Active Galactic Nuclei in Dwarf Galaxies

Total Page:16

File Type:pdf, Size:1020Kb

Active Galactic Nuclei in Dwarf Galaxies Active Galactic Nuclei in Dwarf Galaxies by Vivienne Francesca Baldassare A dissertation submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy (Astronomy and Astrophysics) in The University of Michigan 2017 Doctoral Committee: Associate Professor Elena Gallo, Chair Dr. Laura Ferrarese, Herzberg Institute for Astrophysics Associate Professor Oleg Y. Gnedin Associate Professor Dragan Huterer Associate Research Professor Monica Valluri Vivienne Francesca Baldassare [email protected] ORCID iD: 0000-0003-4703-7276 c Vivienne Francesca Baldassare 2017 “Because survival is insufficient” -Station Eleven by Emily St. John Mandel To Jeremy and Henri. ii ACKNOWLEDGEMENTS Firstly, I am incredibly grateful to my PhD advisor, Elena Gallo, for her mentorship, support, and guidance. Over the last five years, Elena has demonstrated to me how to be a careful, quantitative, and thorough scientist while never losing sight of the larger context of your results. I have benefited greatly from her advice and perspective on many matters, scientific and otherwise. I have been fortunate to be surrounded by many excellent scientists. In particular, I would like to acknowledge my collaborators Amy Reines and Jenny Greene for their mentorship and scientific guidance, which have helped shape my career in astronomy. I am grateful to the other members of my thesis committee – Laura Ferrarese, Oleg Gnedin, Monica Valluri, and Dragan Huterer – for their input throughout my graduate career; their comments and suggestions have improved this thesis and my work overall. My sincerest gratitude is extended to the entire University of Michigan Astronomy Department. It was a pleasure to earn my degree in such a collaborative, supportive, and friendly environment. I am especially grateful for my graduate cohort, who made study sessions more bearable with friendship and nachos. I am grateful for financial support in the form of a National Science Foundation Grad- uate Research Fellowship, and a Predoctoral Fellowship from the Rackham Graduate School at the University of Michigan. I am thankful to my parents, Andrea and Wayne, for their unending support, love, and encouragement, and for always reminding me to “keep fighting”. iii Thank you to my sister and co-conspirator Lily for inspiring me every day to be more bold and confident, and for being the Frodo to my Samwise. Finally, I am especially grateful to have taken this journey alongside my husband, Jeremy Hoskins: my best friend; co-adventurer; and the guardian of my solitude. iv TABLE OF CONTENTS DEDICATION :::::::::::::::::::::::::::::::::::::::::::: ii ACKNOWLEDGEMENTS ::::::::::::::::::::::::::::::::::::: iii LIST OF FIGURES ::::::::::::::::::::::::::::::::::::::::: vii LIST OF TABLES :::::::::::::::::::::::::::::::::::::::::: xiii ABSTRACT :::::::::::::::::::::::::::::::::::::::::::::: xiv CHAPTER I. Introduction ..........................................1 1.1 Background: active galactic nuclei . .1 1.1.1 Brief history of AGNs . .1 1.1.2 AGN structure . .2 1.1.3 Observational signatures of AGNs . .4 1.2 Evolution of galaxies and central massive black holes . .8 1.2.1 Scaling relations . .8 1.2.2 BH mass measurements . 10 1.3 Supermassive black hole formation . 13 1.3.1 Seed formation mechanisms . 13 1.3.2 Observational tests of BH formation theories . 16 1.4 Dwarf galaxies with AGN signatures . 17 1.5 Thesis contents . 20 II. Multi-epoch spectroscopy of dwarf galaxies with optical AGN signatures ........ 22 2.1 Motivations and Aims . 22 2.2 Introduction . 23 2.3 Observations and Data Reduction . 26 2.4 Analysis . 30 2.4.1 Emission line modeling . 