Colour Preferences of Tetragonula Carbonaria Sm. Stingless Bees For

Total Page:16

File Type:pdf, Size:1020Kb

Colour Preferences of Tetragonula Carbonaria Sm. Stingless Bees For University of Groningen Colour preferences of Tetragonula carbonaria Sm. stingless bees for colour morphs of the Australian native orchid Caladenia carnea Dyer, Adrian G.; Boyd-Gerny, Skye; Shrestha, Mani; Garcia, Jair E.; van der Kooi, Casper J.; Wong, Bob B M Published in: Journal of Comparative Physiology A DOI: 10.1007/s00359-019-01346-0 IMPORTANT NOTE: You are advised to consult the publisher's version (publisher's PDF) if you wish to cite from it. Please check the document version below. Document Version Publisher's PDF, also known as Version of record Publication date: 2019 Link to publication in University of Groningen/UMCG research database Citation for published version (APA): Dyer, A. G., Boyd-Gerny, S., Shrestha, M., Garcia, J. E., van der Kooi, C. J., & Wong, B. B. M. (2019). Colour preferences of Tetragonula carbonaria Sm. stingless bees for colour morphs of the Australian native orchid Caladenia carnea. Journal of Comparative Physiology A, 205(3), 347-361. https://doi.org/10.1007/s00359-019-01346-0 Copyright Other than for strictly personal use, it is not permitted to download or to forward/distribute the text or part of it without the consent of the author(s) and/or copyright holder(s), unless the work is under an open content license (like Creative Commons). Take-down policy If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim. Downloaded from the University of Groningen/UMCG research database (Pure): http://www.rug.nl/research/portal. For technical reasons the number of authors shown on this cover page is limited to 10 maximum. Download date: 27-09-2021 Journal of Comparative Physiology A (2019) 205:347–361 https://doi.org/10.1007/s00359-019-01346-0 ORIGINAL PAPER Colour preferences of Tetragonula carbonaria Sm. stingless bees for colour morphs of the Australian native orchid Caladenia carnea Adrian G. Dyer1,4 · Skye Boyd‑Gerny2 · Mani Shrestha2,3 · Jair E. Garcia1 · Casper J. van der Kooi5 · Bob B. M. Wong2 Received: 18 October 2018 / Revised: 8 May 2019 / Accepted: 13 May 2019 / Published online: 29 May 2019 © Springer-Verlag GmbH Germany, part of Springer Nature 2019 Abstract Innate colour preferences promote the capacity of pollinators to fnd fowers, although currently there is a paucity of data on how preferences apply to real fowers. The Australian sugarbag bee (Tetragonula carbonaria Sm.) has innate prefer- ences for colours, including UV-absorbing white. Sugarbag bees are pollinators of the terrestrial orchid Caladenia carnea R.Br., which has both white and pink morphs. In laboratory conditions, we tested fower-naïve bees with the white and pink fower morphs revealing a signifcant preference for the white morph, consistent with experiments using artifcial stimuli. In experiments to understand how bees may select food-deceptive orchids following habituation to a particular colour morph, we observed a signifcant increase in choices towards novel white fowers. We also observed that the presence of a UV- refecting dorsal sepal signal signifcantly increased bee choices compared to fowers that had the UV signal blocked. Our fndings demonstrate that innate preference testing of insect pollinators with artifcial stimuli is replicated in a biologically signifcant scenario with fowers. The fndings also underscore how food-deceptive orchids can receive sufcient pollinator visits to ensure pollination by having diferent morphs that draw on the innate preferences of bees and their ability to make decisions in a complex ecological setting. Keywords Flower · Orchids · Pollination · Innate preferences · Ultraviolet Introduction 2011; Reser et al. 2012; Hempel de Ibarra et al. 2014) infu- ence how fowers visited by bees may have evolved specifc Plant–pollinator interactions provide important insights into signals (Chittka and Menzel 1992). Darwin (1877) postu- how complex biological partnerships exist (Barth 1985; lated that innate preferences could allow fower visitors to Sargent and Ackerly 2008; Mitchell et al. 2009). Bees, in more easily fnd fowers, and testing using artifcial stimuli particular, are an important model in neuroethology for in several species of bees has revealed innate colour prefer- understanding how the building blocks of sensory percep- ences that could act to infuence bee choices (Giurfa et al. tion (Frisch 1914; Srinivasan and Lehrer 1988; Dyer et al. 1995; Gumbert 2000; Rohde et al. 2013; Dyer et al. 2016a). However, there is currently a paucity of data on how col- * Adrian G. Dyer our preferences observed in bees for artifcial stimuli might [email protected] represent the actual choices for real fowers. Understanding these principles is important for building a better under- 1 School of Media and Communication, RMIT University, standing of how sensory perception of bee pollinators may Melbourne, VIC 3001, Australia shape plant communities. 