Vascular Wall Flora of the Varanasi City, India

Total Page:16

File Type:pdf, Size:1020Kb

Vascular Wall Flora of the Varanasi City, India International Journal of Research in Pharmacy and Biosciences Volume 3, Issue 3, March 2016, PP 1-10 ISSN 2394-5885 (Print) & ISSN 2394-5893 (Online) Vascular Wall Flora of Varanasi City, India: An Update Arvind Singh Department of Botany, Banaras Hindu University, Varanasi-221 005, India ABSTRACT An observational study was conducted to update the vascular wall flora of the world’s oldest city of Varanasi, which spreads over an area of about 150 km2 and situated on the bank of sacred Ganges River in Uttar Pradesh state of India. A total of 192 vascular plant species were recorded from the walls of city, of which 190 species were represented by angiosperms belonging to 147 genera and 51 families while only 2 species were represented by the pteridophytes belonging to 2 genera and 2 families. No any species of gymnosperms was recorded from the walls of Varanasi city. Asteraceae, Poaceae and Fabaceae were the dominant families of the vascular wall flora of Varanasi city. Analysis of wall flora with respect to life forms indicated the dominance of therophytes. The exotic plant species exceeds the number of native plant species on the walls of Varanasi city. Ficus benghalensis, Ficus racemosa, Ficus religiosa, Lindenbergia indica and Tridax procumbens were the most common vascular plant species observed on the walls of Varanasi city. Keywords: Exotic species, native species, Uttar Pradesh, Varanasi city, vascular wall flora INTRODUCTION Varanasi popularly known as Kashi, Benares or Banaras is located in the eastern region of Uttar Pradesh state in Northern India. This city exists between the rivers Varuna and Asi, the two tributaries of the holy river Ganges (also known as Ganga) from which it derives its name Varanasi. It is the cultural capital of India and has long continuous history since 1500 B.C. and finds a mention in the Veda and Purana [1]. Thus Varanasi is the most ancient living city of the world. Varanasi has also been a very important center of learning from ancient times. The city hosts four universities including Banaras Hindu University which is the largest teaching and residential university of Asia. Walls are human-made habitats representing a specific environment which is partly similar to rocks and rock fissures [2]. The artificial origin of walls, their location in urban landscape and technology of their building influences a range of plant species which are able to colonize such habitats [3]. As a specialized microenvironment conditioned by human beings, walls are colonized only by plant species with specific adaptations for development and reproduction [4, 5]. Considering vertical division, walls usually consist of three different zones (i) the base, (ii) the vertical wall surface with joints (fissures); and (iii) the wall top [3]. The colonization of plants on walls is favoured by the age of walls, presence of lime mortar and exposure to rain [6]. According to Gilbert (1991) [7] most true wall species are only found on vertical walls and as the angle of inclination decreases an ever-widening range of common species colonize. Plants growing on the walls reach these habitats by wind, birds and animals and by stolon fragments [3, 8] and grow there randomly [6]. The study of wall flora provides a better understanding of the urban environment [2, 9-11]. Various studies have been conducted to explore the wall flora in urban environment [2, 3, 6, 9-18]. Varshney (1971) [19] was the first to study the wall flora of Varanasi. Thereafter Singh (2014) [20] has attempted to investigate the vascular wall flora of this old city. The present study was undertaken with main objective to update the vascular wall flora of Varanasi city which is the most ancient among the extant cities of the world. The questions addressed in the study were: (i) how many species of vascular plants are hosted by the walls of Varanasi city? (ii) which families dominate the wall flora of the city? (iii) vascular wall plants of which origin status dominate the wall flora of Varanasi city?; and (iv) vascular plant species of which life forms dominate the wall flora of Varanasi city? *Address for correspondence [email protected] International Journal of Research in Pharmacy and Biosciences V3● I3● March 2016 1 Arvind Singh “Vascular Wall Flora of Varanasi City, India: An Update” STUDY AREA Varanasi is situated on the left crescent bank of sacred river Ganges (Fig. 1). It lies 25o 18’ north latitude and 82o 59’ east longitude and stands a height between 71-80 m above mean sea level. The city spreads over an area of about 150 km2 with population of about 1.4 million according to 2011 census. Figure1. Map of the study area Figure2. Ficus benghalensis growing on vertical surface of an older wall near Asi Ghat of Varanasi city 2 International Journal