tesis. Agradezco también al Dr. Grabriel Quiroz, quien como profesor durante mi último año en la Licenciatura en Traducción en la Universidad de Antioquia (Medellín, Colombia) despertó mi interés por la informática aplicada a la traducción. De igual manera, agradezco a mis estudiantes de Traducción Asistida por Computador en la misma universidad por interesarse en el software libre y por motivarme a buscar herramientas alternativas que pudiéramos utilizar en clase sin tener que depender de versiones de demostración ni recurrir a la piratería. A mi colega Pedro, que comparte conmigo el interés por la informática aplicada a la traducción y por el software libre, le agradezco la oportunidad de llevar la teoría a la práctica profesional durante todos estos años. Quisiera agradecer a Esperanza, Anna, Verónica y Ewelina, compañeras de aventuras en la UJI, por haber sido mi grupo de apoyo y estar siempre ahí para escucharme en los momentos más difíciles. Mis más sinceros agradecimientos también a María por ser esa voz de aliento y cordura que necesitaba escuchar para seguir adelante y llegar a feliz término con este proyecto.
    [Show full text]
  • Expense Tracking Mobile Application with Receipt Scanning Functionality Bachelor’S Thesis
    TALLINN UNIVERSITY OF TECHNOLOGY Faculty of Information Technology Department of Computer Science Chair of Network Software Expense tracking mobile application with receipt scanning functionality Bachelor’s thesis Student: Roman Kaskman Student code: 113089 IAPB Advisor: Roger Kerse Tallinn 2015 Author’s declaration I declare that this thesis is the result of my own research except as cited in the references. The thesis has not been accepted for any degree and is not concurrently submitted in candidature of any other degree. 25.05.2015 Roman Kaskman (date) (signature) Abstract The purpose of this thesis is to create a mobile application for expense tracking, with the main focus on functionality allowing to take pictures of receipts issued by Estonian enterprises, extract basic expense information from the captured receipt images and store extracted expenses information in authenticated user’s expense list. The main problems covered in this work are finding the best architectural and design solutions for the application from the perspective of performance, usability, security and further development as well as researching and implementing techniques to handle expense recognition from receipts in an efficient way. As a result of the thesis, a working implementation of expense tracking mobile application for Android appears. After functionality of expenses information extraction from receipt images passes the testing phase, conclusion regarding its reliability is made. Moreover, proposals for further improvements of the application’s functionality are also presented. The thesis is in English and contains 53 pages of text, 6 chapters and 14 figures. Annotatsioon Käesoleva bakalaureusetöö eesmärk on luua mobiilirakendus kasutaja kulude üle arvestuse pidamiseks ja dokumenteerimiseks.
    [Show full text]
  • Informe Tradución Ao Galego Do Contorno GNOME 3.0
    INFORME DE TRADUCIÓN AO GALEGO DO CONTORNO GNOME 3.0 ABRIL 2011 Oficina de Software Libre da USC www.usc.es/osl [email protected] LICENZA DO DOCUMENTO Este documento pode empregarse, modificarse e redistribuírse baixo dos termos de unha das seguintes licenzas, a escoller: GNU Free Documentation License 1.3 Copyright (C) 2009 Oficina de Software Libre da USC. Garántese o permiso para copiar, distribuír e/ou modificar este documento baixo dos termos da GNU Free Documentation License versión 1.3 ou, baixo o seu criterio, calquera versión posterior publicada pola Free Software Foundation; sen seccións invariantes, sen textos de portada e sen textos de contraportada. Pode achar o texto íntegro da licenza en: http://www.gnu.org/copyleft/fdl.html Creative Commons Atribución – CompartirIgual 3.0 Copyright (C) 2009 Oficina de Software Libre da USC. Vostede é libre de: • Copiar, distribuír e comunicar publicamente a obra • Facer obras derivadas Baixo das condicións seguintes: • Recoñecemento. Debe recoñecer os créditos da obra do xeito especificado polo autor ou polo licenciador (pero non de xeito que suxira que ten o seu apoio ou apoian o uso que fan da súa obra. • Compartir baixo a mesma licenza.. Se transforma ou modifica esta obra para crear unha obra derivada, só pode distribuír a obra resultante baixo a mesma licenza, unha similar ou unha compatíbel. Pode achar o texto íntegro da licenza en: http://creativecommons.org/licenses/by-sa/3.0/es/deed.gl TÁBOA DE CONTIDOS Licenza do documento............................................................................................................3
    [Show full text]
  • Field Guide to Software for Nonprofit Immigration Advocates, Organizers, and Service Providers
    THE FIELD GUIDE TO SOFTWARE FOR NONPROFIT IMMIGRATION ADVOCATES, ORGANIZERS, AND SERVICE PROVIDERS By the Immigration Advocates Network and Idealware THE FIELD GUIDE TO SOFTWARE FOR NONPROFIT IMMIGRATION ADVOCATES, ORGANIZERS, AND SERVICE PROVIDERS By the Immigration Advocates Network and Idealware THE FIELD GUIDE TO SOFTWARE FOREWORD Welcome, The Field Guide to Software is a joint effort between the Immigration Advocates Network and Idealware. Through straightforward overviews, it helps pinpoint the types of software that might be useful for the needs of nonprofit immigration advocates, organizers, and service providers and provides user- friendly summaries to demystify the possible options. It covers tried-and-true and emerging tools and technolgies, and best practices and specific aspects of nonprofit software. There’s also a section to guide you through the sometimes daunting process of choosing and implementing software. We know you have your hands full and don’t always have time to keep up with the latest information about the software that can help your organization. That’s where this guide can help. Thank you for all you do to make the world a better place. We hope this Field Guide will help you do it all just a little more easily. Matthew Burnett Karen Graham Director, Executive Director, Immigration Advocates Network Idealware iii THE FIELD GUIDE TO SOFTWARE TABLE OF CONTENTS TABLE 1. Introduction 7 • Understanding What You Need 8 • Every Organization Needs 10 2. Case Studies: Putting Tools to Use 13 • Using Technology to Expand Legal Services: Ayuda Delaware 14 • A Holistic Approach to Serving Immigrants: Benevolent Charities of Oklahoma 17 • Giving Voice to Immigrants: Idaho Coalition for Immigrants and Refugees 20 3.
