Talking to the Mailman
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
MIT/GNU Scheme Reference Manual
MIT/GNU Scheme Reference Manual Edition 1.99 for Scheme Release 7.7.90 18 September 2003 by Chris Hanson the MIT Scheme Team and a cast of thousands Copyright c 1991,1992,1993,1994,1995 Massachusetts Institute of Technology Copyright c 1996,1997,1999,2000,2001 Massachusetts Institute of Technology Copyright c 2002,2003 Massachusetts Institute of Technology Permission is granted to copy, distribute and/or modify this document under the terms of the GNU Free Documentation License, Version 1.2 or any later version published by the Free Software Foundation; with no Invariant Sections, with no Front-Cover Texts, and with no Back-Cover Texts. A copy of the license is included in the section entitled "GNU Free Documentation License". Acknowledgements 1 Acknowledgements While "a cast of thousands" may be an overstatement, it is certainly the case that this document represents the work of many people. First and foremost, thanks go to the authors of the Revised^4 Report on the Algorithmic Language Scheme, from which much of this document is derived. Thanks also to BBN Advanced Computers Inc. for the use of parts of their Butterfly Scheme Reference, and to Margaret O’Connell for translating it from BBN’s text-formatting language to ours. Special thanks to Richard Stallman, Bob Chassell, and Brian Fox, all of the Free Software Foundation, for creating and maintaining the Texinfo formatting language in which this document is written. This report describes research done at the Artificial Intelligence Laboratory and the Laboratory for Computer Science, both of the Massachusetts Institute of Technology. -
Seamless Interoperability and Data Portability in the Social Web for Facilitating an Open and Heterogeneous Online Social Network Federation
Seamless Interoperability and Data Portability in the Social Web for Facilitating an Open and Heterogeneous Online Social Network Federation vorgelegt von Dipl.-Inform. Sebastian Jürg Göndör geb. in Duisburg von der Fakultät IV – Elektrotechnik und Informatik der Technischen Universität Berlin zur Erlangung des akademischen Grades Doktor der Ingenieurwissenschaften - Dr.-Ing. - genehmigte Dissertation Promotionsausschuss: Vorsitzender: Prof. Dr. Thomas Magedanz Gutachter: Prof. Dr. Axel Küpper Gutachter: Prof. Dr. Ulrik Schroeder Gutachter: Prof. Dr. Maurizio Marchese Tag der wissenschaftlichen Aussprache: 6. Juni 2018 Berlin 2018 iii A Bill of Rights for Users of the Social Web Authored by Joseph Smarr, Marc Canter, Robert Scoble, and Michael Arrington1 September 4, 2007 Preamble: There are already many who support the ideas laid out in this Bill of Rights, but we are actively seeking to grow the roster of those publicly backing the principles and approaches it outlines. That said, this Bill of Rights is not a document “carved in stone” (or written on paper). It is a blog post, and it is intended to spur conversation and debate, which will naturally lead to tweaks of the language. So, let’s get the dialogue going and get as many of the major stakeholders on board as we can! A Bill of Rights for Users of the Social Web We publicly assert that all users of the social web are entitled to certain fundamental rights, specifically: Ownership of their own personal information, including: • their own profile data • the list of people they are connected to • the activity stream of content they create; • Control of whether and how such personal information is shared with others; and • Freedom to grant persistent access to their personal information to trusted external sites. -
Genera Workbook Using This Book Preface This Is the Document To
Genera Workbook Using This Book Preface This is the document to read when you’re ready to sit down at your Symbol- ics computer. It teaches you the initial skills you need to use the Genera system effectively. We present concepts you need to know, as well as providing exercises andactivitiesthatturnthoseconceptsintopracticalskills. The material covered in the first group of chapters in this workbook is a pre- requisite for all Symbolics Education Services Courses. However, you can com plete the second and third sections after taking your first course. Practicing the material helpsyou learn it faster. Bring this workbook to all courses you take with Symbolics. We expect that you have used a computer before; we do not expect that you have used a Symbolics computer before. You need to learn this material whether or not you are a programmer. This is not a programming textbook. We make no assumptions about your programming background or future; this work bookisforbothprogrammersandnonprogrammers. Every time we use a term for the first time, we put it in italics. If you see a term you don’t recognize, be sure to check the glossary at the end of the work book. This workbook uses Symbolics documentation conventions and a few of its own. If you see a word or phrase enclosed in brackets, like [Help], it is a menu item.We use two different conventions withrespect to Symbolics keyboard keys: in text,thekeylabelledHELPlookslikethis: HELP butinexamplesitlookslikethis: <HELP> todifferentiateitasasinglekeystrokefromthetextaroundit. It is very important to have a Symbolics computer available so that you can work through the hands-on activities, called walk-throughs. -
