Improving Simultaneous Migration Time of Virtual Machines Using SDN

Total Page:16

File Type:pdf, Size:1020Kb

Improving Simultaneous Migration Time of Virtual Machines Using SDN Faculty of Electrical and Computer Engineering Communications Laboratory Deutsche Telekom Chair of Communication Networks Bachelor Thesis Improving Simultaneous Migration Time of Virtual Machines using SDN Anna Triginer Perera Born on: 28.03.1996 in Barcelona Matriculation number: 4812628 Matriculation year: 2018 Referee Prof. Dr.-Ing. Dr. h.c. Frank Fitzek Supervisor Dipl.-Ing. Robert-Steve Schmoll Submitted on: 08.03.2019 Statement of authorship I hereby certify that I have authored this Bachelor Thesis entitled Improving Simultane- ous Migration Time of Virtual Machines using SDN independently and without undue assistance from third parties. No other than the resources and references indicated in this thesis have been used. I have marked both literal and accordingly adopted quotations as such. There were no additional persons involved in the intellectual preparation of the present thesis. I am aware that violations of this declaration may lead to subsequent withdrawal of the degree. Dresden, 08.03.2019 Anna Triginer Perera Abstract Cloud computing is a key technology in providing services in networks and will play an even bigger role in restructuring the Internet for enabling the 5G mobile communication network. For cloud providers, economy of scale is important as is consolidation of re- sources. In order to always have optimal use of available servers, live migration is used intensively for load balancing, fault tolerance, power management, etc. This also applies to a cross-data-center case, where network resources are limited compared to a local mi- gration between hosts, which often support multiple dedicated networks for different tasks. The goal of this thesis is to use a programmable network mechanism in order to decrease the time needed for migrating several Virtual Machines concurrently. For this purpose, a measure environment has been created with Kernel-based Virtual Machine (KVM) as virtualization technology and a Ryu Software-defined Network (SDN) controller has been set through Openflow to optimize the migration performance in terms of bandwidth allo- cation. Contents List of Figures4 List of Tables5 1 Introduction6 2 Theoretical Background8 2.1 Virtual Machines . .8 2.1.1 Live Migration . .9 2.1.1.1 Memory Migration . 10 2.2 Software Defined Networking . 14 2.2.1 OpenFlow . 15 2.3 Related work . 17 3 Environment 20 3.1 Hardware Specifications . 20 3.2 Network Infrastructure . 21 3.3 Software Setup . 23 3.3.1 Virtualization Setup . 23 3.3.2 Open vSwitch and SDN controller . 24 3.3.2.1 Ryu Rest API . 26 3.4 Migration Procedure and Measurement Tools . 30 4 Experiments and Results 33 5 Conclusions and Future Work 41 References 43 3 List of Figures 2.1 Hypervisor and Virtual Machines . .9 2.2 Pre-copy Flowchard. Image source: [1] . 11 2.3 SDN Architecture . 15 2.4 Open vSwitch Components. Image source: [2] . 16 3.1 Current Network Topology . 21 3.2 Distributed Virtual Switch . 22 4.1 Single VM Live Migration Throughput . 34 4.2 Live Migration Comparison: 2 VMs . 35 4.3 Live Migration Comparison: 8 VMs . 35 4.4 Single VM Live Migration 50% stressed .................... 36 4.5 Relation between Bandwidth Allocation and Time . 37 4.6 Live Migration Comparison: 3 VMs . 38 4.7 Burstable Bandwidth Migration of 3VMs . 39 4.8 Comparison between four Live Migration Techniques . 40 4 List of Tables 2.1 Pre-copy Algorithm Migration. VM size = 16GB . 13 3.1 Ubuntu0-2 Specifications . 20 3.2 Servers Operating System . 21 3.3 Virtual Machine Characteristics . 23 3.4 Queue Setting Example . 27 3.5 QoS Rules Example . 28 4.1 Live Migration Metrics: 8 VMs . 35 4.2 Bandwith Allocation Queue Settings . 37 4.3 Bandwidth Allocation QoS Rules . 38 4.4 Burstable Bandwidth Allocation Queue Settings . 39 4.5 Live Migration Metrics Comparison . 40 5 1 Introduction Nowadays data centers are indispensable to manage the amount of data we generate contin- uously. Data centers are centralized locations where computing and networking equipment is concentrated for the purpose of collecting, storing, processing, distributing or allowing access to large amounts of data [3]. Due to the need to access to this information without a physical interface, these data centers have become Cloud Data Centers. The cloud is a virtual infrastructure which is accessible by a local network or Internet from a remote location. Currently, economy of scale and energy consumption in cloud infrastructures are important for Cloud providers. The 5G mobile communication network is going to be close related to Cloud computing [4]. This combination will provide substantial richness in capacity, flexibility and functionality to mobile network operators. Virtualization technology has been used by these data centers to become more efficient and reduce the cost associated with purchase, set up, cooling and maintenance. Many operat- ing system instances can be currently run on a single physical machine providing better use of physical resources [5, 6]. The migration of virtual machines (VM) located in data cen- ters provides more flexibility in managing their infrastructure. The migration procedure is also necessary for load balancing the traffic over the network and prevent congestion and bottlenecks on the infrastructure. Furthermore, migration is used for maintenance purposes considering that the equipment and software need upgrades and replacements regularly. 