1 Topological and Metric Spaces
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Completeness in Quasi-Pseudometric Spaces—A Survey
mathematics Article Completeness in Quasi-Pseudometric Spaces—A Survey ¸StefanCobzas Faculty of Mathematics and Computer Science, Babe¸s-BolyaiUniversity, 400 084 Cluj-Napoca, Romania; [email protected] Received:17 June 2020; Accepted: 24 July 2020; Published: 3 August 2020 Abstract: The aim of this paper is to discuss the relations between various notions of sequential completeness and the corresponding notions of completeness by nets or by filters in the setting of quasi-metric spaces. We propose a new definition of right K-Cauchy net in a quasi-metric space for which the corresponding completeness is equivalent to the sequential completeness. In this way we complete some results of R. A. Stoltenberg, Proc. London Math. Soc. 17 (1967), 226–240, and V. Gregori and J. Ferrer, Proc. Lond. Math. Soc., III Ser., 49 (1984), 36. A discussion on nets defined over ordered or pre-ordered directed sets is also included. Keywords: metric space; quasi-metric space; uniform space; quasi-uniform space; Cauchy sequence; Cauchy net; Cauchy filter; completeness MSC: 54E15; 54E25; 54E50; 46S99 1. Introduction It is well known that completeness is an essential tool in the study of metric spaces, particularly for fixed points results in such spaces. The study of completeness in quasi-metric spaces is considerably more involved, due to the lack of symmetry of the distance—there are several notions of completeness all agreing with the usual one in the metric case (see [1] or [2]). Again these notions are essential in proving fixed point results in quasi-metric spaces as it is shown by some papers on this topic as, for instance, [3–6] (see also the book [7]). -
Metric Geometry in a Tame Setting
University of California Los Angeles Metric Geometry in a Tame Setting A dissertation submitted in partial satisfaction of the requirements for the degree Doctor of Philosophy in Mathematics by Erik Walsberg 2015 c Copyright by Erik Walsberg 2015 Abstract of the Dissertation Metric Geometry in a Tame Setting by Erik Walsberg Doctor of Philosophy in Mathematics University of California, Los Angeles, 2015 Professor Matthias J. Aschenbrenner, Chair We prove basic results about the topology and metric geometry of metric spaces which are definable in o-minimal expansions of ordered fields. ii The dissertation of Erik Walsberg is approved. Yiannis N. Moschovakis Chandrashekhar Khare David Kaplan Matthias J. Aschenbrenner, Committee Chair University of California, Los Angeles 2015 iii To Sam. iv Table of Contents 1 Introduction :::::::::::::::::::::::::::::::::::::: 1 2 Conventions :::::::::::::::::::::::::::::::::::::: 5 3 Metric Geometry ::::::::::::::::::::::::::::::::::: 7 3.1 Metric Spaces . 7 3.2 Maps Between Metric Spaces . 8 3.3 Covers and Packing Inequalities . 9 3.3.1 The 5r-covering Lemma . 9 3.3.2 Doubling Metrics . 10 3.4 Hausdorff Measures and Dimension . 11 3.4.1 Hausdorff Measures . 11 3.4.2 Hausdorff Dimension . 13 3.5 Topological Dimension . 15 3.6 Left-Invariant Metrics on Groups . 15 3.7 Reductions, Ultralimits and Limits of Metric Spaces . 16 3.7.1 Reductions of Λ-valued Metric Spaces . 16 3.7.2 Ultralimits . 17 3.7.3 GH-Convergence and GH-Ultralimits . 18 3.7.4 Asymptotic Cones . 19 3.7.5 Tangent Cones . 22 3.7.6 Conical Metric Spaces . 22 3.8 Normed Spaces . 23 4 T-Convexity :::::::::::::::::::::::::::::::::::::: 24 4.1 T-convex Structures . -
FUNCTIONAL ANALYSIS 1. Metric and Topological Spaces A