of Research in Pharmacy and Biosciences V3 ● I3 ● March 2016 Arvind Singh “Vascular Wall Flora of Varanasi City, India: An Update” The soil is alluvial type formed by the deposition of sediments of Ganges River. Being located in the Indo-Gangetic Plains of North India the soil is very fertile as the low level floods continuously replenish the soil. Moreover, the soil is sandy loam in texture. The climate is Tropical monsoonal type with three distinct seasons; the cold (November to February), the hot (March ˗ mid-June), and the rainy (mid-June ˗September) while October is regarded strictly as transitional month. The diurnal range of temperature ranges on average between 13 and 14.5o C in the cold and hot months. The highest monthly temperature is recorded in May, varying between 32 and 42oC. The annual rainfall is around 1000 mm of which about 90% occurs in the rainy season [21]. The Varanasi district is rich in floral diversity dominated by the Fabaceae, Asteraceae and Poaceae families [22]. METHODOLOGY The present study is based on a yearlong intensive field survey and collection taken from July 2014 to June 2015. The entire city was divided into four zones i.e. north, south, east and west. One weekly field visit was made in each zone of the city in a month (i.e. 12 field visits in each zone in a year). Thus a total of 48 visits were made in one year in city in the hunt of vascular wall plants. During the field visit all attempts were made to cover the each and every corner of the city. The walls were thoroughly observed from the base to the top to record the plant species. The recorded vascular wall plants were collected from the field for identification. Plants growing on much height on vertical wall surfaces and the wall tops were collected by climbing with the help of ladder. The walls surveyed to record and collect the plants included older walls surrounding residential compounds, parks, gardens, schools, colleges, universities, hospitals, temples, forts, monuments etc., and also the walls of all types of buildings, temples, forts and monuments as well. The collected specimens were identified through various sources [23-25]. The APG III (2009) [26] classification was followed for arranging the taxa to families. RESULTS AND DISCUSSION A total of 192 vascular plant species were recorded from the walls of Varanasi city, of which 190 plant species were represented by the angiosperms while only 2 species were represented by the pteridophytes (Table 1). Compared to the result of the present study Varshney (1971) [19] has recorded 136 vascular plant species from the walls of Varanasi of which 135 species were represented by angiosperms while only one species was represented by the pteridophytes. Another previous study on wall flora of the city of Varanasi reports 173 plant species, of which 171 plant species were represented by angiosperms and only two by the pteridophytes [20]. Studies on the wall flora of European cities reports 174 to 385 plant species [27, 28]. Furthermore, Dos Reis et al. (2006) [16] have recorded only 28 plant species from the walls of a Brazilian city. In the present study no any species of the gymnosperms was recorded from the walls of Varanasi city. Thus the vascular wall flora of Varanasi city is dominated by the angiospermic group of plants. The angiosperms were represented by 147 genera belonging to 51 families. Of the total recorded angiospermic plants, 160 plant species were represented by dicotyledons belonging to 123 genera and 48 families whereas the monocotyledons were represented by 30 plant species belonging to 24 genera and 3 families (Table 2). Thus it is evident from the study that the dicotyledonous plant species dominate the vascular wall flora of Varanasi city with greater degree of variety compared to monocotyledonous species. Majority of the species recorded in the study are weeds of agro-ecosystems and ruderal plants [22]. Weeds of agricultural fields and ruderal plants are the chief constituents of the wall flora [16, 28]. Table1. List of vascular plants recorded from the walls of Varanasi city S. No. Family/Plant species Habit Origin status Life forms ANGIOSPERMS Dicotyledons Acanthaceae 1. Blepharis boerhaviaefolia Pers. Herb Native Therophyte 2. Elytraria acaulis (L. f.) Lindau Herb Exotic Therophyte 3. Justicia diffusa Willd. Herb Exotic Therophyte 4. Justicia simplex D. Don Herb Exotic Therophyte 5. Peristrophe bicalyculata (Retz.) Nees Herb Native Therophyte 6. Ruellia tuberosa L. Herb Exotic Therophyte International Journal of Research in Pharmacy and Biosciences V3● I3● March 2016 3 Arvind Singh “Vascular Wall Flora of Varanasi City, India: An Update” 7. Rungia pectinata (L.) Nees Herb Native Therophyte 8. Rungia repens (L.) Nees Herb Native Therophyte Aizoaceae 1. Trianthema portulacastrum L. Herb Native Therophyte Amaranthaceae 1. Achyranthes aspera L. Herb Native Therophyte 2. Aerva lanata (L.) Juss.