    [Show full text]
  • Indicators for Missing Maintainership in Collaborative Open Source Projects
    TECHNISCHE UNIVERSITÄT CAROLO-WILHELMINA ZU BRAUNSCHWEIG Studienarbeit Indicators for Missing Maintainership in Collaborative Open Source Projects Andre Klapper February 04, 2013 Institute of Software Engineering and Automotive Informatics Prof. Dr.-Ing. Ina Schaefer Supervisor: Michael Dukaczewski Affidavit Hereby I, Andre Klapper, declare that I wrote the present thesis without any assis- tance from third parties and without any sources than those indicated in the thesis itself. Braunschweig / Prague, February 04, 2013 Abstract The thesis provides an attempt to use freely accessible metadata in order to identify missing maintainership in free and open source software projects by querying various data sources and rating the gathered information. GNOME and Apache are used as case studies. License This work is licensed under a Creative Commons Attribution-ShareAlike 3.0 Unported (CC BY-SA 3.0) license. Keywords Maintenance, Activity, Open Source, Free Software, Metrics, Metadata, DOAP Contents List of Tablesx 1 Introduction1 1.1 Problem and Motivation.........................1 1.2 Objective.................................2 1.3 Outline...................................3 2 Theoretical Background4 2.1 Reasons for Inactivity..........................4 2.2 Problems Caused by Inactivity......................4 2.3 Ways to Pass Maintainership.......................5 3 Data Sources in Projects7 3.1 Identification and Accessibility......................7 3.2 Potential Sources and their Exploitability................7 3.2.1 Code Repositories.........................8 3.2.2 Mailing Lists...........................9 3.2.3 IRC Chat.............................9 3.2.4 Wikis............................... 10 3.2.5 Issue Tracking Systems...................... 11 3.2.6 Forums............................... 12 3.2.7 Releases.............................. 12 3.2.8 Patch Review........................... 13 3.2.9 Social Media............................ 13 3.2.10 Other Sources..........................
    [Show full text]
  • Character Recognition in Natural Images Utilising Tensorflow
    DEGREE PROJECT IN TECHNOLOGY, FIRST CYCLE, 15 CREDITS STOCKHOLM, SWEDEN 2017 Character Recognition in Natural Images Utilising TensorFlow ALEXANDER VIKLUND EMMA NIMSTAD KTH ROYAL INSTITUTE OF TECHNOLOGY SCHOOL OF COMPUTER SCIENCE AND COMMUNICATION Character Recognition in Natural Images Utilising TensorFlow ALEXANDER VIKLUND EMMA NIMSTAD Degree project in Computer Science, DD143X Date: June 12, 2017 Supervisor: Kevin Smith Examiner: Örjan Ekeberg Swedish title: Teckenigenkänning i naturliga bilder med TensorFlow School of Computer Science and Communication Abstract Convolutional Neural Networks (CNNs) are commonly used for character recogni- tion. They achieve the lowest error rates for popular datasets such as SVHN and MNIST. Usage of CNN is lacking in research about character classification in nat- ural images regarding the whole English alphabet. This thesis conducts an experi- ment where TensorFlow is used to construct a CNN that is trained and tested on the Chars74K dataset, with 15 images per class for training and 15 images per class for testing. This is done with the aim of achieving a higher accuracy than the non-CNN approach by de Campos et al. [1], that achieved 55:26%. The thesis explores data augmentation techniques for expanding the small training set and evaluates the result of applying rotation, stretching, translation and noise- adding. The result of this is that all of these methods apart from adding noise gives a positive effect on the accuracy of the network. Furthermore, the experiment shows that with a three layered convolutional neural network it is possible to create a character classifier that is as good as de Campos et al.’s.
    [Show full text]