2 School of Biological Sciences, Monash University, Clayton, Colour perception requires the presence of multiple pho- VIC 3800, Australia toreceptors, and bees have been shown to have a phylogenet- 3 Faculty of Information Technology, Monash University, ically conserved trichromatic visual system based on ultra- Clayton, VIC 3800, Australia violet-, blue- and green-sensitive photoreceptors (Briscoe 4 Department of Physiology, Monash University, Clayton, and Chittka 2001). In this respect, fowers in both the North- VIC 3800, Australia ern (Chittka and Menzel 1992; Arnold et al. 2009; Shrestha 5 Groningen Institute for Evolutionary Life Sciences, et al. 2014) and Southern Hemispheres (Dyer et al. 2012; University of Groningen, Groningen, The Netherlands Vol.:(0123456789)1 3 348 Journal of Comparative Physiology A (2019) 205:347–361 Bischof et al. 2013; Shrestha et al. 2013) are typically char- and perceptual biases of Hymenopteran pollinators (Wong acterised by spectral signatures with marker points at about and Schiestl 2002; Peakall 2007; Phillips et al. 2009; Gaskett 400 and 500 nm, which closely match the optimal colour 2011). In this regard, the role of colour signals in orchids processing of bee trichromats (Helversen 1972; Chittka and that use food mimicry to achieve pollination remains poorly Menzel 1992). However, there is strong evidence that the understood (Jersáková et al. 2012, 2016). Bees, including colour vision of diferent pollinators signifcantly infuences the sugarbag bee, are known pollinators of the terrestrial what colour fowers evolve. For instance, in South America, orchid Caladenia carnea (Adams et al. 1992; Kuiter 2016), both white and red hummingbird-pollinated fowers difer a widespread species endemic to south-eastern Australia. from bee-pollinated fowers in their refection properties Caladenia carnea is believed to be a food-deceptive orchid for ultraviolet (UV) light (Lunau et al. 2011). Specifcally, that achieves pollination through colour mimicry of food- red fowers lack UV signals and, thus, the predominately rewarding fowers. Interestingly, the species is also colour long wavelength signals do not modulate the trichromatic polymorphic, with both white and pink forms of the fower vision of bees, whereas hummingbird-pollinated white fow- present in the same environment (Jones 2006 and Pers. obs ers do refect UV, which results in achromatic stimuli that authors). Both the orchid’s pollination syndrome and its are difcult to detect since bees do not process brightness striking colour polymorphism make C. carnea an excellent diferences (Kevan et al. 1996; Spaethe et al. 2001; Dyer model with which to investigate foral exploitation of the vis- et al. 2007; Lunau et al. 2011; Ng et al. 2018). For common ual system and behaviour of bee pollinators. Due to the lack poppy (Papaver rhoeas) fowers, it was found that in the of any obvious resemblance to nectar-producing models, it Middle East where it is pollinated by a red-sensitive beetle has been suggested that most food-deceptive Caladenia spe- the fowers refect only red light, but in Europe, where it is cies, including C. carnea, are likely to be using non-model pollinated by bees, the fowers also refect ultraviolet light mimicry to attract generalist food-seeking insects (Phillips (van der Kooi and Stavenga 2019). Thus, UV signalling from et al. 2009; but see Dixon and Christenhusz 2018). broadband natural colours can be complex and depend on In the current study, we frst used laboratory-based testing which wavelengths of UV are refected, and it is important to of sugarbag bees to investigate if previously observed innate test diferent animals to understand how the building blocks preferences for UV-absorbing