FUNCTIONAL ANALYSIS CHRISTIAN REMLING 1. Metric and topological spaces A metric space is a set on which we can measure distances. More precisely, we proceed as follows: let X 6= ; be a set, and let d : X×X ! [0; 1) be a map. Definition 1.1. (X; d) is called a metric space if d has the following properties, for arbitrary x; y; z 2 X: (1) d(x; y) = 0 () x = y (2) d(x; y) = d(y; x) (3) d(x; y) ≤ d(x; z) + d(z; y) Property 3 is called the triangle inequality. It says that a detour via z will not give a shortcut when going from x to y. The notion of a metric space is very flexible and general, and there are many different examples. We now compile a preliminary list of metric spaces. Example 1.1. If X 6= ; is an arbitrary set, then ( 0 x = y d(x; y) = 1 x 6= y defines a metric on X. Exercise 1.1. Check this. This example does not look particularly interesting, but it does sat- isfy the requirements from Definition 1.1. Example 1.2. X = C with the metric d(x; y) = jx−yj is a metric space. X can also be an arbitrary non-empty subset of C, for example X = R. In fact, this works in complete generality: If (X; d) is a metric space and Y ⊆ X, then Y with the same metric is a metric space also. Example 1.3. Let X = Cn or X = Rn. For each p ≥ 1, n !1=p X p dp(x; y) = jxj − yjj j=1 1 2 CHRISTIAN REMLING defines a metric on X. -
Course 221: Michaelmas Term 2006 Section 3: Complete Metric Spaces, Normed Vector Spaces and Banach Spaces
Course 221: Michaelmas Term 2006 Section 3: Complete Metric Spaces, Normed Vector Spaces and Banach Spaces David R. Wilkins Copyright c David R. Wilkins 1997–2006 Contents 3 Complete Metric Spaces, Normed Vector Spaces and Banach Spaces 2 3.1 The Least Upper Bound Principle . 2 3.2 Monotonic Sequences of Real Numbers . 2 3.3 Upper and Lower Limits of Bounded Sequences of Real Numbers 3 3.4 Convergence of Sequences in Euclidean Space . 5 3.5 Cauchy’s Criterion for Convergence . 5 3.6 The Bolzano-Weierstrass Theorem . 7 3.7 Complete Metric Spaces . 9 3.8 Normed Vector Spaces . 11 3.9 Bounded Linear Transformations . 15 3.10 Spaces of Bounded Continuous Functions on a Metric Space . 19 3.11 The Contraction Mapping Theorem and Picard’s Theorem . 20 3.12 The Completion of a Metric Space . 23 1 3 Complete Metric Spaces, Normed Vector Spaces and Banach Spaces 3.1 The Least Upper Bound Principle A set S of real numbers is said to be bounded above if there exists some real number B such x ≤ B for all x ∈ S. Similarly a set S of real numbers is said to be bounded below if there exists some real number A such that x ≥ A for all x ∈ S. A set S of real numbers is said to be bounded if it is bounded above and below. Thus a set S of real numbers is bounded if and only if there exist real numbers A and B such that A ≤ x ≤ B for all x ∈ S. -
Arxiv:2006.03419V2 [Math.GM] 3 Dec 2020 H Eain Ewe Opeeesadteeitneo fixe of [ Existence [7]
COMPLETENESS IN QUASI-PSEUDOMETRIC SPACES – A SURVEY S. COBZAS¸ Abstract. The aim of this paper is to discuss the relations between various notions of se- quential completeness and the corresponding notions of completeness by nets or by filters in the setting of quasi-metric spaces. We propose a new definition of right K-Cauchy net in a quasi-metric space for which the corresponding completeness is equivalent to the sequential completeness. In this way we complete some results of R. A. Stoltenberg, Proc. London Math. Soc. 17 (1967), 226–240, and V. Gregori and J. Ferrer, Proc. Lond. Math. Soc., III Ser., 49 (1984), 36. A discussion on nets defined over ordered or pre-ordered directed sets is also included. Classification MSC 2020: 54E15 54E25 54E50 46S99 Key words: metric space, quasi-metric space, uniform