30 2.4.2 Stellar velocity dispersions . 33 2.5 Broad line AGN candidates: Results . 34 2.5.1 Transient broad Hα ............................. 39 2.5.2 Persistent broad Hα ............................ 39 2.5.3 Ambiguous galaxies . 44 2.6 Type II supernovae in dwarf galaxies . 45 2.6.1 A Possible SN IIn in RGG J . 51 2.7 Discussion . 52 2.8 Conclusions . 54 2.9 Emission line fitting examples . 55 v III. A 50,000 solar mass black hole in the nucleus of a dwarf galaxy ............. 57 3.1 Motivation and Aims . 57 3.2 Introduction . 58 3.3 Observations and Data Reduction . 59 3.3.1 SDSS . 59 3.3.2 MagE . 60 3.3.3 Chandra X-ray Observatory . 61 3.3.4 Hubble Space Telescope . 61 3.4 Optical spectroscopic analysis . 62 3.4.1 Emission-line modeling . 62 3.4.2 Black hole mass . 66 3.5 X-ray analysis . 68 3.6 Imaging analysis . 68 3.6.1 SDSS Imaging . 68 3.6.2 HST imaging . 71 3.6.3 Comparison of SDSS and HST imaging analyses . 76 3.7 Scaling relations . 78 3.8 Conclusions . 82 IV. X-ray and ultraviolet properties of AGN in dwarf galaxies ................ 83 4.1 Motivation and Aims . 83 4.2 Introduction . 83 4.3 Observations and Analysis . 87 4.3.1 Chandra X-ray Observatory . 91 4.3.2 Hubble Space Telescope . 94 4.3.3 Archival data . 94 4.4 Results . 95 4.4.1 Nuclear X-ray Emission . 95 4.4.2 UV-to-X-ray flux ratios . 96 4.4.3 X-ray hardness ratio . 97 4.5 Discussion . 100 4.5.1 Origin of X-ray emission . 100 4.5.2 Comparison to more massive AGN . 102 4.6 Conclusions . 105 V. Summary and future directions ............................... 112 5.1 Summary . 112 5.2 Future directions . 114 BIBLIOGRAPHY :::::::::::::::::::::::::::::::::::::::::: 116 vi LIST OF FIGURES Figure 1.1 Simplified schematic of an active galactic nucleus (not to scale). Figure inspired by schematic from Urry & Padovani (1995). Depending on the viewing angle, the emission from the broad line region clouds may or may not be visible. .5 1.2 Typical quasar spectral energy distribution from Elvis et al. (1994). .6 1.3 Stellar orbits at the center of the Milky Way. This image was created by Prof. Andrea Ghez and her research team at UCLA and is from data sets obtained with the W. M. Keck Telescopes. 11 2.1 Red channel He-Ne-Ar arc lamp spectrum taken as part of our observations with the Dual- Imaging Spectrograph on the ARC 3.5m telescope. Note that the shape of the instrumental broadening has two components – a narrow core and a broad base. 32 2.2 [SII]λλ6716; 6731 lines from the DIS spectrum of RGG C (NSA 109990). The black line shows the observed spectrum, the red line is our best fit to the two lines, and the solid blue lines show the various components corresponding to our best fit of the two [SII] lines. We constrain the relative heights and widths of the “narrow” and “broad” components and use that model to fit the narrow-lines in the Hα-[NII] complex for DIS observations. 33 2.3 Spectral region of the MagE spectrum of RGG 119 used to measure the stellar velocity dispersion in pPXF. We use a region of the spectrum encompassing the Mg b triplet. The observed spectrum is shown in gray, while the shaded red region represents the range of outputs from pPXF for the chosen combinations of additive and multiplicative polynomials. 34 2.4 Positions of our SDSS broad Hα targets on the BPT diagram (Baldwin et al. 1981) us- ing the classification of Kewley et al. (2006). Each target is plotted in a different color. Note that there are two points for RGG J corresponding to the two SDSS observations. A diamond indicates that broad Hα was present in follow-up spectroscopy (‘persistent’), a square indicates an ambiguous follow-up broad Hα detection, and a circle indicates that broad Hα was not detected in follow-up observations (‘transient’). 