Recommended publications
  • CHAPTER 2 REVIEW of the LITERATURE 2.1 Taxa And
    CHAPTER 2 REVIEW OF THE LITERATURE 2.1 Taxa and Classification of Acalypha indica Linn., Bridelia retusa (L.) A. Juss. and Cleidion javanicum BL. 2.11 Taxa and Classification of Acalypha indica Linn. Kingdom : Plantae Division : Magnoliophyta Class : Magnoliopsida Order : Euphorbiales Family : Euphorbiaceae Subfamily : Acalyphoideae Genus : Acalypha Species : Acalypha indica Linn. (Saha and Ahmed, 2011) Plant Synonyms: Acalypha ciliata Wall., A. canescens Wall., A. spicata Forsk. (35) Common names: Brennkraut (German), alcalifa (Brazil) and Ricinela (Spanish) (36). 9 2.12 Taxa and Classification of Bridelia retusa (L.) A. Juss. Kingdom : Plantae Division : Magnoliophyta Class : Magnoliopsida Order : Malpighiales Family : Euphorbiaceae Genus : Bridelia Species : Bridelia retusa (L.) A. Juss. Plant Synonyms: Bridelia airy-shawii Li. Common names: Ekdania (37,38). 2.13 Taxa and Classification of Cleidion javanicum BL. Kingdom : Plantae Subkingdom : Tracheobionta Superdivision : Spermatophyta Division : Magnoliophyta Class : Magnoliopsida Subclass : Magnoliopsida Order : Malpighiales Family : Euphorbiaceae Genus : Cleidion Species : Cleidion javanicum BL. Plant Synonyms: Acalypha spiciflora Burm. f. , Lasiostylis salicifolia Presl. Cleidion spiciflorum (Burm.f.) Merr. Common names: Malayalam and Yellari (39). 10 2.2 Review of chemical composition and bioactivities of Acalypha indica Linn., Bridelia retusa (L.) A. Juss. and Cleidion javanicum BL. 2.2.1 Review of chemical composition and bioactivities of Acalypha indica Linn. Acalypha indica
    [Show full text]
  • Improved Conservation Plant Materials Released by NRCS and Cooperators Through December 2014
    Natural Resources Conservation Service Improved Conservation Plant Materials Released by Plant Materials Program NRCS and Cooperators through December 2014 Page intentionally left blank. Natural Resources Conservation Service Plant Materials Program Improved Conservation Plant Materials Released by NRCS and Cooperators Through December 2014 Norman A. Berg Plant Materials Center 8791 Beaver Dam Road Building 509, BARC-East Beltsville, Maryland 20705 U.S.A. Phone: (301) 504-8175 prepared by: Julie A. DePue Data Manager/Secretary [email protected] John M. Englert Plant Materials Program Leader [email protected] January 2015 Visit our Website: http://Plant-Materials.nrcs.usda.gov TABLE OF CONTENTS Topics Page Introduction ...........................................................................................................................................................1 Types of Plant Materials Releases ........................................................................................................................2 Sources of Plant Materials ....................................................................................................................................3 NRCS Conservation Plants Released in 2013 and 2014 .......................................................................................4 Complete Listing of Conservation Plants Released through December 2014 ......................................................6 Grasses ......................................................................................................................................................8
    [Show full text]
  • Seed Ecology Iii