6 This thesis proposes to improve live migration performance between one physical host to another in terms of time. The focus of this improvement is placed on the network connec- tion. To achieve this, the VMs are migrated simultaneously through the same link under a programmable network. With a Software-defined Network (SDN) controller, bandwidth allocation rules are created to manage the migration process. Parallel live migration topic has not yet been deeply investigated but theoretical studies have demonstrated improvement on the migration with this method. Therefore, this thesis wants to focus on this research gap at the same time as using SDN technology which is the near future way to design, build and operate networks. The thesis content has been separated in two chapters, one regarding the theoretical background explanation necessary to carry out simultaneous migrations and the other one regarding the environment developed to test the parallel live migration. On the theoretical part, virtualization mechanism are explained focusing on live migration of virtualized instances. On the other hand, it is presented Software Defined Networks (SDN) technology emphasizing the SDN controllers used for the experimental development. As to the experimental part, the system design, hardware and software used is described. Finally, experiments and and testing results illustrate the performance of parallel live migration under a programmable network. 1 Introduction 7 2 Theoretical Background 2.1 Virtual Machines Virtualization technology allows to create multiple simulated environments or dedicated resources from a single physical hardware system [6]. Virtualization provides the virtual environments with an easier backup and recovery, better scalability and decreases the energy consumption because there are less physical machines. The hypervisor is the soft- ware that connects directly to the hardware and allows to split one system into separate, distinct and secure environments known as virtual machines (VMs). Therefore, a virtual machine (VM) is an emulation of an operating system (OS) created and executed by a hypervisor. The hypervisor can emulate multiple virtual hardware platforms isolated from each other (except KVM hypervisor that can not by itself). Thus, on the same physical host it is possible to run virtual machines with different operating system as we can see in the Figure 2.1. Kernel-based Virtual Machine (KVM) is a virtualization module in the Linux kernel that allows the kernel to function as a hypervisor. The KVM kernel module cannot, by itself, create a VM. To do so, it must use QEMU, a user-space process. QEMU is inherently a hardware emulator. It is provided as operations support systems (OSS) for emulating [7]. The QEMU emulator interacts with the KVM kernel module to execute guest-system processing while the KVM kernel module handles the VM exit from guest systems and executes VM entry instructions. The tool used for managing the virtualization platform is libvirt [8], an Open-source API, daemon and management tool. The libvirt project has developed a virtualization abstraction layer which is able to manage a set of virtual ma- 8 chines across different hypervisors. The goal of libvirt is to provide a library that offers all necessary operations for hypervisor management without implementing functionalities [9]. In addition, it is possible to manage the VMs through a graphical user interface (GUI), Virt-manager [10] which calls libvirt functions. Figure 2.1: Hypervisor and Virtual Machines 2.1.1 Live Migration Virtual machine live migration process consists on moving a virtual machine from one physical host to another without perceiving the interruption of its services. The machine remains on, the network connections remain active and applications continue to run while the VM is relocated. Live migration imposes certain restrictions on the source and desti- nation physical hosts requiring compatible virtualization software, comparable CPU types and the hosts' membership to the same subnetwork. During a migration process there is a data transfer taking place between the source and the destination. The data transfer involves three aspects [11]: • CPU state. These states can be: Idle (nothing running), Running a user-space program or Running kernel (servicing interrupts or resources management). • Memory content. Includes the memory state of the VM operating system and all the processes running on it. It is the most significant procedure during a migration and it is data-intensive. 2 Theoretical Background 9 • Storage content. Consists on the migration of the disk virtual machine image1. It is the most data-intensive transfer. For this reason, it is generally an optional phase of the migration because the disk image is often accessible from source and destination hosts.