35 2.5 The observed Hα-[NII] complex and corresponding best-fit profile for the SDSS, DIS, and OSMOS spectra of RGG C (NSA 109990). In each, the dark gray line represents the observed spectrum. The narrow emission line fit is plotted in green, and the blue shows the fit to broad Hα emission. The overall best-fit model is given in red, and the light gray line below the observed spectrum shows the residual between the observed spectrum and the best fit, offset by an arbitrary amount. This galaxy is classified as having transient broad Hα emission. 40 vii 2.6 The observed Hα-[NII] complex and corresponding best-fit profile for the SDSS and DIS spectra of RGG 9. The dark gray line represents the observed spectrum. The narrow emission line fit is plotted in green, and the blue shows the fit to broad Hα emission. The overall best-fit model is given in red, and the light gray line below the observed spectrum shows the residual between the observed spectrum and the best fit, offset by an arbitrary amount. We classify this galaxy as having persistent broad Hα................ 41 2.7 The observed Hα-[NII] complex and corresponding best-fit profile for the SDSS, MagE, and DIS spectra of RGG 119 (NSA 79874). In each, the dark gray line represents the observed spectrum. The narrow emission line fit is plotted in green, and the blue shows the fit to broad Hα emission. The overall best-fit model is given in red, and the light gray line below the observed spectrum shows the residual between the observed spectrum and the best fit, offset by an arbitrary amount. We classify this galaxy as having persistent broad Hα............................................... 42 2.8 Position of low-mass AGNs on the relation between black hole mass and stellar velocity dispersion. The MBH − σ? relations determined in Gultekin¨ et al. (2009), McConnell & Ma (2013), and Kormendy & Ho (2013) are plotted. We also show points for systems with dynamical BH mass measurements as compiled by Kormendy & Ho (2013) (pseudobulges are shown as gray squares, while classical bulges are plotted as gray circles). The black hole mass and stellar velocity dispersion for RGG 119 (NSA 79874; shown as a purple circle) were measured in this work.
Recommended publications
  • Active Galactic Nuclei: a Brief Introduction
    Active Galactic Nuclei: a brief introduction Manel Errando Washington University in St. Louis The discovery of quasars 3C 273: The first AGN z=0.158 2 <latexit sha1_base64="4D0JDPO4VKf1BWj0/SwyHGTHSAM=">AAACOXicbVDLSgMxFM34tr6qLt0Ei+BC64wK6kIoPtCNUMU+oNOWTJq2wWRmSO4IZZjfcuNfuBPcuFDErT9g+hC09UC4h3PvJeceLxRcg20/W2PjE5NT0zOzqbn5hcWl9PJKUQeRoqxAAxGoskc0E9xnBeAgWDlUjEhPsJJ3d9rtl+6Z0jzwb6ETsqokLZ83OSVgpHo6754xAQSf111JoK1kTChN8DG+uJI7N6buYRe4ZBo7di129hJ362ew5NJGAFjjfm3V4m0nSerpjJ21e8CjxBmQDBogX08/uY2ARpL5QAXRuuLYIVRjooBTwZKUG2kWEnpHWqxiqE+MmWrcuzzBG0Zp4GagzPMB99TfGzGRWnekZya7rvVwryv+16tE0DysxtwPI2A+7X/UjASGAHdjxA2uGAXRMYRQxY1XTNtEEQom7JQJwRk+eZQUd7POfvboej+TOxnEMYPW0DraRA46QDl0ifKogCh6QC/oDb1bj9ar9WF99kfHrMHOKvoD6+sbuhSrIw==</latexit> <latexit sha1_base64="H7Rv+ZHksM7/70841dw/vasasCQ=">AAACQHicbVDLSgMxFM34tr6qLt0Ei+BCy0TEx0IoPsBlBWuFTlsyaVqDSWZI7ghlmE9z4ye4c+3GhSJuXZmxFXxdCDk599zk5ISxFBZ8/8EbGR0bn5icmi7MzM7NLxQXly5slBjGayySkbkMqeVSaF4DAZJfxoZTFUpeD6+P8n79hhsrIn0O/Zg3Fe1p0RWMgqPaxXpwzCVQfNIOFIUro1KdMJnhA+yXfX832FCsteVOOzgAobjFxG+lhGTBxpe+HrBOBNjiwd5rpZsky9rFUn5BXvgvIENQQsOqtov3QSdiieIamKTWNogfQzOlBgSTPCsEieUxZde0xxsOaurMNNPPADK85pgO7kbGLQ34k/0+kVJlbV+FTpm7tr97Oflfr5FAd6+ZCh0nwDUbPNRNJIYI52nijjCcgew7QJkRzitmV9RQBi7zgguB/P7yX3CxVSbb5f2z7VLlcBjHFFpBq2gdEbSLKugUVVENMXSLHtEzevHuvCfv1XsbSEe84cwy+lHe+wdR361Q</latexit> The power source of quasars • The luminosity (L) of quasars, i.e. how bright they are, can be as high as Lquasar ~ 1012 Lsun ~ 1040 W. • The energy source of quasars is accretion power: - Nuclear fusion: 2 11 1 ∆E =0.007 mc =6 10 W s g−