    SEED ECOLOGY III The Third International Society for Seed Science Meeting on Seeds and the Environment “Seeds and Change” Conference Proceedings June 20 to June 24, 2010 Salt Lake City, Utah, USA Editors: R. Pendleton, S. Meyer, B. Schultz Proceedings of the Seed Ecology III Conference Preface Extended abstracts included in this proceedings will be made available online. Enquiries and requests for hardcopies of this volume should be sent to: Dr. Rosemary Pendleton USFS Rocky Mountain Research Station Albuquerque Forestry Sciences Laboratory 333 Broadway SE Suite 115 Albuquerque, New Mexico, USA 87102-3497 The extended abstracts in this proceedings were edited for clarity. Seed Ecology III logo designed by Bitsy Schultz. i June 2010, Salt Lake City, Utah Proceedings of the Seed Ecology III Conference Table of Contents Germination Ecology of Dry Sandy Grassland Species along a pH-Gradient Simulated by Different Aluminium Concentrations.....................................................................................................................1 M Abedi, M Bartelheimer, Ralph Krall and Peter Poschlod Induction and Release of Secondary Dormancy under Field Conditions in Bromus tectorum.......................2 PS Allen, SE Meyer, and K Foote Seedling Production for Purposes of Biodiversity Restoration in the Brazilian Cerrado Region Can Be Greatly Enhanced by Seed Pretreatments Derived from Seed Technology......................................................4 S Anese, GCM Soares, ACB Matos, DAB Pinto, EAA da Silva, and HWM Hilhorst
    [Show full text]
  • Sabai Grass Fibre: an Insight Into Thermal Stability, Chemical Constitution and Morphology
    International Journal of Advanced Chemical Science and Applications (IJACSA) _______________________________________________________________________________________________ Sabai Grass Fibre: An Insight into Thermal Stability, Chemical Constitution and Morphology 1Sanjay Sahu, 2AsimanandaKhandual & 3Lingaraj Behera 1Clearity Specialties LLP, Thane, Mumbai, India 2Fashion & Apparel Technology, College of Engineering & Technology (CET), Bhubaneswar, Odisha 3Dept. of Chemistry, North Orissa University, Baripada Email: [email protected] [Received: 20th Nov.2016; Revised:28th Nov.2016; century, natural fibres have been displaced in our Accepted:30th Nov.2016] clothing, house hold furnishings, industries and agriculture by man-made fibres with names like Abstract— Many natural materials and processes acrylic, nylon, polyester and polypropylene. The and the natural fibres are being explored to be added success of Synthetics is mainly due to cost and up in the main stream application as we are more customised applications. After World war II, the concerned today to ecology, sustainability, and building up of synthetic fibre significantly healthy social responsibility. Apart from eastern decreased the use of natural fibre. With continuous India, in regions of various asian countries, Sabai increase in petrochemical prices and environmental grass (Eulaliopsis binate), has a prominent role to considerations, there is a revival of natural fibre play. They have cellulose contents close to 45%; which is larger than sisal and palm and the uses in textile, building, plastics and automotive fundamental characteristic of this fiber is good industries. This interest is reinforced by the comparatively, and the lignin content is close to development of agro-industrial market and local 18.5%. Conventionally, the fundamental research on productions. this fibre and its processing route has not been developed completely as it is dominantly used to make I.1.
