Comparative Studies of 10 Programming Languages Within 10 Diverse Criteria
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Programming Paradigms & Object-Oriented
4.3 (Programming Paradigms & Object-Oriented- Computer Science 9608 Programming) with Majid Tahir Syllabus Content: 4.3.1 Programming paradigms Show understanding of what is meant by a programming paradigm Show understanding of the characteristics of a number of programming paradigms (low- level, imperative (procedural), object-oriented, declarative) – low-level programming Demonstrate an ability to write low-level code that uses various address modes: o immediate, direct, indirect, indexed and relative (see Section 1.4.3 and Section 3.6.2) o imperative programming- see details in Section 2.3 (procedural programming) Object-oriented programming (OOP) o demonstrate an ability to solve a problem by designing appropriate classes o demonstrate an ability to write code that demonstrates the use of classes, inheritance, polymorphism and containment (aggregation) declarative programming o demonstrate an ability to solve a problem by writing appropriate facts and rules based on supplied information o demonstrate an ability to write code that can satisfy a goal using facts and rules Programming paradigms 1 4.3 (Programming Paradigms & Object-Oriented- Computer Science 9608 Programming) with Majid Tahir Programming paradigm: A programming paradigm is a set of programming concepts and is a fundamental style of programming. Each paradigm will support a different way of thinking and problem solving. Paradigms are supported by programming language features. Some programming languages support more than one paradigm. There are many different paradigms, not all mutually exclusive. Here are just a few different paradigms. Low-level programming paradigm The features of Low-level programming languages give us the ability to manipulate the contents of memory addresses and registers directly and exploit the architecture of a given processor. -
Swing: Components for Graphical User Interfaces
Swing: Components for Graphical User Interfaces Computer Science and Engineering College of Engineering The Ohio State University Lecture 22 GUI Computer Science and Engineering The Ohio State University GUI: A Hierarchy of Nested Widgets Computer Science and Engineering The Ohio State University Visual (Containment) Hierarchy Computer Science and Engineering The Ohio State University Top-level widgets: outermost window (a container) Frame, applet, dialog Intermediate widgets: allow nesting (a container) General purpose Panel, scroll pane, tabbed pane, tool bar Special purpose Layered pane Atomic widgets: nothing nested inside Basic controls Button, list, slider, text field Uneditable information displays Label, progress bar, tool tip Interactive displays of highly formatted information Color chooser, file chooser, tree For a visual (“look & feel”) of widgets see: http://java.sun.com/docs/books/tutorial/uiswing/components Vocabulary: Widgets usually referred to as “GUI components” or simply “components” History Computer Science and Engineering The Ohio State University Java 1.0: AWT (Abstract Window Toolkit) Platform-dependent implementations of widgets Java 1.2: Swing Most widgets written entirely in Java More portable Main Swing package: javax.swing Defines various GUI widgets Extensions of classes in AWT Many class names start with “J” Includes 16 nested subpackages javax.swing.event, javax.swing.table, javax.swing.text… Basic GUI widgets include JFrame, JDialog JPanel, JScrollPane, JTabbedPane, -
How to Create an Android Application Using Eclipse on Windows 7
How to Create an Android Application using Eclipse on Windows 7 Kevin Gleason 11/11/11 This application note is design to teach the reader how to setup an Android Development Environment on a Windows 7 Computer using eclipse and how to create an Android application. It first explains all of the software and hardware requirements and explains to the reader how to setup and install each of the required programs. It then explains how to design and code an Android application. Finally it explains how to use the Android Virtual Device to test the application. Table of Contents 1 Key Terms ..................................................................................................................................... 2 2 Objective ....................................................................................................................................... 2 3 System Requirements ................................................................................................................... 2 4 Installation and Configuration ...................................................................................................... 3 4.1 Download and Configure Eclipse IDE .................................................................................... 3 4.2 Download Android SDK ......................................................................................................... 4 4.3 Install ADT plugin for eclipse ................................................................................................. 5 4.4 Configure -
SPLLIFT — Statically Analyzing Software Product Lines in Minutes Instead of Years