white artifcial stimuli might of perception may take efect in biological systems (Kemp apply when considering colour morphs of cultivated C. et al. 2015). carnea orchid fowers sourced from the Australasian Native Recently, there has been increased interest in stingless Orchid Society. In our lab-based study, we additionally bees and how these insects interact with their environment tested if the dorsal sepal that refected UV radiation infu- in a way that enables successful pollination (Hrncir et al. enced bee choices if the UV signal was blocked. Our analy- 2016). The sugarbag bee (Tetragonula carbonaria Sm.), is ses of spectra also considered modulation of green receptor a small (1.13 ± 0.02 mm intertegulae span; mean ± SD; Dyer contrast, since that factor has previously been shown to be et al. 2016a, b) native Australian bee that lives in colonies
Recommended publications
  • Tetragonula Carbonaria and Disease: Behavioural and Antimicrobial Defences Used by Colonies to Limit Brood Pathogens
    Tetragonula carbonaria and disease: Behavioural and antimicrobial defences used by colonies to limit brood pathogens Jenny Lee Shanks BHort, BSc (Hons) Submitted in fulfilment of requirements for the degree Doctor of Philosophy Submitted to the School of Science and Health University of Western Sydney, Hawkesbury Campus July, 2015 Our treasure lies in the beehive of our knowledge. We are perpetually on the way thither, being by nature winged insects and honey gatherers of the mind. Friedrich Nietzsche (1844 – 1900) i Statement of Authentication The work presented in this thesis is, to the best of my knowledge and belief, original except as acknowledged in the text. I hereby declare that I have not submitted this material, whether in full or in part, for a degree at this or any other institution ……………………………………………………………………. Jenny Shanks July 2015 ii Acknowledgements First and foremost, I am extremely indebted to my supervisors, Associate Professor Robert Spooner-Hart, Dr Tony Haigh and Associate Professor Markus Riegler. Their guidance, support and encouragement throughout this entire journey, has provided me with many wonderful and unique opportunities to learn and develop as a person and a researcher. I thank you all for having an open door, lending an ear, and having a stack of tissues handy. I am truly grateful and appreciate Roberts’s time and commitment into my thesis and me. I am privileged I had the opportunity to work alongside someone with a wealth of knowledge and experience. Robert’s passion and enthusiasm has created some lasting memories, and certainly has encouraged me to continue pursuing my own desires.
    [Show full text]
  • Natasha Fijn Sugarbag Dreaming: the Significance of Bees to Yolngu in Arnhem Land, Australia
    H U M a N I M A L I A 6:1 Natasha Fijn Sugarbag Dreaming: the significance of bees to Yolngu in Arnhem Land, Australia Introduction. We pile out of the dusty four-wheel drive troop carrier and begin walking in separate groups of two or three, bare feet crunching through the dry grass. The only other sounds are occasional resonant taps from an axe testing whether a trunk is hollow; or when the women periodically call to each other to keep within earshot amongst the scattered stands of stringybark trees. It is easy, open walking through country. The extended family group I came with care for the land by setting fire to the grass during the drier months, particularly at this time of year, sugarbag season. I observe while the women in their brightly coloured skirts with their young children or grandchildren look closely at the trunks of the trees and up into the canopy at the blue sky beyond, scanning for signs of the tiny black stingless bees. Today offers good conditions for finding honey. If the conditions are too cool or windy the bees tend to stay in their nest, not venturing out to forage. We hear a yell in the distance indicating that a nest has been found and walk to the small, scraggly-looking tree. The teenager, who located the bees, begins to chop down the tree to get at the nest inside. Children hold onto their jars and containers in keen anticipation of the rich, sticky honey within the tree. Once the women have opened up the nest, they do not only consume the liquid honey but collect everything with the beaten end of a stick: the wax, larvae, pollen and the odd entrapped stingless bee.