    [Show full text]
  • A Review of Pharmacognostic, Physicochemical, Phytochemical ISSN 2320-4818 and Pharmacological Studies on Ficus Bengalensis L
    Journal of Scientific and Innovative Research 2017; 6(4): 151-163 Available online at: www.jsirjournal.com Review Article A review of pharmacognostic, physicochemical, phytochemical ISSN 2320-4818 and pharmacological studies on Ficus bengalensis L. JSIR 2017; 6(4): 151-163 © 2017, All rights reserved Hafiz Abdul Khaliq* Received: 17-07-2017 Accepted: 21-12-2017 Abstract Since the birth of humans on this planet, plants have been utilized for diagnosis, treatment and prevention of Hafiz Abdul Khaliq various ailments. Ficus bengalensis L., belonging to family Moraceae, commonly known as Banyan tree, is Faculty of Pharmacy, Bahauddin Zakariya University Multan, one the most utilized plants. It is a very large tree with spreading branches bearing multiple aerial roots Pakistan hanging downward. In traditional systems of medicines, various plant parts such as stem bark, aerial roots, vegetative buds, leaves, fruits and latex are used in diabetes, dysentery, seminal weakness, menorrhagia, leucorrhoea, erysipelas, nervous disorders, burning sensation, hemorrhages and applied topically on pimples, abscesses, wounds, ulcers, sores, cracked soles of the feet and rheumatic inflammations. Pharmacognostic studies have been done to set its quality control parameters and various phytochemicals viz. phytosterols, anthocyanidin derivatives, fatty acids, amino acids, polysaccharides, flavonoids, flavonols, leucoanthocyanidins and triterpenoids have been identified and isolated. This plant is reported to possess many useful pharmacological activities also viz. antihyperglycemic, antidiabetic, Antihyperlipidemic, hypocholesterolemic, anti-inflammatory, analgesic, antibacterial, antifungal, larvicidal, anti-diarrhoeal, antimutagenic, antioxidant, cytotoxic, hepatoprotective, anti-arthritic, antiallergic and immunostimulatory. The present review is an effort to give a detailed survey of the literature on its ethnomedical uses, pharmacognosy, physicochemical parameters, phytochemistry, pharmacological studies and other commercial uses.
    [Show full text]
  • Review with Checklist of Fabaceae in the Herbarium of Iraq Natural History Museum
    Review with checklist of Fabaceae in the herbarium of Iraq natural history museum Khansaa Rasheed Al-Joboury * Iraq Natural History Research Center and Museum, University of Baghdad, Baghdad, Iraq. GSC Biological and Pharmaceutical Sciences, 2021, 14(03), 137–142 Publication history: Received on 08 February 2021; revised on 10 March 2021; accepted on 12 March 2021 Article DOI: https://doi.org/10.30574/gscbps.2021.14.3.0074 Abstract This study aimed to make an inventory of leguminous plants for the purpose of identifying the plants that were collected over long periods and stored in the herbarium of Iraq Natural History Museum. It was found that the herbarium contains a large and varied number of plants from different parts of Iraq and in different and varied environments. It was collected and arranged according to a specific system in the herbarium to remain an important source for all graduate students and researchers to take advantage of these plants. Also, the flowering and fruiting periods of these plants in Iraq were recorded for different regions. Most of these plants begin to flower in the spring and thrive in fields and farms. Keywords: Fabaceae; Herbarium; Iraq; Natural; History; Museum 1. Introduction Leguminosae, Fabaceae or Papilionaceae, which was called as legume, pea, or bean Family, belong to the Order of Fabales [1]. The Fabaceae family have 727 genera also 19,325 species, which contents herbs, shrubs, trees, and climbers [2]. The distribution of fabaceae family was variety especially in cold mountainous regions for Europe, Asia and North America, It is also abundant in Central Asia and is characterized by great economic importance.
