A Comprehensive Evaluation of Object Scanning Techniques ∗

Total Page:16

File Type:pdf, Size:1020Kb

A Comprehensive Evaluation of Object Scanning Techniques ∗ A Comprehensive Evaluation of Object Scanning Techniques ∗ Robin Garner Stephen M Blackburn Daniel Frampton Research School of Computer Science Australian National University Canberra, ACT, 0200, Australia fRobin.Garner,Steve.Blackburn,[email protected] Abstract to identify and then follow all reference fields within every reach- At the heart of all garbage collectors lies the process of identifying able object. For reference counting collectors, once an object’s ref- and processing reference fields within an object. Despite its key erence count falls to zero, each of its referents must be identified role, and evidence of many different implementation approaches, and have its reference count decremented. The process of reference to our knowledge no comprehensive quantitative study of this de- field identification is known as object scanning. In order to be pre- sign space exists. The lack of such a study means that implementers cise in the absence of hardware support, object scanning requires must rely on ‘conventional wisdom’, hearsay, and their own costly assistance from the language runtime. Otherwise, tracing must con- analysis. Starting with mechanisms described in the literature and servatively assume all fields are references [6, 7, 14]. This paper a variety of permutations of these, we explore the impact of a quantitatively explores the design tradeoffs for object scanning in number of dimensions including: a) the choice of data structure, precise garbage collectors. b) levels of indirection from object to metadata, and c) specializa- Object scanning is performance-critical since it constitutes the tion of scanning code. We perform a comprehensive examination of backbone of the tracing mechanism, and therefore may be exe- these tradeoffs on four different architectures using eighteen bench- cuted millions of times for each garbage collection. The extensive marks and hardware performance counters. We inform the choice literature on garbage collection records a variety of object scan- of mechanism with a detailed study of heap composition and object ning mechanisms, but despite its performance-critical role, to our structure as seen by the garbage collector on these benchmarks. Our knowledge there has been no prior study quantitatively evaluating results show that choice of scanning mechanism is important. We the various approaches. As we show here, a detailed understanding find that a careful choice of scanning mechanism alone can im- of these tradeoffs informs the design of the best performing object prove garbage collection performance by 16% and total time by scanning mechanisms. 2.5%, on average, over a well tuned baseline. We observe sub- The mechanism for scanning an object typically involves pars- stantial variation in performance among architectures, and find that ing metadata that is explicitly or implicitly associated with the ob- some mechanisms–particularly specialization, layout of reference ject. The means of parsing and the form of the metadata can vary fields in objects, and encoding metadata in object headers–yield widely from one implementation to another. We identify four ma- consistent, significant advantages. jor dimensions in the design space: i) compiled versus interpreted evaluation of metadata, ii) encoding and packing of metadata, iii) levels of indirection between each object and its metadata, and iv) Categories and Subject Descriptors D.3.4 [Programming Lan- variations in object layout. guages]: Processors—Memory management (garbage collection) To inform our study of design tradeoffs, we first perform a de- tailed analysis of heap composition and object structure as seen by General Terms Design, Performance, Algorithms the garbage collector. We conduct our study within Jikes RVM [1], Keywords Java, Mark-Sweep a high performance research JVM with a well tuned garbage collec- tion infrastructure [4]. First, to characterize the workload seen by any scanning mechanism, we execute eighteen benchmarks from 1. Introduction the DaCapo [5] and SPEC [16, 17] suites, and at regular intervals Enumerating object reference fields is key to all precise garbage examine the heap and establish the distribution of object layouts collectors. For tracing collectors, liveness is established via a tran- among traced objects. We were not surprised to find that a rela- sitive closure from some set of roots. This requires the collector tively small number of object layout patterns account for the vast majority of scanned objects. We include in this study the extent to ∗ This work is supported by ARC DP0452011 and DP0666059. Any opin- which packing of reference fields within objects changes the distri- ions, findings and conclusions expressed herein are those of the authors and bution of layout patterns. do not necessarily reflect those of the sponsors. Guided by this information, we conduct a performance anal- ysis of various object scanning implementation alternatives. We evaluate each alternative