    [Show full text]
  • Morphological Characteristics and Morphometrics of Stingless Bees (Hymenoptera: Meliponini) in Yogyakarta, Indonesia
    BIODIVERSITAS ISSN: 1412-033X Volume 21, Number 6, June 2020 E-ISSN: 2085-4722 Pages: 2619-2628 DOI: 10.13057/biodiv/d210633 Morphological characteristics and morphometrics of Stingless Bees (Hymenoptera: Meliponini) in Yogyakarta, Indonesia MANAP TRIANTO, HARI PURWANTO♥ Faculty of Biology, Universitas Gadjah Mada. Jl. Teknika Selatan, Sekip Utara, Bulaksumur, Sleman 55281,Yogyakarta, Indonesia. Tel./fax.: +62-274-580839, ♥email: [email protected] Manuscript received: 28 November 2019. Revision accepted: 17 May 2020. Abstract. Trianto M, Purwanto H. 2020. Morphological characteristics and morphometrics of Stingless Bees (Hymenoptera: Meliponini) in Yogyakarta, Indonesia. Biodiversitas 21: 2619-2628. Stingless bees (Apidae: Meliponinae) are eusocial insects living together in a colony with a highly organized system. Also, these bees have morphological and morphometric characters that vary among species, islands, and environmental types. This paper described morphological characteristics and morphometric study of stingless bees from the Special Region of Yogyakarta Province, Indonesia. There were seven species of stingless bees found in the Special Region of Yogyakarta, namely Tetragonula laeviceps, T. iridipennis, T. biroi, T. sapiens, T. sarawakensis, Lepidotrigona terminata, and Heterotrigona itama. The morphometry of the stingless bees obtained in this study has varying sizes compared to the same species that have been reported elsewhere. In this study, we described the morphological and morphometric characteristics of the seven species of stingless bees in the Special Region of Yogyakarta Province, Indonesia, and presented the PCA analysis to figure out the grouping characters in order to determine its diagnostic characters. Keywords: Meliponini, morphological, morphometric, stingless bees, Yogyakarta INTRODUCTION province prefer to keep Asian honey bees Apis cerana than stingless bee, because the honey bee can produce more Stingless bee (Hymenoptera: Meliponini) is a eusocial honey.
    [Show full text]
  • Stingless Bee Propagation
    23/08/2018 Stingless Bee Propagation NATURAL PROPAGATION Stingless bees do not swarm the same as honey bees. Instead they set up a new nest site, stock it with food and then move in. Can take weeks, months, or years! So we need artificial propagation techniques Australian Native Bee Book, pg110 Tetragonula carbonaria Austroplebeia australis Tetragonula hockingsi Austroplebeia cassiae Tetragonula davenporti Austroplebeia essingtoni Tetragonula mellipies Austroplebeia magna Tetragonula sapiens Tetragonula clypearis Austroplebeia cincta 2 years and waiting for a queen (Green species also found in PNG or S.E. Asia) A.australis Bees in S.E. QLD My mentors T.hockingsi Robert Luttrell > 10,000 workers More than 300 hives Coastal QLD Commercial sales Brisbane to Cape York Educator Vigorous Inventor Trouble makers A.australis Allan Beil Small or large colonies (talking to Nick Powell) Drier Inland areas More than 300 hives Found in most states A.australis Can handle droughts Shy Naturalist Very gentle Dr Tim Heard T.carbonaria More than 300 hives 10,000 workers Author / Educator Coastal Bundaberg to Bega Commercial sales Vigorous Researcher Less troublesome than hockingsi 1 23/08/2018 Boxes / Pests / Heat / Cold > Need a better box than Apis. Sealed against pests and thick enough to insulate from heat and cold > Hard to transfer. Want a box to resist weather, to last 20 years plus • Syrphid fly (left) • Phorid fly (below) 1. Splitting or Division • Divides a colony into 2 equal parts every 12 to 18 months • Each box gets half the provisions and half the brood • There are always queen cells and virgin queens • Split when the hive contents are > 3kg (net) and the weather is kind • Tim Heard is an early user of this technique.