SPLLIFT — Statically Analyzing Software Product Lines in Minutes Instead of Years Eric Bodden1 Tarsis´ Toledoˆ 3 Marcio´ Ribeiro3;4 Claus Brabrand2 Paulo Borba3 Mira Mezini1 1 EC SPRIDE, Technische Universitat¨ Darmstadt, Darmstadt, Germany 2 IT University of Copenhagen, Copenhagen, Denmark 3 Federal University of Pernambuco, Recife, Brazil 4 Federal University of Alagoas, Maceio,´ Brazil [email protected], ftwt, [email protected], [email protected], [email protected], [email protected] Abstract A software product line (SPL) encodes a potentially large variety v o i d main () { of software products as variants of some common code base. Up i n t x = secret(); i n t y = 0; until now, re-using traditional static analyses for SPLs was virtu- # i f d e f F ally intractable, as it required programmers to generate and analyze x = 0; all products individually. In this work, however, we show how an # e n d i f important class of existing inter-procedural static analyses can be # i f d e f G transparently lifted to SPLs. Without requiring programmers to y = foo (x); LIFT # e n d i f v o i d main () { change a single line of code, our approach SPL automatically i n t x = secret(); converts any analysis formulated for traditional programs within the print (y); } i n t y = 0; popular IFDS framework for inter-procedural, finite, distributive, y = foo (x); subset problems to an SPL-aware analysis formulated in the IDE i n t foo ( i n t p) { print (y); framework, a well-known extension to IFDS. -
Technical Project and Product Manager Solution Architect and Senior Full Stack Developer
Technical project and product manager Solution architect and senior full stack developer Profile Technical project and product manager, working with R&D software innovation processes, with a background as solution architect and senior full stack developer. Experienced manager of outsourced teams in many different countries, working with team efficiency based on pragmatic Scrum approach. Experience from scaled agile projects with hundreds of people involved. I am used to working with confidential information and have been security cleared several times. Knowledge I have been programming more than 20 different programming, script and database languages the last 36 years. My recent programming skills include NodeJS, JavaScript, Python, C#, Java, React for progressive web apps (PWA) and some courses in React-Native Expo. I have worked mostly with REST API architecture and a little GraphQL. I have specialist knowledge from leading CMS and DMS systems like Sitecore, DOCUMENTUM and Public 360, were I as product manager had to know Danish law on personal data and record management (ESDH). I worked many years on products for the educational sector and non-profit projects like Oligo Academy, that uses virtual worlds in primary schools for teaching environmental issues and other study subjects. Nikolaj Lisberg Hansen Born 1973 and started programming early in 1984. Got first programming job in 1995 and started working as freelance solution architect and technical project manager in 2006. I practice Tai Chi, love music and like to travel the world. Languages Very good Danish, English and German. Availability 10-25 hours per week normally remote or on-site near Copenhagen. Flexible salary between 96€ / hour (600 DKK) for remote work and 144€ / hour (900 DKK) for on-site work on product innovation or as technical project manager, solution architect or senior developer. -
Hibernate ORM Query Simplication Using Hibernate
2016 3rd National Foundation for Science and Technology Development Conference on Information and Computer Science Hibernate ORM Query Simplication Using Hibernate Criteria Extension (HCE) Kisman Sani M. Isa Master of Information Technology Master in Computer Science Bina Nusantara University Bina Nusantara University Jl. Kebon Jeruk Raya No. 27, Jakarta Barat, DKI Jl. Kebon Jeruk Raya No. 27, Jakarta Barat, DKI Jakarta, Indonesia 11530 Jakarta, Indonesia 11530 [email protected] [email protected] Abstract— Software development time is a critical issue interfaced by a query. The software engineer will make in software development process, hibernate has been the query specified to database used. Each database widely used to increase development speed. It is used in vendor has their Structured Query Language (SQL). As database manipulation layer. This research develops a the development of software technology and most of library to simplify hibernate criteria. The library that is programming languages are object oriented, some called as Hibernate Criteria Extension (HCE) provides API functions to simplify code and easily to be used. Query engineer or software institutions try to simplify the associations can be defined by using dot. The library will query process. They try to bind object in application to automatically detect the join association(s) based on database. This approach is called as Object Relational mapping in entity class. It can also be used in restriction Mapping (ORM). ORM is a translation mechanism from and order. HCE is a hibernate wrapper library. The object to relational data, vice versa. ORM has “dialect” configuration is based on hibernate configuration. -
Functional and Imperative Object-Oriented Programming in Theory and Practice
Uppsala universitet Inst. för informatik och media Functional and Imperative Object-Oriented Programming in Theory and Practice A Study of Online Discussions in the Programming Community Per Jernlund & Martin Stenberg Kurs: Examensarbete Nivå: C Termin: VT-19 Datum: 14-06-2019 Abstract Functional programming (FP) has progressively become more prevalent and techniques from the FP paradigm has been implemented in many different Imperative object-oriented programming (OOP) languages. However, there is no indication that OOP is going out of style. Nevertheless the increased popularity in FP has sparked new discussions across the Internet between the FP and OOP communities regarding a multitude of related aspects. These discussions could provide insights into the questions and challenges faced by programmers today. This thesis investigates these online discussions in a small and contemporary scale in order to identify the most discussed aspect of FP and OOP. Once identified the statements and claims made by various discussion participants were selected and compared to literature relating to the aspects and the theory behind the paradigms in order to determine whether there was any discrepancies between practitioners and theory. It was done in order to investigate whether the practitioners had different ideas in the form of best practices that could influence theories. The most discussed aspect within FP and OOP was immutability and state relating primarily to the aspects of concurrency and performance. This thesis presents a selection of representative quotes that illustrate the different points of view held by groups in the community and then addresses those claims by investigating what is said in literature. -