Omnipresent and Low-Overhead Application Debugging
Omnipresent and low-overhead application debugging Robert Strandh [email protected] LaBRI, University of Bordeaux Talence, France ABSTRACT application programmers as opposed to system programmers. The state of the art in application debugging in free Common The difference, in the context of this paper, is that the tech- Lisp implementations leaves much to be desired. In many niques that we suggest are not adapted to debugging the cases, only a backtrace inspector is provided, allowing the system itself, such as the compiler. Instead, throughout this application programmer to examine the control stack when paper, we assume that, as far as the application programmer an unhandled error is signaled. Most such implementations do is concerned, the semantics of the code generated by the not allow the programmer to set breakpoints (unconditional compiler corresponds to that of the source code. or conditional), nor to step the program after it has stopped. In this paper, we are mainly concerned with Common Furthermore, even debugging tools such as tracing or man- Lisp [1] implementations distributed as so-called FLOSS, i.e., ually calling break are typically very limited in that they do \Free, Libre, and Open Source Software". While some such not allow the programmer to trace or break in important sys- implementations are excellent in terms of the quality of the tem functions such as make-instance or shared-initialize, code that the compiler generates, most leave much to be simply because these tools impact all callers, including those desired when it comes to debugging tools available to the of the system itself, such as the compiler. -
Getting Started Computing at the Al Lab by Christopher C. Stacy Abstract
MASSACHUSETTS INSTITUTE OF TECHNOLOGY ARTIFICIAL INTELLI..IGENCE LABORATORY WORKING PAPER 235 7 September 1982 Getting Started Computing at the Al Lab by Christopher C. Stacy Abstract This document describes the computing facilities at the M.I.T. Artificial Intelligence Laboratory, and explains how to get started using them. It is intended as an orientation document for newcomers to the lab, and will be updated by the author from time to time. A.I. Laboratory Working Papers are produced for internal circulation. and may contain information that is, for example, too preliminary or too detailed for formal publication. It is not intended that they should be considered papers to which reference can be made in the literature. a MASACHUSETS INSTITUTE OF TECHNOLOGY 1982 Getting Started Table of Contents Page i Table of Contents 1. Introduction 1 1.1. Lisp Machines 2 1.2. Timesharing 3 1.3. Other Computers 3 1.3.1. Field Engineering 3 1.3.2. Vision and Robotics 3 1.3.3. Music 4 1,3.4. Altos 4 1.4. Output Peripherals 4 1.5. Other Machines 5 1.6. Terminals 5 2. Networks 7 2.1. The ARPAnet 7 2.2. The Chaosnet 7 2.3. Services 8 2.3.1. TELNET/SUPDUP 8 2.3.2. FTP 8 2.4. Mail 9 2.4.1. Processing Mail 9 2.4.2. Ettiquette 9 2.5. Mailing Lists 10 2.5.1. BBoards 11 2.6. Finger/Inquire 11 2.7. TIPs and TACs 12 2.7.1. ARPAnet TAC 12 2.7.2. Chaosnet TIP 13 3. -
Programming with GNU Emacs Lisp
Programming with GNU Emacs Lisp William H. Mitchell (whm) Mitchell Software Engineering (.com) GNU Emacs Lisp Programming Slide 1 Copyright © 2001-2008 by William H. Mitchell GNU Emacs Lisp Programming Slide 2 Copyright © 2001-2008 by William H. Mitchell Emacs Lisp Introduction A little history GNU Emacs Lisp Programming Slide 3 Copyright © 2001-2008 by William H. Mitchell Introduction GNU Emacs is a full-featured text editor that contains a complete Lisp system. Emacs Lisp is used for a variety of things: • Complete applications such as mail and news readers, IM clients, calendars, games, and browsers of various sorts. • Improved interfaces for applications such as make, diff, FTP, shells, and debuggers. • Language-specific editing support. • Management of interaction with version control systems such as CVS, Perforce, SourceSafe, and StarTeam. • Implementation of Emacs itself—a substantial amount of Emacs is written in Emacs Lisp. And more... GNU Emacs Lisp Programming Slide 4 Copyright © 2001-2008 by William H. Mitchell A little history1 Lisp: John McCarthy is the father of Lisp. The name Lisp comes from LISt Processing Language. Initial ideas for Lisp were formulated in 1956-1958; some were implemented in FLPL (FORTRAN-based List Processing Language). The first Lisp implementation, for application to AI problems, took place 1958-1962 at MIT. There are many dialects of Lisp. Perhaps the most commonly used dialect is Common Lisp, which includes CLOS, the Common Lisp Object System. See http://www-formal.stanford.edu/jmc/history/lisp/lisp.html for some interesting details on the early history of Lisp. 1 Don't quote me! GNU Emacs Lisp Programming Slide 5 Copyright © 2001-2008 by William H. -
The Evolution of Lisp