    [Show full text]
  • Morphometry Analysis of Stingless Bee Tetragonula Iridipennis Smith (1854)
    Int.J.Curr.Microbiol.App.Sci (2017) 6(10): 2963-2970 International Journal of Current Microbiology and Applied Sciences ISSN: 2319-7706 Volume 6 Number 10 (2017) pp. 2963-2970 Journal homepage: http://www.ijcmas.com Original Research Article https://doi.org/10.20546/ijcmas.2017.610.350 Morphometry Analysis of Stingless Bee Tetragonula iridipennis Smith (1854) M. Kishan Tej1*, M.R. Srinivasan1, K. Vijayakumar2, N. Natarajan1 and S. Mohan Kumar1 1Tamil Nadu Agricultural University Coimbatore, Tamil Nadu, India 2Kongu Nadu Arts and Science College, Coimbatore, Tamil Nadu, India *Corresponding author ABSTRACT The present studies were carried out to know the diversity in morphology of stingless bee Tetragonula iridipe nnis in Coimbatore, Erode and Tiruppur districts of Tamil Nadu, India. K e yw or ds Adult worker bees were collected from identified feral nest of T. iridipennis in three different locations and bees were preserved in 70% ethanol. The preserved bees were Morphometry, Stingless bee, dissected and fourteen morphometric measurements were studied using Leica M 165C stereo microscope. Morphometric analysis revealed that the bees collected from Tetragonula iridipennis , Coimbatore district were comparatively larger (Mean of HL= 1.53, HW 1.76, AL 1.87, diversity and HLL 3.46 and BTL 0.57 FL 4.00, WL2= 1.19, HTL=1.60 mm) compared to other two Taxonomy . districts. The bees collected from Erode district are relatively small (Mean of HL= 1.23, HW= 1.62, AL 1.67, HLL 3.26 and BTL 0.44, FL 3.32, WL2= 0.89, HTL=1.31 mm). Article Info However there is no difference observed in number of hamuli (5) irrespective of the Accepted: district from which bees are collected.
    [Show full text]
  • Innate Colour Preferences of the Australian Native Stingless Bee Tetragonula Carbonaria Sm
    $ $ ! $ $" # ! "# $ %&'(')'*''' 1 23 Your article is protected by copyright and all rights are held exclusively by Springer- Verlag Berlin Heidelberg. This e-offprint is for personal use only and shall not be self- archived in electronic repositories. If you wish to self-archive your article, please use the accepted manuscript version for posting on your own website. You may further deposit the accepted manuscript version in any repository, provided it is only made publicly available 12 months after official publication or later and provided acknowledgement is given to the original source of publication and a link is inserted to the published article on Springer's website. The link must be accompanied by the following text: "The final publication is available at link.springer.com”. 1 23 Author's personal copy J Comp Physiol A DOI 10.1007/s00359-016-1101-4 ORIGINAL PAPER Innate colour preferences of the Australian native stingless bee Tetragonula carbonaria Sm. Adrian G. Dyer1,2 · Skye Boyd-Gerny3 · Mani Shrestha1,4 · Klaus Lunau5 · Jair E. Garcia1 · Sebastian Koethe5 · Bob B. M. Wong3 Received: 14 March 2016 / Revised: 1 June 2016 / Accepted: 1 June 2016 © Springer-Verlag Berlin Heidelberg 2016 Abstract Innate preferences promote the capacity of pol- vision and a hexagon colour space revealed a difference linators to find flowers. Honeybees and bumblebees have between test colonies, and a significant effect of green con- strong preferences for ‘blue’ stimuli, and flowers of this trast and an interaction effect of green contrast with spec- colour typically present higher nectar rewards. Interest- tral purity on bee choices. We also observed colour prefer- ingly, flowers from multiple different locations around the ences for stimuli from the blue and blue–green categorical world independently have the same distribution in bee col- regions of colour space.
    [Show full text]
  • Clarence Native Bees – Care Fact 1
    CLARENCE NATIVE BEES – CARE FACT 1 THE QUICK FACTS ON NATIVE BEES In Australia 2,000 species of native bees have been identified. On the North Coast we have about 12 species which include both the social and solitary bees which include both the social and solitary bees. Of these, there are three genera of social native bees - Tetragonula carbonaria, Austroplebia australis and Tetragonula hockingsii. These native bees are very hard to tell apart by any observer. The only easy way to identify them is through their differing nest architecture as shown in the photos below. All three species produce honey, however there are some significant differences in their nesting and foraging behaviour. A hive of Tetragonula carbonaria can contain between 1,000 to 10,000 native bees and these can be readily observed flying about. Austroplebia nests are much more fragile and they spread unevenly in loose piles. Unlike the intact tight spiral formation of the Tetragonula carbonaria hive. Austroplebia australis are also known to have relatively small hives of around 50 to 100 bees. These bees are probably the most vulnerable as their nests are usually located in dead trees and situated at a high level where they are not readily observed. Tetragonula hockingsii are most commonly found throughout the east coast of Queensland to the border of NSW where the climatic conditions are more suitable to their breeding. This species is not discussed in much detail here. (Left to Right) : Hive structures - Tetragonula carbonaria, Austroplebia Australis and Tetragonula hockingsii (Photos : John Klumpp) CLARENCE NATIVE BEES – CARE FACT 1 Native social stingless bees are honey producers and in most cases, one hive can produce a small amount of honey each year (sometimes up to 1kg).