Recommended publications
  • Virtualization Getting Started Guide
    Red Hat Enterprise Linux 7 Virtualization Getting Started Guide Introduction to virtualization technologies available with RHEL Last Updated: 2020-02-24 Red Hat Enterprise Linux 7 Virtualization Getting Started Guide Introduction to virtualization technologies available with RHEL Jiri Herrmann Red Hat Customer Content Services [email protected] Yehuda Zimmerman Red Hat Customer Content Services [email protected] Dayle Parker Red Hat Customer Content Services Laura Novich Red Hat Customer Content Services Jacquelynn East Red Hat Customer Content Services Scott Radvan Red Hat Customer Content Services Legal Notice Copyright © 2019 Red Hat, Inc. This document is licensed by Red Hat under the Creative Commons Attribution-ShareAlike 3.0 Unported License. If you distribute this document, or a modified version of it, you must provide attribution to Red Hat, Inc. and provide a link to the original. If the document is modified, all Red Hat trademarks must be removed. Red Hat, as the licensor of this document, waives the right to enforce, and agrees not to assert, Section 4d of CC-BY-SA to the fullest extent permitted by applicable law. Red Hat, Red Hat Enterprise Linux, the Shadowman logo, the Red Hat logo, JBoss, OpenShift, Fedora, the Infinity logo, and RHCE are trademarks of Red Hat, Inc., registered in the United States and other countries. Linux ® is the registered trademark of Linus Torvalds in the United States and other countries. Java ® is a registered trademark of Oracle and/or its affiliates. XFS ® is a trademark of Silicon Graphics International Corp. or its subsidiaries in the United States and/or other countries.
    [Show full text]
  • Fortianalyzer VM Install Guide This Document, Which Describes Installing Fortianalyzer VM in Your Virtual Environment
    FortiAnalyzer VM - Install Guide VERSION 5.4 FORTINET DOCUMENT LIBRARY http://docs.fortinet.com FORTINET VIDEO GUIDE http://video.fortinet.com FORTINET BLOG https://blog.fortinet.com CUSTOMER SERVICE & SUPPORT https://support.fortinet.com FORTIGATE COOKBOOK http://cookbook.fortinet.com FORTINET TRAINING SERVICES http://www.fortinet.com/training FORTIGUARD CENTER http://www.fortiguard.com END USER LICENSE AGREEMENT http://www.fortinet.com/doc/legal/EULA.pdf FEEDBACK Email: [email protected] May 18, 2017 FortiAnalyzer VM 5.4 Install Guide 05-540-309958-20170518 TABLE OF CONTENTS Change Log 5 Introduction 6 FortiAnalyzer documentation 6 License and System Requirements 7 Licensing 7 Evaluation license 7 Minimum system requirements 8 Registration and Deployment 9 Register with Customer Service & Support 9 Deployment package 11 Deployment package contents 12 Deploying the appliance 13 Citrix XenServer deployment example 14 Create the virtual machine 14 Configure hardware settings 15 Start the virtual machine 17 Hyper-V deployment example 18 Create the virtual machine 18 Configure hardware settings 19 Start the virtual machine 23 KVM deployment example 24 Create the virtual machine 24 Configure hardware settings 26 Start the virtual machine 27 Open Xen deployment example 28 Create and configure the virtual machine 28 VMware deployment example 31 VMware vSphere 31 Deploy the OVF file 31 Configure hardware settings 34 Power on the virtual machine 35 Azure deployment example 37 Deploy the virtual machine 37 AWS deployment example 39 AWS Marketplace 1-Click Launch 39 AWS EC2 console 41 Initial Configuration 46 GUI access 46 Enable GUI access 46 Connect to the GUI 47 Upload the license file 48 Configure your FortiAnalyzer VM 48 Index 50 Change Log Change Log Date Change Description 2016-03-17 Initial release.