    [Show full text]
  • 24. Tribe PANICEAE 黍族 Shu Zu Chen Shouliang (陈守良); Sylvia M
    POACEAE 499 hairs, midvein scabrous, apex obtuse, clearly demarcated from mm wide, glabrous, margins spiny-scabrous or loosely ciliate awn; awn 1–1.5 cm; lemma 0.5–1 mm. Anthers ca. 0.3 mm. near base; ligule ca. 0.5 mm. Inflorescence up to 20 cm; spike- Caryopsis terete, narrowly ellipsoid, 1–1.8 mm. lets usually densely arranged, ascending or horizontally spread- ing; rachis scabrous. Spikelets 1.5–2.5 mm (excluding awns); Stream banks, roadsides, other weedy places, on sandy soil. Guangdong, Hainan, Shandong, Taiwan, Yunnan [Bhutan, Cambodia, basal callus 0.1–0.2 mm, obtuse; glumes narrowly lanceolate, India, Indonesia, Laos, Malaysia, Myanmar, Nepal, Philippines, Sri back scaberulous-hirtellous in rather indistinct close rows (most Lanka, Thailand, Vietnam; Africa (probably introduced), Australia obvious toward lemma base), midvein pectinate-ciliolate, apex (Queensland)]. abruptly acute, clearly demarcated from awn; awn 0.5–1.5 cm. Anthers ca. 0.3 mm. Caryopsis terete, narrowly ellipsoid, ca. 3. Perotis hordeiformis Nees in Hooker & Arnott, Bot. Beech- 1.5 mm. Fl. and fr. summer and autumn. 2n = 40. ey Voy. 248. 1838. Sandy places, along seashores. Guangdong, Hebei, Jiangsu, 麦穗茅根 mai sui mao gen Yunnan [India, Indonesia, Malaysia, Nepal, Myanmar, Pakistan, Sri Lanka, Thailand]. Perotis chinensis Gandoger. This species is very close to Perotis indica and is sometimes in- Annual or short-lived perennial. Culms loosely tufted, cluded within it. No single character by itself is reliable for separating erect or decumbent at base, 25–40 cm tall. Leaf sheaths gla- the two, but the combination of characters given in the key will usually brous; leaf blades lanceolate to narrowly ovate, 2–4 cm, 4–7 suffice.
    [Show full text]
  • Conserving Rajaji and Corbett National Parks – the Elephant As a Flagship Species
    ORYX VOL 28 NO 2 APRIL 1994 Conserving Rajaji and Corbett National Parks - the elephant as a flagship species A. J. T. Johnsingh and Justus Joshua One of India's five major populations of elephants lives in north-west India, where 90 per cent of the total 750 elephants occur in Rajaji and Corbett National Parks and adjacent reserve forests. This 3000-sq-km habitat is also home to many other endangered species. While the 520-sq-km core area of Corbett National Park is free from human impact, the rest of the range is subject to increasing pressures, both from the pastoral Gujjar community within the forests and villagers outside. The elephant habitat has been fragmented by hydrological development work and human-elephant conflict is increasing. The authors recommend measures that need to be implemented to ensure that the elephants and other wildlife of the area are conserved. Introduction which would be managed under a special scheme (Johnsingh and Panwar, 1992), would Over the last two decades many habitat con- be a step towards action on this. servation programmes have adopted particu- The Asian elephant Elephas maximus con- lar species to serve as 'flagship species'. By fo- forms to the role of a flagship species ex- cusing on one species and its conservation tremely well. To maintain viable populations, needs, large areas of habitat can be managed, many large areas will be needed in its range, not only for the species in question but for a each containing more than 500 breeding whole range of less charismatic taxa. In India, adults (Santiapillai and Jackson, 1990), as well the tiger Panthera tigris was used as a flagship as plentiful clean water, abundant forage and species when 'Project Tiger' was started in protection from poaching.