on four architectures against the DaCapo and SPEC suites. We observe substantial variation in performance Permission to make digital or hard copies of all or part of this work for personal or among architectures but find that some mechanisms yield consis- classroom use is granted without fee provided that copies are not made or distributed tent, significant advantages, averaging 16% or more relative to a for profit or commercial advantage and that copies bear this notice and the full citation well tuned baseline. Specifically, we find that metadata encoding on the first page. To copy otherwise, to republish, to post on servers or to redistribute offers consistent modest advantages, object field reordering gives to lists, requires prior specific permission and/or a fee. little measurable advantage (but improves the effectiveness of other ISMM’11, June 4–5, 2011, San Jose, California, USA. Copyright c 2011 ACM 978-1-4503-0263-0/11/06. $10.00 optimizations), and that specialized compiled scanning code for common cases significantly outperforms interpretation of metadata. We use the term reference to describe a language-level refer- The most effective scheme uses a small amount of metadata en- ence to an object. The live object graph is defined as the set of coded cheaply into the object header to encode the most common objects that are transitively referenced from some set of roots. By object patterns. contrast, we use the term pointer as an implementation-level ad- We also implement and evaluate the bidirectional object lay- dress (‘void *’) which may or may not point to an object. We out used by SableVM [9] and find that it performs well compared define the reference pattern of an object to be the number and lo- to orthodox object layout schemes. The Sable object model com- cation of reference fields within the object. All objects of a given bined with specialization of object scanning code outperforms the class have the same reference pattern, and two classes may have alternatives in almost all benchmarks. There is however a small but the same pattern even though they differ in such aspects as size (in consistent overhead in mutator time for this object model, giving it bytes), number of fields, or inheritance depth. an advantage in overall time when the heap is small, and a slight Because the policy for the layout of references within an object disadvantage in large heaps. will affect the distribution of reference patterns, we consider two This study is the first in-depth evaluation of object scanning key object layout regimes; declaration order, and references first. techniques and the tradeoffs they are exposed to. As far as we These alternatives are straightforward design choices and were de- know, our findings are the first to provide a quantitative foundation scribed in Etienne Gagnon’s PhD work as ‘naive’ and ‘traditional’ for the design and implementation of tracing, the performance- layouts respectively [8]. In the first case object fields appear within critical mechanism at the heart of all modern garbage collection the object in the order in which they are statically declared (with implementations. minor adjustments to ensure efficient packing in the face of align- ment requirements). This is the approach used by Jikes RVM. In the second case, references are packed together before non-reference 2. Related Work fields, at each level of the inheritance tree for each class. Note that Sansom [15] appears to have been the first to propose compiling for efficiency reasons, language implementations generally require specialized code for scanning objects (see Section 4.2), although he that field offsets are fixed across an inheritance hierarchy, allow- did not perform a performance analysis of the benefits of this tech- ing the same code to access fields of a class and all of its sub- nique. Jones and Lins [14], authors of the standard text on garbage classes. So in practice, the field layout for any subclass may only collection, make reference to Sansom’s work and subsequent work, be additive with respect to its super class. Thus the ‘references first’ but do not directly discuss the question of design options for scan- layout will typically result in alternating regions of references and ning mechanisms. Grove and Cheng did a proof-of-concept imple- non-references corresponding to levels of inheritance for the given mentation of scanning specialization for Jikes RVM and concluded type. Gagnon’s bidirectional object layout [8] avoids this problem that it was a profitable idea, but did not publish this work or incor- by growing the object layout in two directions, with references on porate it into the main code base [12]. David Grove kindly provided one side and non-references on the other. Thus references will al- us with their implementation, which we forward-ported and used as ways be packed on one side of the object header regardless of in- the basis for our implementation of specialization. This implemen- heritance. tation has been the default scanning mechanism in Jikes RVM since A minor variant on the ‘references first’ scheme involves al- 2007.