    [Show full text]
  • KVM Based Virtualization and Remote Management Srinath Reddy Pasunuru St
    St. Cloud State University theRepository at St. Cloud State Culminating Projects in Information Assurance Department of Information Systems 5-2018 KVM Based Virtualization and Remote Management Srinath Reddy Pasunuru St. Cloud State University, [email protected] Follow this and additional works at: https://repository.stcloudstate.edu/msia_etds Recommended Citation Pasunuru, Srinath Reddy, "KVM Based Virtualization and Remote Management" (2018). Culminating Projects in Information Assurance. 53. https://repository.stcloudstate.edu/msia_etds/53 This Starred Paper is brought to you for free and open access by the Department of Information Systems at theRepository at St. Cloud State. It has been accepted for inclusion in Culminating Projects in Information Assurance by an authorized administrator of theRepository at St. Cloud State. For more information, please contact [email protected]. 1 KVM Based Virtualization and Remote Management by Srinath Reddy Pasunuru A Starred Paper Submitted to the Graduate Faculty of St. Cloud State University in Partial Fulfillment of the Requirements for the Degree Master of Science in Information Assurance May, 2018 Starred Paper Committee Susantha Herath, Chairperson Ezzat Kirmani Sneh Kalia 2 Abstract In the recent past, cloud computing is the most significant shifts and Kernel Virtual Machine (KVM) is the most commonly deployed hypervisor which are used in the IaaS layer of the cloud computing systems. The Hypervisor is the one which provides the complete virtualization environment which will intend to virtualize as much as hardware and systems which will include the CPUs, Memory, network interfaces and so on. Because of the virtualization technologies such as the KVM and others such as ESXi, there has been a significant decrease in the usage if the resources and decrease in the costs involved.
    [Show full text]
  • Hypervisor Based Password Security
    HyperPass: Hypervisor Based Password Security James "Murphy" McCauley, Radhika Mittal Abstract Phishing attacks: It has been shown that it is quite Passwords are the linchpin in the security of an increasing possible to fool users into divulging passwords and other number of online services – services that range from private data [11]. While some are quick to dismiss such social networking to business communication to banking. attacks as “user error”, phishing can be coupled with Given their importance, it is unfortunate that passwords network-based attacks or can incorporate techniques such are relatively easily stolen using a number of different as homograph domain names to create user experiences types of attack. We introduce HyperPass: an approach that are very difficult to differentiate from legitimate ones. and proof-of-concept system that aims to prevent some of Attacking hosts: By compromising a user’s machine, these attacks by moving passwords from a user’s normal passwords can be stolen directly in any of several operating environment into a secure hypervisor. Notably, ways, e.g., by examining HTTP post data, reading them this is done while maintaining compatibility with existing from browser password managers, or logging keystrokes. online services, applications, and operating systems. These techniques have been used by botnets (the Torpig botnet alone steals a password every second [30]) as well 1 Introduction as by off-the-shelf “spyware” which has even been pre- installed on rental computers [24]. While preventing Passwords are the linchpin of online security. Certainly, this sort of host compromise is an ongoing effort by both there are other major technologies involved in cyberse- industry and academia, it continues to be an elusive goal.