space, quasi-uniform space, Cauchy sequence, Cauchy net, Cauchy filter, completeness 1. Introduction It is well known that completeness is an essential tool in the study of metric spaces, particularly for fixed points results in such spaces. The study of completeness in quasi-metric spaces is considerably more involved, due to the lack of symmetry of the distance – there are several notions of completeness all agreing with the usual one in the metric case (see [18] or [6]). Again these notions are essential in proving fixed point results in quasi-metric spaces as it is shown by some papers on this topic as, for instance, [4], [10], [16], [21] (see also the book [1]). A survey on the relations between completeness and the existence of fixed points in various circumstances is given in [7]. -
General Topology
General Topology Tom Leinster 2014{15 Contents A Topological spaces2 A1 Review of metric spaces.......................2 A2 The definition of topological space.................8 A3 Metrics versus topologies....................... 13 A4 Continuous maps........................... 17 A5 When are two spaces homeomorphic?................ 22 A6 Topological properties........................ 26 A7 Bases................................. 28 A8 Closure and interior......................... 31 A9 Subspaces (new spaces from old, 1)................. 35 A10 Products (new spaces from old, 2)................. 39 A11 Quotients (new spaces from old, 3)................. 43 A12 Review of ChapterA......................... 48 B Compactness 51 B1 The definition of compactness.................... 51 B2 Closed bounded intervals are compact............... 55 B3 Compactness and subspaces..................... 56 B4 Compactness and products..................... 58 B5 The compact subsets of Rn ..................... 59 B6 Compactness and quotients (and images)............. 61 B7 Compact metric spaces........................ 64 C Connectedness 68 C1 The definition of connectedness................... 68 C2 Connected subsets of the real line.................. 72 C3 Path-connectedness.......................... 76 C4 Connected-components and path-components........... 80 1 Chapter A Topological spaces A1 Review of metric spaces For the lecture of Thursday, 18 September 2014 Almost everything in this section should have been covered in Honours Analysis, with the possible exception of some of the examples. For that reason, this lecture is longer than usual. Definition A1.1 Let X be a set. A metric on X is a function d: X × X ! [0; 1) with the following three properties: • d(x; y) = 0 () x = y, for x; y 2 X; • d(x; y) + d(y; z) ≥ d(x; z) for all x; y; z 2 X (triangle inequality); • d(x; y) = d(y; x) for all x; y 2 X (symmetry). -
Be a Metric Space
2 The University of Sydney show that Z is closed in R. The complement of Z in R is the union of all the Pure Mathematics 3901 open intervals (n, n + 1), where n runs through all of Z, and this is open since every union of open sets is open. So Z is closed. Metric Spaces 2000 Alternatively, let (an) be a Cauchy sequence in Z. Choose an integer N such that d(xn, xm) < 1 for all n ≥ N. Put x = xN . Then for all n ≥ N we have Tutorial 5 |xn − x| = d(xn, xN ) < 1. But xn, x ∈ Z, and since two distinct integers always differ by at least 1 it follows that xn = x. This holds for all n > N. 1. Let X = (X, d) be a metric space. Let (xn) and (yn) be two sequences in X So xn → x as n → ∞ (since for all ε > 0 we have 0 = d(xn, x) < ε for all such that (yn) is a Cauchy sequence and d(xn, yn) → 0 as n → ∞. Prove that n > N). (i)(xn) is a Cauchy sequence in X, and 4. (i) Show that if D is a metric on the set X and f: Y → X is an injective (ii)(xn) converges to a limit x if and only if (yn) also converges to x. function then the formula d(a, b) = D(f(a), f(b)) defines a metric d on Y , and use this to show that d(m, n) = |m−1 − n−1| defines a metric Solution. -
