Axiomatizing Geometric Constructions
View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Elsevier - Publisher Connector Journal of Applied Logic 6 (2008) 24–46 www.elsevier.com/locate/jal Axiomatizing geometric constructions Victor Pambuccian Department of Integrative Studies, Arizona State University, West Campus, PO Box 37100, Phoenix, AZ 85069-7100, USA Received 1 March 2005; received in revised form 14 February 2007; accepted 15 February 2007 Available online 24 February 2007 Abstract In this survey paper, we present several results linking quantifier-free axiomatizations of various Euclidean and hyperbolic geometries in languages without relation symbols to geometric constructibility theorems. Several fragments of Euclidean and hyperbolic geometries turn out to be naturally occurring only when we ask for the universal theory of the standard plane (Euclidean or hyperbolic), that can be expressed in a certain language containing only operation symbols standing for certain geometric constructions. © 2007 Elsevier B.V. All rights reserved. Keywords: Geometric constructions; Quantifier-free axiomatizations; Euclidean geometry; Absolute geometry; Hyperbolic geometry; Metric planes; Metric-Euclidean planes; Rectangular planes; Treffgeradenebenen 1. Introduction The first modern axiomatizations of geometry, by Pasch, Peano, Pieri, and Hilbert, were expressed in languages which contained, in stark contrast to the axiomatizations of arithmetic or of algebraic theories, only relation (predicate) symbols, but no operation symbol. On the other hand, geometric constructions have played an important role in geometry from the very beginning. It is quite surprising that it is only in 1968 that geometric constructions became part of the axiomatization of geometry. Two papers broke the ice: Moler and Suppes [65] and Engeler [25].In[65] we have the first axiomatization of geometry (to be precise of plane Euclidean geometry over Pythagorean ordered fields) in terms of two operations, by means of a quantifier-free axiom system.
[Show full text]