    [Show full text]
  • Oracle® Linux Virtualization Manager Getting Started Guide
    Oracle® Linux Virtualization Manager Getting Started Guide F25124-11 September 2021 Oracle Legal Notices Copyright © 2019, 2021 Oracle and/or its affiliates. This software and related documentation are provided under a license agreement containing restrictions on use and disclosure and are protected by intellectual property laws. Except as expressly permitted in your license agreement or allowed by law, you may not use, copy, reproduce, translate, broadcast, modify, license, transmit, distribute, exhibit, perform, publish, or display any part, in any form, or by any means. Reverse engineering, disassembly, or decompilation of this software, unless required by law for interoperability, is prohibited. The information contained herein is subject to change without notice and is not warranted to be error-free. If you find any errors, please report them to us in writing. If this is software or related documentation that is delivered to the U.S. Government or anyone licensing it on behalf of the U.S. Government, then the following notice is applicable: U.S. GOVERNMENT END USERS: Oracle programs (including any operating system, integrated software, any programs embedded, installed or activated on delivered hardware, and modifications of such programs) and Oracle computer documentation or other Oracle data delivered to or accessed by U.S. Government end users are "commercial computer software" or "commercial computer software documentation" pursuant to the applicable Federal Acquisition Regulation and agency-specific supplemental regulations. As such, the use, reproduction, duplication, release, display, disclosure, modification, preparation of derivative works, and/or adaptation of i) Oracle programs (including any operating system, integrated software, any programs embedded, installed or activated on delivered hardware, and modifications of such programs), ii) Oracle computer documentation and/or iii) other Oracle data, is subject to the rights and limitations specified in the license contained in the applicable contract.
    [Show full text]
  • ZERTO VIRTUAL REPLICATION - PREREQUISITES & REQUIREMENTS for MICROSOFT HYPER-V ENVIRONMENTS ZVR-REH-5.5U3 Rev01 Dec2017
    ZERTO VIRTUAL REPLICATION - PREREQUISITES & REQUIREMENTS FOR MICROSOFT HYPER-V ENVIRONMENTS ZVR-REH-5.5U3 Rev01 Dec2017 Zerto Virtual Replication is installed in a site with virtual machines to be protected as well as in the site where these virtual machines will be recovered. This document describes Zerto Virtual Replication - Prerequisites and Requirements for Microsoft Hyper-V Environments. For the requirements of VMware, Microsoft Azure or AWS protected sites, go to myZerto > Technical Documentation portal. ■ The Zerto Virtual Replication installation includes: ■ A Zerto Virtual Manager (ZVM): This is a Windows service, and manages replication at the site level. ■ A Virtual Replication Appliance (VRA): This is a virtual machine installed on each Hyper-V host to move the data to be replicated from the protected to the recovery site. ■ A Virtual Backup Appliance (VBA): This is a Windows service and manages offsite backups within Zerto Virtual Replication on each site. The VBA service runs on the same machine as the Zerto Virtual Manager service. ■ Zerto Virtual Replication can be installed at multiple sites and each site can be paired to any other site. ■ Each site is managed with the Zerto User Interface. ■ Zerto Virtual Replication also supports both the protected and recovery sites being managed by one SCVMM, for small branch offices. For example, from one datacenter to another datacenter, both managed by the same SCVMM. See the following sections: ■ “For Each Zerto Virtual Replication Hyper-V Site”, on page 1 ■ “Considerations and Guidelines”, on page 2 ■ “For Virtual Replication Appliances on the Hyper-V Host”, on page 3 ■ “Routable Networks”, on page 3 ■ “Minimum Bandwidth”, on page 3 ■ “Requirements for the Zerto Virtual Manager Web Client”, on page 3 ■ “Recommended Best Practices for the Zerto Virtual Replication Hyper-V Site”, on page 4 ■ “Open Firewall Ports for Hyper-V Environments”, on page 5 For Each Zerto Virtual Replication Hyper-V Site ■ Microsoft System Center 2012 R2, or 2016 with VMM (SCVMM) and at least one Hyper-V host.