DEFINITIONS and THEOREMS in GENERAL TOPOLOGY 1. Basic
DEFINITIONS AND THEOREMS IN GENERAL TOPOLOGY 1. Basic definitions. A topology on a set X is defined by a family O of subsets of X, the open sets of the topology, satisfying the axioms: (i) ; and X are in O; (ii) the intersection of finitely many sets in O is in O; (iii) arbitrary unions of sets in O are in O. Alternatively, a topology may be defined by the neighborhoods U(p) of an arbitrary point p 2 X, where p 2 U(p) and, in addition: (i) If U1;U2 are neighborhoods of p, there exists U3 neighborhood of p, such that U3 ⊂ U1 \ U2; (ii) If U is a neighborhood of p and q 2 U, there exists a neighborhood V of q so that V ⊂ U. A topology is Hausdorff if any distinct points p 6= q admit disjoint neigh- borhoods. This is almost always assumed. A set C ⊂ X is closed if its complement is open. The closure A¯ of a set A ⊂ X is the intersection of all closed sets containing X. A subset A ⊂ X is dense in X if A¯ = X. A point x 2 X is a cluster point of a subset A ⊂ X if any neighborhood of x contains a point of A distinct from x. If A0 denotes the set of cluster points, then A¯ = A [ A0: A map f : X ! Y of topological spaces is continuous at p 2 X if for any open neighborhood V ⊂ Y of f(p), there exists an open neighborhood U ⊂ X of p so that f(U) ⊂ V . -
Tive Hull of a T0 -Ultra-Quasi-Metric Space Hans-Peter A. Künzi Hans
The ultra-quasi-metrically injec- tive hull of a T0-ultra-quasi-metric space Hans-Peter A. K¨unzi [email protected] Olivier Olela Otafudu [email protected] Department of Mathematics and Applied Mathematics, University of Cape Town, Rondebosch 7701, South Africa 1 Let X be a set and u : X × X ! [0; 1) be a function mapping into the set [0; 1) of non-negative reals. Then u is an ultra-quasi-pseudometric on X if (i) u(x; x) = 0 for all x 2 X; and (ii) u(x; z) ≤ maxfu(x; y); u(y; z)g when- ever x; y; z 2 X: Note that the so-called conjugate u−1 of u, where u−1(x; y) = u(y; x) whenever x; y 2 X; is an ultra-quasi-pseudometric, too. The set of open balls ffy 2 X : u(x; y) < ϵg : x 2 X; ϵ > 0g yields a base for the topology τ(u) in- duced by u on X: If u also satisfies the condition (iii) for any x; y 2 X; u(x; y) = 0 = u(y; x) implies that x = y; then u is called a T0-ultra-quasi-metric. 2 Observe that then us = u _ u−1 is an ultra-metric on X: We next define a canonical T0-ultra-quasi- metric on [0; 1): Example 1 Let X = [0; 1) be equipped with n(x; y) = x if x; y 2 X and x > y; and n(x; y) = 0 if x; y 2 X and x ≤ y: It is easy to check that (X; n) is a T0- ultra-quasi-metric space. -
On Completeness of Quasi-Pseudometric Spaces
ON COMPLETENESS OF QUASI-PSEUDOMETRIC SPACES SEITHUTI P. MOSHOKOA Received 4 July 2004 and in revised form 21 April 2005 We discuss completeness in terms of a notion of absolute closure. This will be done in the context of separated quasi-pseudometric spaces and bitopological spaces. The notion is equivalent to the classical notion of completeness when restricted to the class of metric spaces. 