    [Show full text]
  • Messier Objects
    Messier Objects From the Stocker Astroscience Center at Florida International University Miami Florida The Messier Project Main contributors: • Daniel Puentes • Steven Revesz • Bobby Martinez Charles Messier • Gabriel Salazar • Riya Gandhi • Dr. James Webb – Director, Stocker Astroscience center • All images reduced and combined using MIRA image processing software. (Mirametrics) What are Messier Objects? • Messier objects are a list of astronomical sources compiled by Charles Messier, an 18th and early 19th century astronomer. He created a list of distracting objects to avoid while comet hunting. This list now contains over 110 objects, many of which are the most famous astronomical bodies known. The list contains planetary nebula, star clusters, and other galaxies. - Bobby Martinez The Telescope The telescope used to take these images is an Astronomical Consultants and Equipment (ACE) 24- inch (0.61-meter) Ritchey-Chretien reflecting telescope. It has a focal ratio of F6.2 and is supported on a structure independent of the building that houses it. It is equipped with a Finger Lakes 1kx1k CCD camera cooled to -30o C at the Cassegrain focus. It is equipped with dual filter wheels, the first containing UBVRI scientific filters and the second RGBL color filters. Messier 1 Found 6,500 light years away in the constellation of Taurus, the Crab Nebula (known as M1) is a supernova remnant. The original supernova that formed the crab nebula was observed by Chinese, Japanese and Arab astronomers in 1054 AD as an incredibly bright “Guest star” which was visible for over twenty-two months. The supernova that produced the Crab Nebula is thought to have been an evolved star roughly ten times more massive than the Sun.
    [Show full text]
  • The Puzzling Nature of Dwarf-Sized Gas Poor Disk Galaxies
    Dissertation submitted to the Department of Physics Combined Faculties of the Astronomy Division Natural Sciences and Mathematics University of Oulu Ruperto-Carola-University Oulu, Finland Heidelberg, Germany for the degree of Doctor of Natural Sciences Put forward by Joachim Janz born in: Heidelberg, Germany Public defense: January 25, 2013 in Oulu, Finland THE PUZZLING NATURE OF DWARF-SIZED GAS POOR DISK GALAXIES Preliminary examiners: Pekka Heinämäki Helmut Jerjen Opponent: Laura Ferrarese Joachim Janz: The puzzling nature of dwarf-sized gas poor disk galaxies, c 2012 advisors: Dr. Eija Laurikainen Dr. Thorsten Lisker Prof. Heikki Salo Oulu, 2012 ABSTRACT Early-type dwarf galaxies were originally described as elliptical feature-less galax- ies. However, later disk signatures were revealed in some of them. In fact, it is still disputed whether they follow photometric scaling relations similar to giant elliptical galaxies or whether they are rather formed in transformations of late- type galaxies induced by the galaxy cluster environment. The early-type dwarf galaxies are the most abundant galaxy type in clusters, and their low-mass make them susceptible to processes that let galaxies evolve. Therefore, they are well- suited as probes of galaxy evolution. In this thesis we explore possible relationships and evolutionary links of early- type dwarfs to other galaxy types. We observed a sample of 121 galaxies and obtained deep near-infrared images. For analyzing the morphology of these galaxies, we apply two-dimensional multicomponent fitting to the data. This is done for the first time for a large sample of early-type dwarfs. A large fraction of the galaxies is shown to have complex multicomponent structures.