    [Show full text]
  • Cisco Vwaas on Microsoft Hyper-V
    Cisco vWAAS on Microsoft Hyper-V This chapter describes how to use Cisco vWAAS on Microsoft Hyper-V, and contains the following sections: • About Cisco vWAAS on Microsoft Hyper-V, on page 1 • Supported Host Platforms, Software Versions, and Disk Type, on page 2 • System Requirements for Cisco vWAAS on Microsoft Hyper-V, on page 2 • Deployment Options for Cisco vWAAS on Microsoft Hyper-V, on page 3 • OVA Package Formats for vWAAS on Microsoft Hyper-V, on page 4 • Installing Cisco vWAAS on Microsoft Hyper-V, on page 6 • Activating and Registering vWAAS on Hyper-V, on page 8 • Traffic Interception Methods for Cisco vWAAS on Microsoft Hyper-V, on page 9 • Operating Guidelines for Cisco vWAAS on Microsoft Hyper-V, on page 11 • Configuring GPT Disk Format for vWAAS-50000 on Hyper-V with Akamai Connect, on page 14 About Cisco vWAAS on Microsoft Hyper-V Microsoft Hyper-V, available for Cisco vWAAS in WAAS Version 6.1.x and later, is a native hypervisor for x86_64 systems to enable platform virtualization. Cisco vWAAS on Microsoft Hyper-V extends Cisco networking benefits to Microsoft Windows Server Hyper-V deployments. It improves utilization, consolidates server workloads, and reduces costs. To achieve this, Cisco vWAAS on Hyper-V uses hardware virtualization to enable multiple operating systems to run on a single host, and allows the operating systems to share the same underlying physical hardware. Cisco vWAAS on Microsoft Hyper-V supports all the WAN-optimization functionalities that are supported by physical Cisco WAAS devices. Physical memory for Cisco vWAAS on Hyper-V is provided by a Cisco UCS server.
    [Show full text]
  • Circuit‐Based Logical Layer 2 Bridging in Software‐Defined Data Center Networking
    Received: 2 November 2018 Revised: 3 May 2019 Accepted: 13 July 2019 DOI: 10.1002/dac.4128 RESEARCH ARTICLE Circuit‐based logical layer 2 bridging in software‐defined data center networking Yao‐Chun Wang | Ying‐Dar Lin Computer Science, National Chiao Tung Summary University, Hsinchu, Taiwan With the expansion of the size of data centers, software‐defined networking Correspondence (SDN) is becoming a trend for simplifying the data center network manage- Yao‐Chun Wang, Computer Science, National Chiao Tung University, Hsinchu, ment with central and flexible flow control. To achieve L2 abstractions in a Taiwan. multitenant cloud, Open vSwitch (OVS) is commonly used to build overlay Email: [email protected] tunnels (eg, Virtual eXtensible Local Area Network [VXLAN]) on top of existing underlying networks. However, the poor VXLAN performance of OVS is of huge concern. Instead of solving the performance issues of OVS, in this paper, we proposed a circuit‐based logical layer 2 bridging mechanism (CBL2), which builds label‐switched circuits and performs data‐plane multicasting in a software‐defined leaf‐spine fabric to achieve scalable L2 without overlay tunneling. Our evaluations indicate that direct transmission in OVS improves throughput performance by 58% compared with VXLAN tunneling, and data‐ plane multicasting for ARP reduces address resolution latency from 149 to 0.5 ms, compared with control‐plane broadcast forwarding. The evaluation results also show that CBL2 provides 0.6, 0.4, and 11‐ms protection switching time, respectively, in the presence of switch failure, link failure, and port shutdown in practical deployment. KEYWORDS cloud, datacenter, layer 2, multitenancy, network virtualization, OpenFlow, SDN 1 | INTRODUCTION Infrastructure‐as‐a‐Service (IaaS)1 providers enable enterprise customers (who are also called tenants) to obtain flex- ible and on‐demand virtualized infrastructures, by using virtualization technologies that share the computing resources (eg, servers, storages, and networks) in a data center.