1 The Evolution of Lisp Guy L. Steele Jr. Richard P. Gabriel Thinking Machines Corporation Lucid, Inc. 245 First Street 707 Laurel Street Cambridge, Massachusetts 02142 Menlo Park, California 94025 Phone: (617) 234-2860 Phone: (415) 329-8400 FAX: (617) 243-4444 FAX: (415) 329-8480 E-mail: [email protected] E-mail: [email protected] Abstract Lisp is the world’s greatest programming language—or so its proponents think. The structure of Lisp makes it easy to extend the language or even to implement entirely new dialects without starting from scratch. Overall, the evolution of Lisp has been guided more by institutional rivalry, one-upsmanship, and the glee born of technical cleverness that is characteristic of the “hacker culture” than by sober assessments of technical requirements. Nevertheless this process has eventually produced both an industrial- strength programming language, messy but powerful, and a technically pure dialect, small but powerful, that is suitable for use by programming-language theoreticians. We pick up where McCarthy’s paper in the first HOPL conference left off. We trace the development chronologically from the era of the PDP-6, through the heyday of Interlisp and MacLisp, past the ascension and decline of special purpose Lisp machines, to the present era of standardization activities. We then examine the technical evolution of a few representative language features, including both some notable successes and some notable failures, that illuminate design issues that distinguish Lisp from other programming languages. We also discuss the use of Lisp as a laboratory for designing other programming languages. We conclude with some reflections on the forces that have driven the evolution of Lisp. -
Federated Systems
Federated Systems Jeremy Rubin [email protected] December 9, 2015 Abstract Federation is an amazingly powerful tool in a system designer’s tool belt. This work provides a unifying definition for federated. In abbrevia- tion: a system is federated when there are multiple providers of an iden- tical (or nearly identical), interoperable service. The federated paradigm o↵ers much improved fault tolerance, liberty, and privacy over centralized alternatives. The federated paradigm applies to all sorts of systems, from governmental to web services. However, this paradigm seems to be unsus- tainable, either devolving into centralized systems or being outpaced by them. In this paper, I will delve into multiple examples of federated sys- tems, exploring their successes and failures, as well as delving into what caused the decay of these systems. In reflection, I will also provide sev- eral suggestions on how system developers might harden their use of this paradigm. 1 Contents 1 Introduction: 3 2 Defining Federation: 5 2.1 Governmental Federations . 6 2.2 ComputerScience .......................... 8 2.2.1 Simple Sharded Database . 8 2.2.2 Federated Byzantine Agreement . 8 2.2.3 Federated Cryptography . 9 2.3 FederatedIdentity .......................... 9 2.4 TheDefinition ............................ 10 3 Case Studies 11 3.1 E-Mail................................. 12 3.2 Blog.................................. 14 3.3 XMPP................................. 15 3.4 DNS.................................. 16 3.5 Security Assertion Markup Language . 17 3.6 McDonald’s . 18 3.7 Social Networks . 18 3.7.1 Failures in Centralized Social Networks . 18 3.7.2 Hope in Federation? . 20 4 Conclusion 21 4.1 The Federated System Designer’s Handbook . -
Programming Languages As Operating Systems (Or Revenge of the Son of the Lisp Machine)
Programming Languages as Operating Systems (or Revenge of the Son of the Lisp Machine) Matthew Flatt Robert Bruce Findler Shriram Krishnamurthi Matthias Felleisen Department of Computer Science∗ Rice University Houston, Texas 77005-1892 Abstract reclaim the program’s resources—even though the program and DrScheme share a single virtual machine. The MrEd virtual machine serves both as the implementa- To address this problem, MrEd provides a small set of tion platform for the DrScheme programming environment, new language constructs. These constructs allow a program- and as the underlying Scheme engine for executing expres- running program, such as DrScheme, to run nested programs sions and programs entered into DrScheme’s read-eval-print directly on the MrEd virtual machine without sacrificing loop. We describe the key elements of the MrEd virtual control over the nested programs. As a result, DrScheme machine for building a programming environment, and we can execute a copy of DrScheme that is executing its own step through the implementation of a miniature version of copy of DrScheme (see Figure 1). The inner and middle DrScheme in MrEd. More generally, we show how MrEd de- DrSchemes cannot interfere with the operation of the outer fines a high-level operating system for graphical programs. DrScheme, and the middle DrScheme cannot interfere with the outer DrScheme’s control over the inner DrScheme. 1 MrEd: A Scheme Machine In this paper, we describe the key elements of the MrEd virtual machine, and we step through the implementation The DrScheme programming environment [10] provides stu- of a miniature version of DrScheme in MrEd. -
Performance Comparison of the Window Systems of Two LISP Machines