    [Show full text]
  • Flora of China 22: 592. 2006. 193. EULALIOPSIS Honda, Bot. Mag
    Flora of China 22: 592. 2006. 193. EULALIOPSIS Honda, Bot. Mag. (Tokyo) 38: 56. 1924. 拟金茅属 ni jin mao shu Chen Shouliang (陈守良); Sylvia M. Phillips Pollinidium Stapf ex Haines. Perennial. Leaf blades narrow; ligule a long-ciliate rim. Inflorescences terminal and axillary from upper leaf sheaths, composed of a few subdigitate racemes; racemes conspicuously hairy, fragile, sessile and pedicelled spikelets of a pair similar, both fertile; rachis internodes and pedicels flat, ciliate. Spikelets elliptic-oblong, lightly laterally compressed below middle, flat above; callus densely bearded; glumes villous below middle; lower glume papery, convex, 5–9-veined, veins prominent, apex shortly 2–3-toothed; upper glume 3–9-veined, apex acute or 2-toothed, with or without an awn-point; lower floret male or sterile, lemma and palea well developed, hyaline; upper lemma lanceolate-oblong, hyaline, entire or minutely 2-toothed, awned; awn weakly geniculate; upper pa- lea broadly ovate, glabrous or apex long ciliate. Stamens 3. Two species: Afghanistan and India to China and Philippines; one species in China. 1. Eulaliopsis binata (Retzius) C. E. Hubbard, Hooker’s Icon. with hairs to 2 mm. Racemes 2–4, 2–5 cm, softly golden- Pl. 33: t. 3262, p. 6. 1935. villous; rachis internodes 2–2.5 mm, golden-villous on one or both margins, sometimes thinly. Spikelets 3.8–6 mm, yellow- 拟金茅 ni jin mao ish; callus hairs up to 3/4 spikelet length; lower glume villous Andropogon binatus Retzius, Observ. Bot. 5: 21. 1789; A. along lower margins and in tufts on back; upper glume slightly involutus Steudel; A.
    [Show full text]
  • A Pharmacognostical Study of Melilotus Indicus (L.) All. Growing in Egypt
    A Pharmacognostical Study of Melilotus indicus (L.) All. Growing in Egypt A thesis submitted By Yassmin Samir Youssef Mahmoud For the Degree of Master In Pharmaceutical Sciences (Pharmacognosy) Under the Supervision of Prof. Dr.Amal El-SayedKhaleel Professor of Pharmacognosy, Faculty of Pharmacy, Cairo University Dr. MaieSelmyKhader Lecturer of Pharmacognosy, National Organization for Drug Control and Research Pharmacognosy Department Faculty of Pharmacy Cairo University 2019 Abstract "A Pharmacognostical Study of Melilotus indicus (L.) All. Growing in Egypt" Botanical study including macro- and micro-morphological studies of different organs of Melilotus indicus (L.) All. were achieved for authentication and identification of the plant in the entire and powdered forms. The phytochemical study was established including preliminary screening, investigation of the essential oil, quantitative determination of the active constituents, HPLC fingerprint analysis of different plant extractives with assignment of the isolated compounds, UPLC- Mass profile of secondary metabolites of 80% methanolic extract and investigation of the polysaccharide content.Seven compounds have been isolated and identified via physical, chromatographic and spectral data namely; a hydrocarbon (nonacosane), a fatty acid (palmitic acid), a benzopyrane (coumarin), a flavonoid (kaempferol), flavonoid glycosides (trifolin and robinin) and o-coumaric acid.UPLC/Ms analysis led to the identification of 14 compounds from which 5 compounds were identified for the first timein
    [Show full text]
  • Ficus Benghalensis