    [Show full text]
  • Lokke, a Hybrid Security Hypervisor
    Lokke, a hybrid security hypervisor Otavio´ A. A. Silva1, Paulo L´ıcio de Geus1 1 Universidade Estadual de Campinas (Unicamp) [email protected] , [email protected] Abstract. This work did ample research on techniques used by advanced threats that aim to evade detection systems, elevate privileges and manipulate objects in a modern OS kernel, using the Windows 10 kernel as a test bench. Given state-of-the-art attacks in kernelspace, this work’s main goal is to design a se- cure mechanism to protect the OS kernel against a class of attacks, not relying upon any specific vector. This mechanism is based on hybrid virtualization and combines the advantages of Type 1 and 2 hypervisors, where the hypervisor runs at the same level as the OS kernel does, but within a privileged execution framework. The design of this security framework allows for the integration with other security subsystems, by providing security policies enforced by the hypervisor and independently of the kernel. 1. Introduction Modern OS kernels are built with security as a moving concept, where many approach were made to decrease the kernel overhead, enhance user-level switch and performance, with security policies integrated as best practices or bug fixing. This introduced in many aspects behaviors which were exploited by attacks in the fashion of OS design, as the first wildly use of buffer overflow attack, by the Morris Worm [22], or many user privileged elevations in Windows User Account Control[7]. Although, over the years, these attacks demanded changes in the design concept of any modern OS, as in dynamic libraries, process, and memory organization, most sophisticated attacks nowadays are still abusing in some fashion the behave of the OS to provide userspace services.
    [Show full text]
  • Comparison of Platform Virtual Machines - Wikipedia
    Comparison of platform virtual machines - Wikipedia... http://en.wikipedia.org/wiki/Comparison_of_platform... Comparison of platform virtual machines From Wikipedia, the free encyclopedia The table below compares basic information about platform virtual machine (VM) packages. Contents 1 General Information 2 More details 3 Features 4 Other emulators 5 See also 6 References 7 External links General Information Name Creator Host CPU Guest CPU Bochs Kevin Lawton any x86, AMD64 CHARON-AXP Stromasys x86 (64 bit) DEC Alphaserver CHARON-VAX Stromasys x86, IA-64 VAX x86, x86-64, SPARC (portable: Contai ners (al so 'Zones') Sun Microsystems (Same as host) not tied to hardware) Dan Aloni helped by other Cooperati ve Li nux x86[1] (Same as parent) developers (1) Denal i University of Washington x86 x86 Peter Veenstra and Sjoerd with DOSBox any x86 community help DOSEMU Community Project x86, AMD64 x86 1 of 15 10/26/2009 12:50 PM Comparison of platform virtual machines - Wikipedia... http://en.wikipedia.org/wiki/Comparison_of_platform... FreeVPS PSoft (http://www.FreeVPS.com) x86, AMD64 compatible ARM, MIPS, M88K GXemul Anders Gavare any PowerPC, SuperH Written by Roger Bowler, Hercul es currently maintained by Jay any z/Architecture Maynard x64 + hardware-assisted Hyper-V Microsoft virtualization (Intel VT or x64,x86 AMD-V) OR1K, MIPS32, ARC600/ARC700, A (can use all OVP OVP Imperas [1] [2] Imperas OVP Tool s x86 (http://www.imperas.com) (http://www.ovpworld compliant models, u can write own to pu OVP APIs) i Core Vi rtual Accounts iCore Software
    [Show full text]
  • International Journal for Scientific Research & Development