A Performance Comparison of the Window Systems of Two LISP Machines Ramin Zabih Raj Jain Massachusetts Institute o fTechnology Digital Equipment Corp. Department ofEE & CS 77 Reed Road (HLO2-3/N03) Cambridge, MA 02139 Hudson, MA 01749 We chose total elapsed time as our performance metric. EXTENDED ABSTRACT Elapsed time is also referred to as response time. We ran 1000 We have constructed a workload for comparing window trials ofour workload on a 3600 running Release 5 software with 1 system performance of different computers. It consists of key Megabyte of physical memory and on a CADR running release 4.5 operations that window systems should universally provide. We software with 386 Kbytes of memory. The results of our tests are have used this workload to measure the performance of a the reported in Table 1. Using the p2 algorithm [2],we also calculated Symbolics ZetaLisp window system on two Lisp Machines, the the fifth and ninety-fifth percentiles for the results. In addition, 3600 [3,4] and the CADR [ 1 ]. we have listed the median and the mean. The workload consists of repeating a sequence of operations Table 1: Time in milliseconds is shown as tl/t2,where t I is time (which we call a run) many times. Each run starts by creating a for 3600, t2 is the time for CADR. test window, and proceeds to perform various operations on the window in the order below. Finally, the test window is deleted. Operation 95_.....% 5% Median Mean The details of the operations performed in an individual run of the CREATE 60/70 10/40 20/50 21.8/48.5 workload follow. -
Symbolics Architecture
Symbolics Architecture David A. Moon Symbolics, Inc. W hat is an architecture? In com- languages, user interface, and operating This architecture puter systems, an architecture system. System architecture defines the rapid is a specification of an inter- product that people actually use; the other enables face. To be dignified by the name architec- levels of architecture define the mecha- development and ture, an interface should be designed for a nism underneath that implements it. Sys- long lifespan and should connect system tem architecture is implemented by soft- efficient execution of components maintained by different orga- ware; hardware only sets bounds on what large, ambitious nizations. Often an architecture is part ofa is possible. System architecture defines the product definition and defines character- motivation for most of the design choices applications. An istics on which purchasers of that product at the other levels ofarchitecture. This sec- rely, but this is not true of everything that tion is an overview of Symbolics system unconventional design is called an architecture. An architecture is architecture. avoids trading off more formal than an internal interface be- The Symbolics system presents itself to tween closely-related system components, the user through a high-resolution bitmap safety for speed. and has farther-reaching effects on system display. In addition to text and graphics, characteristics and performance. the display contains presentations of ob- A computer system typically contains jects. The user operates on the objects by many levels and types ofarchitecture. This manipulating the presentations with a article discusses three architectures de- mouse. The display includes a continuous- fined in Symbolics computers: ly updated reminder of the mouse com- (1) System architecture-defines how mands applicable to the current context. -
The Lisp Machine: Noble Experiment Or Fabulous Failure?
THE LISP MACHINE: NOBLE EXPERIMENT OR FABULOUS FAILURE? P. T. Withington Symbolics, Inc. The “Lisp Machine”, a custom computer oriented programming, integrated pro- work-station designed specifically for the gramming environments, computer music, execution of Lisp, has been an important integrated-circuit design, and of course part of the Lisp tradition for 20 years. Artificial Intelligence (AI). Recently, the Lisp Machine has been depre- cated in view of the demise of many Lisp But, Lisp’s purity did not come without a Machine vendors, the swing towards stan- price. The choice by many languages to dardization, and the advances that reduced expose implementational limitations is often instruction set (RISC) architectures have a choice of efficiency. The speed of the brought. But rumors of its death are greatly normal case is optimized at the risk of the exaggerated. abnormal case going undetected. Lisp, on the other hand, guarantees the unusual as Unlike most commercial computer lan- well as the usual will be dealt with uni- guages, Lisp has always been a language of formly. It must always be on its guard: ideals. Its roots are in the theory of lambda- every operation must be checked for excep- calculus. Whereas other languages burden tions. As a consequence, Lisp on conven- the programmer with implementational gaps tional machines has historically been pon- in their abstractions, Lisp has always had the derous to work with. aim of supporting complete abstractions.1 This idealistic bent of Lisp has led to it often In the early 1970’s several groups of being the language of choice for computer- researchers utilized two novel hardware oriented research in universities and indus- technologies to improve the efficiency of try.