Recommended publications
  • Bypassing Portability Pitfalls of High-Level Low-Level Programming
    Bypassing Portability Pitfalls of High-level Low-level Programming Yi Lin, Stephen M. Blackburn Australian National University [email protected], [email protected] Abstract memory-safety, encapsulation, and strong abstraction over hard- Program portability is an important software engineering consider- ware [12], which are desirable goals for system programming as ation. However, when high-level languages are extended to effec- well. Thus, high-level languages are potential candidates for sys- tively implement system projects for software engineering gain and tem programming. safety, portability is compromised—high-level code for low-level Prior research has focused on the feasibility and performance of programming cannot execute on a stock runtime, and, conversely, applying high-level languages to system programming [1, 7, 10, a runtime with special support implemented will not be portable 15, 16, 21, 22, 26–28]. The results showed that, with proper ex- across different platforms. tension and restriction, high-level languages are able to undertake We explore the portability pitfall of high-level low-level pro- the task of low-level programming, while preserving type-safety, gramming in the context of virtual machine implementation tasks. memory-safety, encapsulation and abstraction. Notwithstanding the Our approach is designing a restricted high-level language called cost for dynamic compilation and garbage collection, the perfor- RJava, with a flexible restriction model and effective low-level ex- mance of high-level languages when used to implement a virtual tensions, which is suitable for different scopes of virtual machine machine is still competitive with using a low-level language [2]. implementation, and also suitable for a low-level language bypass Using high-level languages to architect large systems is bene- for improved portability.
    [Show full text]
  • Here I Led Subcommittee Reports Related to Data-Intensive Science and Post-Moore Computing) and in CRA’S Board of Directors Since 2015
    Vivek Sarkar Curriculum Vitae Contents 1 Summary 2 2 Education 3 3 Professional Experience 3 3.1 2017-present: College of Computing, Georgia Institute of Technology . 3 3.2 2007-present: Department of Computer Science, Rice University . 5 3.3 1987-2007: International Business Machines Corporation . 7 4 Professional Awards 11 5 Research Awards 12 6 Industry Gifts 15 7 Graduate Student and Other Mentoring 17 8 Professional Service 19 8.1 Conference Committees . 20 8.2 Advisory/Award/Review/Steering Committees . 25 9 Keynote Talks, Invited Talks, Panels (Selected) 27 10 Teaching 33 11 Publications 37 11.1 Refereed Conference and Journal Publications . 37 11.2 Refereed Workshop Publications . 51 11.3 Books, Book Chapters, and Edited Volumes . 58 12 Patents 58 13 Software Artifacts (Selected) 59 14 Personal Information 60 Page 1 of 60 01/06/2020 1 Summary Over thirty years of sustained contributions to programming models, compilers and runtime systems for high performance computing, which include: 1) Leading the development of ASTI during 1991{1996, IBM's first product compiler component for optimizing locality, parallelism, and the (then) new FORTRAN 90 high-productivity array language (ASTI has continued to ship as part of IBM's XL Fortran product compilers since 1996, and was also used as the foundation for IBM's High Performance Fortran compiler product); 2) Leading the research and development of the open source Jikes Research Virtual Machine at IBM during 1998{2001, a first-of-a-kind Java Virtual Machine (JVM) and dynamic compiler implemented
    [Show full text]
  • Techniques for Real-System Characterization of Java Virtual Machine Energy and Power Behavior Gilberto Contreras Margaret Martonosi
    Techniques for Real-System Characterization of Java Virtual Machine Energy and Power Behavior Gilberto Contreras Margaret Martonosi Department of Electrical Engineering Princeton University 1 Why Study Power in Java Systems? The Java platform has been adopted in a wide variety of devices Java servers demand performance, embedded devices require low-power Performance is important, power/energy/thermal issues are equally important How do we study and characterize these requirements in a multi-layer platform? 2 Power/Performance Design Issues Java Application Java Virtual Machine Operating System Hardware 3 Power/Performance Design Issues Java Application Garbage Class Runtime Execution Collection LoaderJava VirtualCompiler MachineEngine Operating System Hardware How do the various software layers affect power/performance characteristics of hardware? Where should time be invested when designing power and/or thermally aware Java virtual Machines? 4 Outline Approaches for Energy/Performance Characterization of Java virtual machines Methodology Breaking the JVM into sub-components Hardware-based power/performance characterization of JVM sub-components Results Jikes & Kaffe on Pentium M Kaffe on Intel XScale Conclusions 5 Power & Performance Analysis of Java Simulation Approach √ Flexible: easy to model non-existent hardware x Simulators may lack comprehensiveness and accuracy x Thermal studies require tens of seconds granularity Accurate simulators are too slow Hardware Approach √ Able to capture full-system characteristics