    [Show full text]
  • Stingless Bees (Excl
    Stingless Bees (Excl. Tetragonula) from the Continental Southeast Asia in the Collection of Berince P. Bishop Museum, Title Honolulu (Hymenoptera, Apidae) (With 14 Text-figures and 3 Tables) Author(s) SAKAGAMI, Shôichi F. Citation 北海道大學理學部紀要, 20(1), 49-76 Issue Date 1975-10 Doc URL http://hdl.handle.net/2115/27593 Type bulletin (article) File Information 20(1)_P49-76.pdf Instructions for use Hokkaido University Collection of Scholarly and Academic Papers : HUSCAP Stin~less Bees (Exc1. Tetragonula) from the Continental Southeast Asia in the Collection of Berince P. Bishop Museum, Honolulu (Hymenoptera, Apidae)l) By Shoichi F. Saka~ami Zoological Institute, Hokkaido University (With 14 Text·figures and 3 Tables) The present paper is a report on the stingless bees collected from various localities of the Continental Southeast Asia and deposited in Berince P. Bishop Museum. Among three major faunae of this Pantropic bee group, Indo­ australian, Ethiopean and Neotropical, the Asiatic part of the first mentioned is the best clarified thanks to two excellent papers by Schwarz (1937, '39), with a supplement by Moure (1961). The present paper records some additional notes on the distribution and taxonomy of the species inhabiting this area, excluding the forms belonging to Tetragonula, which will be treated in a separate paper. Before going further I would like to express my sincere thanks to Dr. J. L. Gressitt, B.P. Bishop Museum, for his kindness in placing the present material at my disposal and informing me of details about the localities where the specimens were collected, and to Prof. Yoshihiro Hirashima, Kyushu University, Fukuoka, for his effort in arranging the dispatchment of the material for me.
    [Show full text]
  • Bees at War: Interspecific Battles and Nest Usurpation in Stingless Bees
    The University of Chicago Bees at War: Interspecific Battles and Nest Usurpation in Stingless Bees. Author(s): John Paul Cunningham, James P. Hereward, Tim A. Heard, Paul J. De Barro, and Stuart A. West Source: The American Naturalist, Vol. 184, No. 6 (December 2014), pp. 777-786 Published by: The University of Chicago Press for The American Society of Naturalists Stable URL: http://www.jstor.org/stable/10.1086/678399 . Accessed: 07/10/2015 00:46 Your use of the JSTOR archive indicates your acceptance of the Terms & Conditions of Use, available at . http://www.jstor.org/page/info/about/policies/terms.jsp . JSTOR is a not-for-profit service that helps scholars, researchers, and students discover, use, and build upon a wide range of content in a trusted digital archive. We use information technology and tools to increase productivity and facilitate new forms of scholarship. For more information about JSTOR, please contact [email protected]. The University of Chicago Press, The American Society of Naturalists, The University of Chicago are collaborating with JSTOR to digitize, preserve and extend access to The American Naturalist. http://www.jstor.org This content downloaded from 23.235.32.0 on Wed, 7 Oct 2015 00:46:53 AM All use subject to JSTOR Terms and Conditions vol. 184, no. 6 the american naturalist december 2014 Natural History Note Bees at War: Interspecific Battles and Nest Usurpation in Stingless Bees John Paul Cunningham,1,* James P. Hereward,2 Tim A. Heard,3 Paul J. De Barro,3 and Stuart A. West4 1. Queensland University of Technology, Gardens Point, Brisbane, Queensland 4001, Australia; 2.