    [Show full text]
  • A Basic Requirement for Studying the Heavens Is Determining Where In
    Abasic requirement for studying the heavens is determining where in the sky things are. To specify sky positions, astronomers have developed several coordinate systems. Each uses a coordinate grid projected on to the celestial sphere, in analogy to the geographic coordinate system used on the surface of the Earth. The coordinate systems differ only in their choice of the fundamental plane, which divides the sky into two equal hemispheres along a great circle (the fundamental plane of the geographic system is the Earth's equator) . Each coordinate system is named for its choice of fundamental plane. The equatorial coordinate system is probably the most widely used celestial coordinate system. It is also the one most closely related to the geographic coordinate system, because they use the same fun­ damental plane and the same poles. The projection of the Earth's equator onto the celestial sphere is called the celestial equator. Similarly, projecting the geographic poles on to the celest ial sphere defines the north and south celestial poles. However, there is an important difference between the equatorial and geographic coordinate systems: the geographic system is fixed to the Earth; it rotates as the Earth does . The equatorial system is fixed to the stars, so it appears to rotate across the sky with the stars, but of course it's really the Earth rotating under the fixed sky. The latitudinal (latitude-like) angle of the equatorial system is called declination (Dec for short) . It measures the angle of an object above or below the celestial equator. The longitud inal angle is called the right ascension (RA for short).
    [Show full text]
  • Constelações – Volume 8
    Coleção Os Mensageiros das Estrelas: Constelações – volume 8 Constelações de Maio Organizador Paulo Henrique Colonese Autores Leonardo Pereira de Castro Rafaela Ribeiro da Silva Ilustrador Caio Lopes do Nascimento Baldi Fiocruz-COC 2021 Coleção Os Mensageiros das Estrelas: Constelações – volume 8 Constelações de Maio Organizador Paulo Henrique Colonese Autores Leonardo Pereira de Castro Rafaela Ribeiro da Silva Ilustrador Caio Lopes do Nascimento Baldi Fiocruz-COC 2021 ii Licença de Uso O conteúdo dessa obra, exceto quando indicado outra licença, está disponível sob a Licença Creative Commons, Atribuição-Não Comercial-Compartilha Igual 4.0. FUNDAÇÃO OSWALDO CRUZ Presidente Nísia Trindade Lima Diretor da Casa de Oswaldo Cruz Paulo Roberto Elian dos Santos Chefe do Museu da Vida Alessandro Machado Franco Batista TECNOLOGIAS SERVIÇO DE ITINERÂNCIA Stellarium, OBS Studio, VideoScribe, Canva CIÊNCIA MÓVEL Paulo Henrique Colonese (Coordenação) Ana Carolina de Souza Gonzalez Fernanda Marcelly de Gondra França REVISÃO CADERNO DE CONTEÚDOS Flávia Souza Lima Paulo Henrique Colonese Lais Lacerda Viana Marta Fabíola do Valle G. Mayrink APOIO ADMINISTRATIVO (Coordenação) Fábio Pimentel Paulo Henrique Colonese Rodolfo de Oliveira Zimmer MÍDIAS E DIVULGAÇÃO Julianne Gouveia CONCEPÇÃO E DESENVOLVIMENTO Melissa Raquel Faria Silva Jackson Almeida de Farias Renata Bohrer Leonardo Pereira de Castro Renata Maria B. Fontanetto (Coordenação) Luiz Gustavo Barcellos Inácio (in memoriam) Paulo Henrique Colonese (Coordenação) CAPTAÇÃO DE RECURSOS Rafaela Ribeiro da Silva Escritório de Captação da Fiocruz Willian Alves Pereira Willian Vieira de Abreu GESTÃO CULTURAL Sociedade de Promoção da Casa de Oswaldo DESIGN GRÁFICO E ILUSTRAÇÃO Cruz Caio Lopes do Nascimento Baldi Biblioteca de Educação e Divulgação Científica Iloni Seibel C756 Constelações de maio [recurso eletrônico] / Organizador: Paulo Henrique Colonese.