    [Show full text]
  • Fedora Core, Java™ and You
    Fedora Core, Java™ and You Gary Benson Software Engineer What is Java? The word ªJavaº is used to describe three things: The Java programming language The Java virtual machine The Java platform To support Java applications Fedora needs all three. What Fedora uses: GCJ and ECJ GCJ is the core of Fedora©s Java support: GCJ includes gcj, a compiler for the Java programming language. GCJ also has a runtime and class library, collectively called libgcj. The class library is separately known as GNU Classpath. ECJ is the Eclipse Compiler for Java: GCJ©s compiler gcj is not used for ªtraditionalº Java compilation. More on that later... Why libgcj? There are many free Java Virtual machines: Cacao, IKVM, JamVM, Jikes RVM, Kaffe, libgcj, Sable VM, ... There are two main reasons Fedora uses libgcj: Availability on many platforms. Ability to use precompiled native code. GNU Classpath Free core class library for Java virtual machines and compilers. The JPackage Project A collection of some 1,600 Java software packages for Linux: Distribution-agnostic RPM packages. Both runtimes/development kits and applications. Segregation between free and non-free packages. All free packages built entirely from source. Multiple runtimes/development kits may be installed. Fedora includes: JPackage-compatible runtime and development kit packages. A whole bunch of applications. JPackage JOnAS Fedora©s Java Compilers gcj can operate in several modes: Java source (.java) to Java bytecode (.class) Java source (.java) to native machine code (.o) Java bytecode (.class, .jar) to native machine code (.o) In Fedora: ECJ compiles Java source to bytecode. gcj compiles that bytecode to native machine code.
    [Show full text]
  • Java in Embedded Linux Systems
    Java in Embedded Linux Systems Java in Embedded Linux Systems Thomas Petazzoni / Michael Opdenacker Free Electrons http://free-electrons.com/ Created with OpenOffice.org 2.x Java in Embedded Linux Systems © Copyright 2004-2007, Free Electrons, Creative Commons Attribution-ShareAlike 2.5 license http://free-electrons.com Sep 15, 2009 1 Rights to copy Attribution ± ShareAlike 2.5 © Copyright 2004-2008 You are free Free Electrons to copy, distribute, display, and perform the work [email protected] to make derivative works to make commercial use of the work Document sources, updates and translations: Under the following conditions http://free-electrons.com/articles/java Attribution. You must give the original author credit. Corrections, suggestions, contributions and Share Alike. If you alter, transform, or build upon this work, you may distribute the resulting work only under a license translations are welcome! identical to this one. For any reuse or distribution, you must make clear to others the license terms of this work. Any of these conditions can be waived if you get permission from the copyright holder. Your fair use and other rights are in no way affected by the above. License text: http://creativecommons.org/licenses/by-sa/2.5/legalcode Java in Embedded Linux Systems © Copyright 2004-2007, Free Electrons, Creative Commons Attribution-ShareAlike 2.5 license http://free-electrons.com Sep 15, 2009 2 Best viewed with... This document is best viewed with a recent PDF reader or with OpenOffice.org itself! Take advantage of internal
    [Show full text]
  • Effective Inline-Threaded Interpretation of Java Bytecode
    Effective Inline-Threaded Interpretation of Java Bytecode Using Preparation Sequences Etienne Gagnon1 and Laurie Hendren2 1 Sable Research Group Universit´eduQu´ebec `a Montr´eal, [email protected] 2 McGill University Montreal, Canada, [email protected] Abstract. Inline-threaded interpretation is a recent technique that im- proves performance by eliminating dispatch overhead within basic blocks for interpreters written in C [11]. The dynamic class loading, lazy class initialization, and multi-threading features of Java reduce the effective- ness of a straight-forward implementation of this technique within Java interpreters. In this paper, we introduce preparation sequences, a new technique that solves the particular challenge of effectively inline-threa- ding Java. We have implemented our technique in the SableVM Java virtual machine, and our experimental results show that using our tech- nique, inline-threaded interpretation of Java, on a set of benchmarks, achieves a speedup ranging from 1.20 to 2.41 over switch-based inter- pretation, and a speedup ranging from 1.15 to 2.14 over direct-threaded interpretation. 1 Introduction One of the main advantages of interpreters written in high-level languages is their simplicity and portability, when compared to static and dynamic compiler-based systems. One of their main drawbacks is poor performance, due to a high cost for dispatching interpreted instructions. In [11], Piumarta and Riccardi introduced a technique called inlined-threading which reduces this overhead by dynamically inlining instruction sequences within basic blocks, leaving a single instruction dispatch at the end of each sequence. To our knowledge, inlined-threading has not been applied to Java interpreters before.