    [Show full text]
  • The Small Hive Beetle 2 the Small Hive Beetle INTRODUCTION 3
    An invasive pest on honey bees The Small Hive Beetle 2 The Small Hive Beetle INTRODUCTION 3 3 INTRODUCTION Honey bees – Honey bees – small insects bring big benefits 5 The Small Hive Beetle – small insects an invasive pest from Africa bring big benefits 10 BIOLOGY 14 Diagnosis: eggs – larvae – pupae – adult beetles As honey bees are important pollinators of many crops, they contribute to securing our food supply. Up to eight percent of 18 INFESTATION global crop yields depend on the support of bees and other pollinating insects, 24 A THREAT TO BEEKEEPING and as such, healthy pollinators are a vital element of sustainable farming. As a 30 CONTROLLING THE partner in pollinator protection, Bayer is SMALL HIVE BEETLE committed to the well-being of honey bees, 34 Treatment methods for infested bee colonies wild bees, other pollinators and biodiversity in general, while helping farmers to 38 OUTLOOK optimize their agricultural productivity. Research and prevention – measures going forward Over the last 60 years, the number of managed honey bee colonies has risen 43 IMPRINT worldwide by 65 percent, but the health challenges facing these colonies in several regions of the world have been a cause for considerable concern. The contributory factors include various pests and diseases, among them the Small Hive Beetle (Aethina tumida), which has spread from its original geographic range in sub-Saharan Africa to many regions of the world in recent years. Þ 1 If an article or image is marked with this sign, you can download it via the following link: www.beecare.bayer.com/SHB We hope this material will prove useful for your Small Hive Beetle training courses.
    [Show full text]
  • The Ontogenic Time and Worker Longevity in the Australian Stingless Bee, Austroplebeia Australis
    The published article is available at Insectes Sociaux, published online February 2013, DOI 10.1007/s00040-013-0291-9 Research article The ontogenic time and worker longevity in the Australian stingless bee, Austroplebeia australis Megan Halcroft *, Anthony M. Haigh, Robert Spooner-Hart School of Science and Health, University of Western Sydney, Locked Bag 1797 Penrith NSW 2751, Australia * Author for correspondence Megan Halcroft, email [email protected] Abstract Little is known about the biology and life cycle of the Australian stingless bee, Austroplebeia australis (Friese). The ontogenic times for developing offspring, as well as the longevity of adults, drive the overall life cycle of a social colony. The developmental times for brood within stingless bee species which build cluster-type nests, such as A. australis, are as yet unreported. A technique was developed whereby ‘donor’ brood cells were separated from the main brood cluster and ‘grafted’ into hive annexes, allowing workers from within the colony to access the brood ‘grafts’ for hygiene and maintenance activities, whilst enabling observation of developing brood. The mean ontogenic time for A. australis workers, maintained at ~ 27°C, was 55 days, which is similar to that reported for other stingless bees. The maximum longevity of A. australis was determined by marking cohorts of worker bees within five colonies. Workers within all colonies demonstrated extended longevity, with an overall maximum longevity of 161 days, with the oldest bee living for 240 days. Extended longevity may result from evolutionary adaptations to the floral resource scarcity, which is regularly experienced in semi-arid, inland Australia; the natural habitat of A.
    [Show full text]
  • How Stingless Bees Are Able to Make Tall Spiral Nests 29 July 2020, by Bob Yirka
    How stingless bees are able to make tall spiral nests 29 July 2020, by Bob Yirka not just architecturally impressive, but were mesmerizing in their beauty. At the time, scientists had no explanation for how such a simple creature could create such magnificent structures out of nothing but wax. A closer look showed that the bees created their cells in hexagonal shapes then added regurgitated food, and then the queen deposited a single egg in the cell. The researchers with this new effort were at the time studying similar patterns in crystals and in mother-of-pearl created by mollusks. After finding that such patterns could be created by applying a very simple algorithm, the researchers turned their attention to the bees in Australia. To find out if the bees were using a similar algorithm, the researchers modeled their attributes and behaviors on a computer to create a simulation of their nest-building behavior. In so doing, they Combs of two species of the stingless bee Tetragonula discovered that the bees could very easily create showing structures of (a) target patterns (Tetragonula spiral structures by following two very simple rules. carbonaria), (b) spirals (Tetragonula carbonaria), (c) When it was time to build a new cell, they could add double spirals (Tetragonula carbonaria) and (d) more disordered terraces (Tetragonula hockingsi). Images a cell to the growth front, which was the edge of the courtesy of (a) Elke Haege; (b–d) Tim Heard. Credit: comb under construction—but it had to be placed Journal of The Royal Society Interface (2020). DOI: slightly higher than its neighbors—or they could build 10.1098/rsif.2020.0187 a new cell on top of another cell, provided it was level in comparison with the other cells in the nest.
    [Show full text]