    Ficus benghalensis (Indian banyan, Banyan tree) Very large, fast growing, evergreen tree up to 30 meters, with spreading branches and many aerial roots.The fig "fruit" is actually a rounded fruit with hundreds of small fleshy flowers inside. The figs are pollinated by a tiny specialized wasp . Due to its large shape it makes a perfect shade tree and a fun place for children to play inside the arial roots. Landscape Information French Name: Figuier des Banyans, Banian ou Banyan Plant Type: Tree Origin: India, Sri Lanka, Pakistan Heat Zones: 10, 11, 12, 13, 14, 15, 16 Hardiness Zones: 10, 11, 12, 13 Uses: Specimen, Shade Size/Shape Growth Rate: Fast Tree Shape: Round, Spreading Canopy Symmetry: Irregular Canopy Density: Dense Canopy Texture: Coarse Height at Maturity: Over 23 Spread at Maturity: Over 15 meters Time to Ultimate Height: 10 to 20 Years Notes The foliage and milky sap of all figs can sometimes be an irritant to skin and eyes for especially sensitive people, but most people are not effected Plant Image Ficus benghalensis (Indian banyan, Banyan tree) Botanical Description Foliage Leaf Arrangement: Alternate Leaf Venation: Pinnate Leaf Persistance: Evergreen Leaf Type: Simple Leaf Blade: 5 - 10 cm Leaf Shape: Oval Leaf Margins: Entire Leaf Textures: Leathery, Glossy, Coarse Leaf Scent: No Fragance Color(growing season): Green Color(changing season): Green Flower Flower Showiness: False Trunk Trunk Susceptibility to Breakage: Generally resists breakage Number of Trunks: Single Trunk Trunk Esthetic Values: Showy Fruit Fruit
    [Show full text]
  • For Enumeration of This Part a Linear Sequence of Lycophytes and Ferns After Christenhusz, M
    PTERIDOPHYTA For enumeration of this part A linear sequence of Lycophytes and Ferns after Christenhusz, M. J. M.; Zhang, X.C. & Schneider, H. (2011) has been followed Subclass: Lycopodiidae Beketov (1863). Order: Selaginellales (1874). Selaginellaceae Willkomm, Anleit. Stud. Bot. 2: 163. 1854; Prodr. FI. Hisp. 1(1): 14. 1861. SELAGINELLA P. Beauvois, Megasin Encycl. 9: 478. 1804. Selaginella monospora Spring, Mém. Acad. Roy. Sci. Belgique 24: 135. 1850; Monogr. Lyc. II:135. 1850; Alston, Bull. Fan. Mem. Inst. Biol. Bot. 5: 288, 1954; Alston, Proc. Nat. Inst. Sc. Ind. 11: 228. 1945; Reed, C.F., Ind. Sellaginellarum 160 – 161. 1966; Panigrahi et Dixit, Proc. Nat. Inst. Sc. Ind. 34B (4): 201, f.6. 1968; Kunio Iwatsuki in Hara, Fl. East. Himal. 3: 168. 1972; Ghosh et al., Pter. Fl. East. Ind. 1: 127. 2004. Selaginella gorvalensis Spring, Monogr. Lyc. II: 256. 1850; Bak, Handb. Fern Allies 107. 1887; Selaginella microclada Bak, Jour. Bot. 22: 246. 1884; Selaginella plumose var. monospora (Spring) Bak, Jour. Bot. 21:145. 1883; Selaginella semicordata sensu Burkill, Rec. Bot. Surv. Ind. 10: 228. 1925, non Spring. Plant up to 90 cm, main stem prostrate, rooting on all sides and at intervals, unequally tetragonal, main stem alternately branched 5 – 9 times, branching unequal, flexuous; leavesobscurely green, dimorphus, lateral leaves oblong to ovate-lanceolate, subacute, denticulate to serrulate at base. Spike short, quadrangular, sporophylls dimorphic, large sporophyls less than half as long as lateral leaves, oblong- lanceolate, obtuse, denticulate, small sporophylls dentate, ovate, acuminate. Fertile: October to January. Specimen Cited: Park, Rajib & AP Das 0521, dated 23. 07.
    [Show full text]