    [Show full text]
  • Design and Analysis of a Scala Benchmark Suite for the Java Virtual Machine
    Design and Analysis of a Scala Benchmark Suite for the Java Virtual Machine Entwurf und Analyse einer Scala Benchmark Suite für die Java Virtual Machine Zur Erlangung des akademischen Grades Doktor-Ingenieur (Dr.-Ing.) genehmigte Dissertation von Diplom-Mathematiker Andreas Sewe aus Twistringen, Deutschland April 2013 — Darmstadt — D 17 Fachbereich Informatik Fachgebiet Softwaretechnik Design and Analysis of a Scala Benchmark Suite for the Java Virtual Machine Entwurf und Analyse einer Scala Benchmark Suite für die Java Virtual Machine Genehmigte Dissertation von Diplom-Mathematiker Andreas Sewe aus Twistrin- gen, Deutschland 1. Gutachten: Prof. Dr.-Ing. Ermira Mezini 2. Gutachten: Prof. Richard E. Jones Tag der Einreichung: 17. August 2012 Tag der Prüfung: 29. Oktober 2012 Darmstadt — D 17 For Bettina Academic Résumé November 2007 – October 2012 Doctoral studies at the chair of Prof. Dr.-Ing. Er- mira Mezini, Fachgebiet Softwaretechnik, Fachbereich Informatik, Techni- sche Universität Darmstadt October 2001 – October 2007 Studies in mathematics with a special focus on com- puter science (Mathematik mit Schwerpunkt Informatik) at Technische Uni- versität Darmstadt, finishing with a degree of Diplom-Mathematiker (Dipl.- Math.) iii Acknowledgements First and foremost, I would like to thank Mira Mezini, my thesis supervisor, for pro- viding me with the opportunity and freedom to pursue my research, as condensed into the thesis you now hold in your hands. Her experience and her insights did much to improve my research as did her invaluable ability to ask the right questions at the right time. I would also like to thank Richard Jones for taking the time to act as secondary reviewer of this thesis.