    [Show full text]
  • Gamma-Ray and Neutrino Signals from Accretion Disk Coronae of Active Galactic Nuclei
    galaxies Review Gamma-ray and Neutrino Signals from Accretion Disk Coronae of Active Galactic Nuclei Yoshiyuki Inoue 1,2,3,* , Dmitry Khangulyan 4 and Akihiro Doi 5,6 1 Department of Earth and Space Science, Graduate School of Science, Osaka University, Toyonaka, Osaka 560-0043, Japan 2 Interdisciplinary Theoretical & Mathematical Science Program (iTHEMS), RIKEN, 2-1 Hirosawa, Saitama 351-0198, Japan 3 Kavli Institute for the Physics and Mathematics of the Universe (WPI), The University of Tokyo, Kashiwa 277-8583, Japan 4 Department of Physics, Rikkyo University, Nishi-Ikebukuro 3-34-1, Toshima-ku, Tokyo 171-8501, Japan; [email protected] 5 Institute of Space and Astronautical Science JAXA, 3-1-1 Yoshinodai, Chuo-ku, Sagamihara, Kanagawa 252-5210, Japan; [email protected] 6 Department of Space and Astronautical Science, The Graduate University for Advanced Studies (SOKENDAI), 3-1-1 Yoshinodai, Chuou-ku, Sagamihara, Kanagawa 252-5210, Japan * Correspondence: [email protected] Abstract: To explain the X-ray spectra of active galactic nuclei (AGN), non-thermal activity in AGN coronae such as pair cascade models has been extensively discussed in the past literature. Although X-ray and Gamma-ray observations in the 1990s disfavored such pair cascade models, recent millimeter-wave observations of nearby Seyferts have established the existence of weak non-thermal coronal activity. In addition, the IceCube collaboration reported NGC 1068, a nearby Seyfert, as the hottest spot in their 10 year survey. These pieces of evidence are enough to investigate the non-thermal perspective of AGN coronae in depth again. This article summarizes our current Citation: Inoue, Y.; Khangulyan, D.; observational understanding of AGN coronae and describes how AGN coronae generate high-energy Doi, A.
    [Show full text]
  • Positron Annihilation Spectroscopy of Active Galactic Nuclei
    Research Paper J. Astron. Space Sci. 36(1), 21-33 (2019) https://doi.org/10.5140/JASS.2019.36.1.21 Positron Annihilation Spectroscopy of Active Galactic Nuclei Dmytry N. Doikov1, Alexander V. Yushchenko2, Yeuncheol Jeong3† 1Odessa National Maritime University, Department of Mathematics, Physics and Astronomy, Odessa, 65029, Ukraine 2Astrocamp Contents Research Institute, Goyang, 10329, Korea 3Daeyang Humanity College, Sejong University, Seoul, 05006, Korea This paper focuses on the interpretation of radiation fluxes from active galactic nuclei. The advantage of positron annihilation spectroscopy over other methods of spectral diagnostics of active galactic nuclei (therefore AGN) is demonstrated. A relationship between regular and random components in both bolometric and spectral composition of fluxes of quanta and particles generated in AGN is found. We consider their diffuse component separately and also detect radiative feedback after the passage of high-velocity cosmic rays and hard quanta through gas-and-dust aggregates surrounding massive black holes in AGN. The motion of relativistic positrons and electrons in such complex systems produces secondary radiation throughout the whole investigated region of active galactic nuclei in form of cylinder with radius R= 400-1000 pc and height H=200-400 pc, thus causing their visible luminescence across all spectral bands. We obtain radiation and electron energy distribution functions depending on the spatial distribution of the investigated bulk of matter in AGN. Radiation luminescence of the non- central part of AGN is a response to the effects of particles and quanta falling from its center created by atoms, molecules and dust of its diffuse component. The cross-sections for the single-photon annihilation of positrons of different energies with atoms in these active galactic nuclei are determined.