    IJSRD - International Journal for Scientific Research & Development| Vol. 2, Issue 02, 2014 | ISSN (online): 2321-0613 Virtualization : A Novice Approach Amithchand Sheety1 Mahesh Poola2 Pradeep Bhat3 Dhiraj Mishra4 1,2,3,4 Padmabhushan Vasantdada Patil Pratishthan’s College of Engineering, Eastern Express Highway, Near Everard Nagar, Sion-Chunabhatti, Mumbai-400 022, India. Abstract— Virtualization provides many benefits – greater as CPU. Although hardware is consolidated, typically efficiency in CPU utilization, greener IT with less power OS are not. Instead, each OS running on a physical consumption, better management through central server becomes converted to a distinct OS running inside environment control, more availability, reduced project a virtual machine. The large server can "host" many such timelines by eliminating hardware procurement, improved "guest" virtual machines. This is known as Physical-to- disaster recovery capability, more central control of the Virtual (P2V) transformation. desktop, and improved outsourcing services. With these 2) Consolidating servers can also have the added benefit of benefits, it is no wondered that virtualization has had a reducing energy consumption. A typical server runs at meteoric rise to the 2008 Top 10 IT Projects! This white 425W [4] and VMware estimates an average server paper presents a brief look at virtualization, its benefits and consolidation ratio of 10:1. weaknesses, and today’s “best practices” regarding 3) A virtual machine can be more easily controlled and virtualization. inspected from outside than a physical one, and its configuration is more flexible. This is very useful in I. INTRODUCTION kernel development and for teaching operating system Virtualization, in computing, is a term that refers to the courses.
    [Show full text]
  • Rapporto Tecnico N.42
    Consiglio Nazionale delle Ricerche ISTITUTO DI RICERCA SULL’IMPRESA E LO SVILUPPO Settembre 2013 Rapporto tecnico N.4 4 KVM: AN OPEN-SOURCE FRAMEWORK FOR VIRTUALIZATION Giancarlo Birello, Ivano Fucile, Valter Giovanetti, Anna Perin Rapporto Tecnico, Anno 8, n° 44 settembre 2013 Istituto di Ricerche sull’Impresa e Lo Sviluppo Rapporti tecnici CERIS ISSN: 2282-5665 online Anno 8, N. 44; settembre 2013 Direttore Responsabile Secondo Rolfo Direzione e Redazione CNR-Ceris Istituto di Ricerca sull’Impresa e lo Sviluppo Via Real Collegio, 30 10024 Moncalieri (Torino), Italy Tel. +39 011 6824.911 Fax +39 011 6824.966 [email protected] http://www.ceris.cnr.it Sede di Roma Via dei Taurini, 19 00185 Roma, Italy Tel. 06 49937810 Fax 06 49937884 Sede di Milano Via Bassini, 15 20121 Milano, Italy tel. 02 23699501 Fax 02 23699530 Segreteria di redazione Enrico Viarisio [email protected] Copyright © Settembre 2013 by CNR-Ceris Rapporto Tecnico, Anno 8, n° 44 settembre 2013 KVM: AN OPEN-SOURCE FRAMEWORK FOR VIRTUALIZATION Giancarlo Birello*, Ivano Fucile Valter Giovanetti (CNR-Ceris, IT Office) Anna Perin (CNR-Ceris, Library) CNR-Ceris IT Office Strada delle Cacce, 73 10135 Torino – Italy Phone: +39 011 3977533/4/5 CNR-Ceris Library Via Real Collegio, 30 10024 Moncalieri (Torino) – Italy Phone: +39 011 6824928 * Corresponding author: [email protected] ABSTRACT: This report analyses the configuration steps of the open-source hypervisor component KVM, (Kernel- based Virtual Machine). KVM solution is used for digiBESS (open-source project of digital archive) and all network services as web and application servers, user backup, long term archive and e-mail.
    [Show full text]