    [Show full text]
  • Android Cours 1 : Introduction `Aandroid / Android Studio
    Android Cours 1 : Introduction `aAndroid / Android Studio Damien MASSON [email protected] http://www.esiee.fr/~massond 21 f´evrier2017 R´ef´erences https://developer.android.com (Incontournable !) https://openclassrooms.com/courses/ creez-des-applications-pour-android/ Un tutoriel en fran¸caisassez complet et plut^ot`ajour... 2/52 Qu'est-ce qu'Android ? PME am´ericaine,Android Incorporated, cr´e´eeen 2003, rachet´eepar Google en 2005 OS lanc´een 2007 En 2015, Android est le syst`emed'exploitation mobile le plus utilis´edans le monde (>80%) 3/52 Qu'est-ce qu'Android ? Cinq couches distinctes : 1 le noyau Linux avec les pilotes ; 2 des biblioth`equeslogicielles telles que WebKit/Blink, OpenGL ES, SQLite ou FreeType ; 3 un environnement d'ex´ecutionet des biblioth`equespermettant d'ex´ecuterdes programmes pr´evuspour la plate-forme Java ; 4 un framework { kit de d´eveloppement d'applications ; 4/52 Android et la plateforme Java Jusqu'`asa version 4.4, Android comporte une machine virtuelle nomm´eeDalvik Le bytecode de Dalvik est diff´erentde celui de la machine virtuelle Java de Oracle (JVM) le processus de construction d'une application est diff´erent Code Java (.java) ! bytecode Java (.class/.jar) ! bytecode Dalvik (.dex) ! interpr´et´e L'ensemble de la biblioth`equestandard d'Android ressemble `a J2SE (Java Standard Edition) de la plateforme Java. La principale diff´erenceest que les biblioth`equesd'interface graphique AWT et Swing sont remplac´eespar des biblioth`equesd'Android. 5/52 Android Runtime (ART) A` partir de la version 5.0 (2014), l'environnement d'ex´ecution ART (Android RunTime) remplace la machine virtuelle Dalvik.
    [Show full text]
  • Compiler Analyses for Improved Return Value Prediction
    Compiler Analyses for Improved Return Value Prediction Christopher J.F. Pickett Clark Verbrugge {cpicke,clump}@sable.mcgill.ca School of Computer Science, McGill University Montreal,´ Quebec,´ Canada H3A 2A7 Overview Introduction and Related Work Contributions Framework Parameter Dependence Analysis Return Value Use Analysis Conclusions Future Work CDP04 – 1/48 Introduction and Related Work Speculative method-level parallelism (SMLP) allows for dynamic parallelisation of single-threaded programs speculative threads are forked at callsites suitable for Java virtual machines Perfect return value prediction can double performance of SMLP (Hu et al., 2003) Implemented accurate return value prediction in SableVM, our group’s JVM (Pickett et al., 2004) Current goals: Reduce memory requirements Achieve higher accuracy CDP04 – 2/48 Speculative Method-Level Parallelism // execute foo non-speculatively r = foo (a, b, c); // execute past return point // speculatively in parallel with foo() if (r > 10) { ... } else { ... } CDP04 – 3/48 Impact of Return Value Prediction RVP strategy return value SMLP speedup none arbitrary 1.52 best predicted 1.92 perfect correct 2.76 26% speedup over no RVP with Hu’s best predictor 82% speedup over no RVP with perfect prediction Improved hybrid accuracy is highly desirable S. Hu., R. Bhargava, and L. K. John. The role of return value prediction in exploiting speculative method-level parallelism. Journal of Instruction-Level Parallelism, 5:1–21, Nov. 2003. CDP04 – 4/48 Return Value Prediction in SableVM Implemented all of Hu et al.’s predictors in SableVM Introduced new memoization predictor into hybrid C.J.F. Pickett and C. Verbrugge. Return value prediction in a Java virtual machine.
    [Show full text]
  • Full-System Simulation of Java Workloads with RISC-V and the Jikes Research Virtual Machine
    Full-System Simulation of Java Workloads with RISC-V and the Jikes Research Virtual Machine Martin Maas Krste Asanović John Kubiatowicz University of California, Berkeley University of California, Berkeley University of California, Berkeley [email protected] [email protected] [email protected] ABSTRACT architecture research. Specifically, all of the major approaches fall Managed languages such as Java, JavaScript or Python account for short when applied to managed-language applications: a large portion of workloads, both in cloud data centers and on • High-level full-system simulators do not provide the fidelity mobile devices. It is therefore unsurprising that there is an inter- to fully capture managed-language workloads. These work- est in hardware-software co-design for these languages. However, loads often interact at very small time-scales. For example, existing research infrastructure is often unsuitable for this kind of garbage collectors may introduce small delays of ≈ 10 cycles research: managed languages are sensitive to fine-grained inter- each, scattered through the application [10]. Cumulatively, actions that are not captured by high-level architectural models, these delays add up to substantial overheads but individually, yet are also too long-running and irregular to be simulated using they can only be captured with a high-fidelity model. cycle-accurate software simulators. • Software-based cycle-accurate simulators are too slow for Open-source hardware based on the RISC-V ISA provides an managed workloads. These simulators typically achieve on opportunity to solve this problem, by running managed workloads the order of 400 KIPS [17], or 1s of simulated time per 1.5h on RISC-V systems in FPGA-based full-system simulation.