    [Show full text]
  • Active Galactic Nuclei - Suzy Collin, Bożena Czerny
    ASTRONOMY AND ASTROPHYSICS - Active Galactic Nuclei - Suzy Collin, Bożena Czerny ACTIVE GALACTIC NUCLEI Suzy Collin LUTH, Observatoire de Paris, CNRS, Université Paris Diderot; 5 Place Jules Janssen, 92190 Meudon, France Bożena Czerny N. Copernicus Astronomical Centre, Bartycka 18, 00-716 Warsaw, Poland Keywords: quasars, Active Galactic Nuclei, Black holes, galaxies, evolution Content 1. Historical aspects 1.1. Prehistory 1.2. After the Discovery of Quasars 1.3. Accretion Onto Supermassive Black Holes: Why It Works So Well? 2. The emission properties of radio-quiet quasars and AGN 2.1. The Broad Band Spectrum: The “Accretion Emission" 2.2. Optical, Ultraviolet, and X-Ray Emission Lines 2.3. Ultraviolet and X-Ray Absorption Lines: The Wind 2.4. Variability 3. Related objects and Unification Scheme 3.1. The “zoo" of AGN 3.2. The “Line of View" Unification: Radio Galaxies and Radio-Loud Quasars, Blazars, Seyfert 1 and 2 3.2.1. Radio Loud Quasars and AGN: The Jet and the Gamma Ray Emission 3.3. Towards Unification of Radio-Loud and Radio-Quiet Objects? 3.4. The “Accretion Rate" Unification: Low and High Luminosity AGN 4. Evolution of black holes 4.1. Supermassive Black Holes in Quasars and AGN 4.2. Supermassive Black Holes in Quiescent Galaxies 5. Linking the growth of black holes to galaxy evolution 6. Conclusions Acknowledgements GlossaryUNESCO – EOLSS Bibliography Biographical Sketches SAMPLE CHAPTERS Summary We recall the discovery of quasars and the long time it took (about 15 years) to build a theoretical framework for these objects, as well as for their local less luminous counterparts, Active Galactic Nuclei (AGN).
    [Show full text]
  • The Physics and Cosmology of Tev Blazars
    Blazars Gamma-ray sky Structure formation The Physics and Cosmology of TeV Blazars Christoph Pfrommer1 in collaboration with Avery E. Broderick, Phil Chang, Ewald Puchwein, Astrid Lamberts, Mohamad Shalaby, Volker Springel 1Heidelberg Institute for Theoretical Studies, Germany Jun 11, 2015 / Nonthermal Processes in Astrophysical Phenomena, Minneapolis Christoph Pfrommer The Physics and Cosmology of TeV Blazars Blazars Gamma-ray sky Structure formation Motivation A new link between high-energy astrophysics and cosmological structure formation Introduction to Blazars active galactic nuclei (AGN) propagating gamma rays plasma physics Cosmological Consequences unifying blazars with AGN gamma-ray background thermal history of the Universe Lyman-α forest formation of dwarf galaxies Christoph Pfrommer The Physics and Cosmology of TeV Blazars AGNs are among the most luminous sources in the universe → discovery of distant objects Blazars Active galactic nuclei Gamma-ray sky Propagating γ rays Structure formation Plasma instabilities Active galactic nucleus (AGN) AGN: compact region at the center of a galaxy, which dominates the luminosity of its electromagnetic spectrum AGN emission is most likely caused by mass accretion onto a supermassive black hole and can also launch relativistic jets Centaurus A Christoph Pfrommer The Physics and Cosmology of TeV Blazars Blazars Active galactic nuclei Gamma-ray sky Propagating γ rays Structure formation Plasma instabilities Active galactic nucleus at a cosmological distance AGN: compact region at the center
    [Show full text]
  • Structural Parameters of Compact Stellar Systems
    Structural Parameters of Compact Stellar Systems Juan Pablo Madrid Presented in fulfillment of the requirements of the degree of Doctor of Philosophy May 2013 Faculty of Information and Communication Technology Swinburne University Abstract The objective of this thesis is to establish the observational properties and structural parameters of compact stellar systems that are brighter or larger than the “standard” globular cluster. We consider a standard globular cluster to be fainter than M 11 V ∼ − mag and to have an effective radius of 3 pc. We perform simulations to further un- ∼ derstand observations and the relations between fundamental parameters of dense stellar systems. With the aim of establishing the photometric and structural properties of Ultra- Compact Dwarfs (UCDs) and extended star clusters we first analyzed deep F475W (Sloan g) and F814W (I) Hubble Space Telescope images obtained with the Advanced Camera for Surveys. We fitted the light profiles of 5000 point-like sources in the vicinity of NGC ∼ 4874 — one of the two central dominant galaxies of the Coma cluster. Also, NGC 4874 has one of the largest globular cluster systems in the nearby universe. We found that 52 objects have effective radii between 10 and 66 pc, in the range spanned by extended star ∼ clusters and UCDs. Of these 52 compact objects, 25 are brighter than M 11 mag, V ∼ − a magnitude conventionally thought to separate UCDs and globular clusters. We have discovered both a red and a blue subpopulation of Ultra-Compact Dwarf (UCD) galaxy candidates in the Coma galaxy cluster. Searching for UCDs in an environment different to galaxy clusters we found eleven Ultra-Compact Dwarf and 39 extended star cluster candidates associated with the fossil group NGC 1132.