1. Introduction and preliminaries The notion of completeness in metric spaces and that of completing a metric space are traditionally discussed in terms of Cauchy sequences. The main reason being that this concept deals precisely with the issue of convergence of sequences in the sense that every convergent sequence is a Cauchy sequence. The paper deals with completion in a setting that avoids explicit reference to Cauchy sequences. First we recall some definitions which will be used in the paper, see also [3, 5, 9]. Let X be a set and let d : X × X → [0,∞) be a function such that for all x, y,z ∈ X, (i) d(x,x) = 0, (ii) d(x, y) ≤ d(x,z)+d(z, y). Then d is called a quasi-pseudometric.Ifd is a quasi-pseudometric on X, then its con- jugate denoted by d−1 on X is such that d−1(x, y) = d(y,x)forallx, y ∈ X.Certainlyd−1 is a quasi-pseudometric. Let d∗ = d ∨ d−1.Thend∗ is also quasi-pseudometric on X.If a quasi-pseudometric d on X satisfies d(x, y) = d(y,x)forallx, y ∈ X in addition to (i) and (ii), then d is called pseudometric.Apseudometricd that satisfies d(x, y) = 0ifand only if x = y is called a metric. -
Chapter 7. Complete Metric Spaces and Function Spaces
43. Complete Metric Spaces 1 Chapter 7. Complete Metric Spaces and Function Spaces Note. Recall from your Analysis 1 (MATH 4217/5217) class that the real numbers R are a “complete ordered field” (in fact, up to isomorphism there is only one such structure; see my online notes at http://faculty.etsu.edu/gardnerr/4217/ notes/1-3.pdf). The Axiom of Completeness in this setting requires that ev- ery set of real numbers with an upper bound have a least upper bound. But this idea (which dates from the mid 19th century and the work of Richard Dedekind) depends on the ordering of R (as evidenced by the use of the terms “upper” and “least”). In a metric space, there is no such ordering and so the completeness idea (which is fundamental to all of analysis) must be dealt with in an alternate way. Munkres makes a nice comment on page 263 declaring that“completeness is a metric property rather than a topological one.” Section 43. Complete Metric Spaces Note. In this section, we define Cauchy sequences and use them to define complete- ness. The motivation for these ideas comes from the fact that a sequence of real numbers is Cauchy if and only if it is convergent (see my online notes for Analysis 1 [MATH 4217/5217] http://faculty.etsu.edu/gardnerr/4217/notes/2-3.pdf; notice Exercise 2.3.13). 43. Complete Metric Spaces 2 Definition. Let (X, d) be a metric space. A sequence (xn) of points of X is a Cauchy sequence on (X, d) if for all ε > 0 there is N N such that if m, n N ∈ ≥ then d(xn, xm) < ε. -
Chapter 2 Metric Spaces and Topology
2.1. METRIC SPACES 29 Definition 2.1.29. The function f is called uniformly continuous if it is continu- ous and, for all > 0, the δ > 0 can be chosen independently of x0. In precise mathematical notation, one has ( > 0)( δ > 0)( x X) ∀ ∃ ∀ 0 ∈ ( x x0 X d (x , x0) < δ ), d (f(x ), f(x)) < . ∀ ∈ { ∈ | X 0 } Y 0 Definition 2.1.30. A function f : X Y is called Lipschitz continuous on A X → ⊆ if there is a constant L R such that dY (f(x), f(y)) LdX (x, y) for all x, y A. ∈ ≤ ∈ Let fA denote the restriction of f to A X defined by fA : A Y with ⊆ → f (x) = f(x) for all x A. It is easy to verify that, if f is Lipschitz continuous on A ∈ A, then fA is uniformly continuous. Problem 2.1.31. Let (X, d) be a metric space and define f : X R by f(x) = → d(x, x ) for some fixed x X. Show that f is Lipschitz continuous with L = 1. 0 0 ∈ 2.1.3 Completeness Suppose (X, d) is a metric space. From Definition 2.1.8, we know that a sequence x , x ,... of points in X converges to x X if, for every δ > 0, there exists an 1 2 ∈ integer N such that d(x , x) < δ for all i N. i ≥ 1 n = 2 n = 4 0.8 n = 8 ) 0.6 t ( n f 0.4 0.2 0 1 0.5 0 0.5 1 − − t Figure 2.1: The sequence of continuous functions in Example 2.1.32 satisfies the Cauchy criterion.