    [Show full text]
  • A Deployable Sampling Strategy for Data Race Detection
    A Deployable Sampling Strategy for Data Race Detection Yan Cai1, Jian Zhang1, Lingwei Cao1, and Jian Liu2 1 State Key Laboratory of Computer Science, Institute of Software, Chinese Academy of Sciences, Beijing, China 2 Institute of Information Engineering, Chinese Academy of Sciences, Beijing, China [email protected], [email protected], [email protected], [email protected] ABSTRACT to a shared memory location should be protected by a common set Dynamic data race detection incurs heavy runtime overheads. of locks. However, even violating such a discipline, no data race Recently, many sampling techniques have been proposed to detect may occur [8][12][19]. The Happens-before relation [29] is usual- data races. However, some sampling techniques (e.g., Pacer) are ly implemented via vector clocks [19]. Each vector clock contains based on traditional happens-before relation and incur a large n clock elements, where n is the number of threads. They are used basic overhead. Others utilize hardware to reduce their sampling to track statuses of threads, locks, and memory locations. Race overhead (e.g., DataCollider) and they, however, detect a race detectors implementing vector clocks incur higher overhead than only when the race really occurs by delaying program executions. the lockset based ones. FastTrack [19] further improves the over- In this paper, we study the limitations of existing techniques and head of the happens-before based race detectors to be the same propose a new data race definition, named as Clock Races, for low level as that of lockset based ones by avoiding most of O(n) oper- overhead sampling purpose.
    [Show full text]
  • Jikes RVM and IBM DK for Java ƒ Understanding System Behavior ƒ Other Issues 4
    Dynamic Compilation and Adaptive Optimization in Virtual Machines Instructor: Michael Hind Material contributed by: Matthew Arnold, Stephen Fink, David Grove, and Michael Hind © 2006 IBM Corporation IBM Research Who am I? Helped build Jikes RVM (1998-2006) – GC Maps, live analysis, dominators, register allocation refactoring – Adaptive optimization system – Management, project promotion, education, etc. Work for IBM, home of 2 other Java VMs – IBM DK for Java, J9 In previous lives, worked on – Automatic parallelization (PTran) – Ada implementation (Phd Thesis) – Interprocedural ptr analysis – Professor for 6 years Excited to share what I know – And learn what I don’t! 2 ACACES’06 | Dynamic Compilation and Adaptive Optimization in Virtual Machines | July 24-28, 2006 © 2006 IBM Corporation IBM Research Course Goals Understand the optimization technology used in production virtual machines Provide historical context of dynamic/adaptive optimization technology Debunk common misconceptions Suggest avenues of future research 3 ACACES’06 | Dynamic Compilation and Adaptive Optimization in Virtual Machines | July 24-28, 2006 © 2006 IBM Corporation IBM Research Course Outline 1. Background 2. Engineering a JIT Compiler 3. Adaptive Optimization 4. Feedback-Directed and Speculative Optimizations 5. Summing Up and Looking Forward 4 ACACES’06 | Dynamic Compilation and Adaptive Optimization in Virtual Machines | July 24-28, 2006 © 2006 IBM Corporation IBM Research Course Outline 1. Background Why software optimization matters Myths, terminology, and historical context How programs are executed 2. Engineering a JIT Compiler What is a JIT compiler? Case studies: Jikes RVM, IBM DK for Java, HotSpot High level language-specific optimizations VM/JIT interactions 3. Adaptive Optimization Selective optimization Design: profiling and recompilation Case studies: Jikes RVM and IBM DK for Java Understanding system behavior Other issues 4.
    [Show full text]