    [Show full text]
  • On the Time Scales of Optical Variability of AGN and the Shape of Their Optical Emission Line Profiles
    atoms Article On the Time Scales of Optical Variability of AGN and the Shape of Their Optical Emission Line Profiles Edi Bon 1,* , Paola Marziani 2, Predrag Jovanovi´c 1 and Nataša Bon 1,2 1 Astronomical Observatory, Volgina 7, 11060 Belgrade, Serbia; [email protected] (P.J.); [email protected] (N.B.) 2 National Institute for Astrophysics (INAF), Astronomical Observatory of Padova, IT 35122 Padova, Italy; [email protected] * Correspondence: [email protected] Received: 8 December 2018; Accepted: 6 February 2019; Published: 14 February 2019 Abstract: The mechanism of the optical variability of active galactic nuclei (AGN) is still very puzzling. It is now widely accepted that the optical variability of AGN is stochastic, producing red noise-like light curves. In case they were to be periodic or quasi-periodic, one should expect that the time scales of optical AGN variability should relate to orbiting time scales of regions inside the accretion disks with temperatures mainly emitting the light in this wavelength range. Knowing the reverberation scales and masses of AGN, expected orbiting time scales are in the order of decades. Unfortunately, most of monitored AGN light curves are not long enough to investigate such time scales of periodicity. Here we investigate the AGN optical variability time scales and their possible connections with the broad emission line shapes. Keywords: AGN; black holes; gravitational waves; binary black holes; quasars 1. Introduction Active galactic nuclei (AGN) are very strong and variable emitters [1]. It is widely believed that the AGN patterns correspond to red noise-like curves [2,3], as a result of unpredicted processes of fluctuations of their accretion disks (AD).
    [Show full text]
  • Draft181 182Chapter 10
    Chapter 10 Formation and evolution of the Local Group 480 Myr <t< 13.7 Gyr; 10 >z> 0; 30 K > T > 2.725 K The fact that the [G]alactic system is a member of a group is a very fortunate accident. Edwin Hubble, The Realm of the Nebulae Summary: The Local Group (LG) is the group of galaxies gravitationally associ- ated with the Galaxy and M 31. Galaxies within the LG have overcome the general expansion of the universe. There are approximately 75 galaxies in the LG within a 12 diameter of ∼3 Mpc having a total mass of 2-5 × 10 M⊙. A strong morphology- density relation exists in which gas-poor dwarf spheroidals (dSphs) are preferentially found closer to the Galaxy/M 31 than gas-rich dwarf irregulars (dIrrs). This is often promoted as evidence of environmental processes due to the massive Galaxy and M 31 driving the evolutionary change between dwarf galaxy types. High Veloc- ity Clouds (HVCs) are likely to be either remnant gas left over from the formation of the Galaxy, or associated with other galaxies that have been tidally disturbed by the Galaxy. Our Galaxy halo is about 12 Gyr old. A thin disk with ongoing star formation and older thick disk built by z ≥ 2 minor mergers exist. The Galaxy and M 31 will merge in 5.9 Gyr and ultimately resemble an elliptical galaxy. The LG has −1 vLG = 627 ± 22 km s with respect to the CMB. About 44% of the LG motion is due to the infall into the region of the Great Attractor, and the remaining amount of motion is due to more distant overdensities between 130 and 180 h−1 Mpc, primarily the Shapley supercluster.
    [Show full text]