UML Ou Merise)
Présenté par : M. Bouderbala Promotion : 3ème Année LMD Informatique / Semestre N°5 Etablissement : Centre Universitaire de Relizane Année Universitaire : 2020/2021 Elaboré par M.Bouderbala / CUR 1 Elaboré par M.Bouderbala / CUR 2 Croquis, maquette et prototype et après …? Elaboré par M.Bouderbala / CUR 3 système interactif vs. système algorithmique Système algorithmique (fermé) : lit des entrées, calcule, produit un résultat il y a un état final Système interactif (ouvert) : évènements provenant de l’extérieur boucle infinie, non déterministe Elaboré par M.Bouderbala / CUR 4 Problème Nous avons appris à programmer des algorithmes (la partie “calcul”) La plupart des langages de programmation (C, C++, Java, Lisp, Scheme, Ada, Pascal, Fortran, Cobol, ...) sont conçus pour écrire des algorithmes, pas des systèmes interactifs Elaboré par M.Bouderbala / CUR 5 Les Bibliothèques graphique Un widget toolkit ( Boite d'outil de composant d'interface graphique) est une bibliothèque logicielle destinée à concevoir des interfaces graphiques. Fonctionnalités pour faciliter la programmation d’applications graphiques interactives (et gérer les entrées) Windows : MFC (Microsoft Foundation Class), Windows Forms (NET Framework) Mac OS X : Cocoa Unix/Linux : Motif Multiplateforme : Java AWT/Swing, QT, GTK Elaboré par M.Bouderbala / CUR 6 Bibliothèque graphique Une Bibliothèque graphique est une bibliothèque logicielle spécialisée dans les fonctions graphiques. Elle permet d'ajouter des fonctions graphiques à un programme. Ces fonctions sont classables en trois types qui sont apparus dans cet ordre chronologique et de complexité croissante : 1. Les bibliothèques de tracé d'éléments 2D 2. Les bibliothèques d'interface utilisateur 3. Les bibliothèques 3D Elaboré par M.Bouderbala / CUR 7 Les bibliothèques de tracé d'éléments 2D Ces bibliothèques sont également dites bas niveau. -
Equal Rights for Functional Objects Or, the More Things Change, The
ACM OOPS Messenger 4,4 (Oct. 1993), 2-27. Equal Rights for Functional Objects1 or, The More Things Change, The More They Are the Same2 Henry G. Baker Nimble Computer Corporation 16231 Meadow Ridge Way, Encino, CA 91436 (818) 986-1436 (818) 986-1360 FAX August, October, 1990, October, 1991, and April, 1992 This work was supported in part by the U.S. Department of Energy Contract No. DE-AC03-88ER80663 We argue that intensional object identity in object-oriented programming languages and databases is best defined operationally by side-effect semantics. A corollary is that "functional" objects have extensional semantics. This model of object identity, which is analogous to the normal forms of relational algebra, provides cleaner semantics for the value-transmission operations and built-in primitive equality predicate of a programming language, and eliminates the confusion surrounding "call-by-value" and "call-by-reference" as well as the confusion of multiple equality predicates. Implementation issues are discussed, and this model is shown to have significant performance advantages in persistent, parallel, distributed and multilingual processing environments. This model also provides insight into the "type equivalence" problem of Algol-68, Pascal and Ada. 1. INTRODUCTION Parallel, distributed and persistent programming languages are leaving the laboratories for more wide-spread use. Due to the substantial differences between the semantics and implementations of these languages and traditional serial programming languages, however, some of the most basic notions of programming languages must be refined to allow efficient, portable implementations. In this paper, we are concerned with defining object identity in parallel, distributed and persistent systems in such a way that the intuitive semantics of serial implementations are transparently preserved. -
Visualization Program Development Using Java
JAERI-Data/Code 2002-003 Japan Atomic Energy Research Institute - (x 319-1195 ^J^*g|55lfi5*-/SWB*J|f^^W^3fFti)) T?1fi^C «k This report is issued irregularly. Inquiries about availability of the reports should be addressed to Research Information Division, Department of Intellectual Resources, Japan Atomic Energy Research Institute, Tokai-mura, Naka-gun, Ibaraki-ken T 319-1195, Japan. © Japan Atomic Energy Research Institute, 2002 JAERI- Data/Code 2002-003 Java \Z w-mm n ( 2002 %. 1 ^ 31 B Java *ffitt, -f >*- —tf—T -7x-x (GUI) •fi3.t>*> Java ff , Java #t : T619-0215 ^^^ 8-1 JAERI-Data/Code 2002-003 Visualization Program Development Using Java Akira SASAKI, Keiko SUTO and Hisashi YOKOTA* Advanced Photon Research Center Kansai Research Establishment Japan Atomic Energy Research Institute Kizu-cho, Souraku-gun, Kyoto-fu ( Received January 31, 2002 ) Method of visualization programs using Java for the PC with the graphical user interface (GUI) is discussed, and applied to the visualization and analysis of ID and 2D data from experiments and numerical simulations. Based on an investigation of programming techniques such as drawing graphics and event driven program, example codes are provided in which GUI is implemented using the Abstract Window Toolkit (AWT). The marked advantage of Java comes from the inclusion of library routines for graphics and networking as its language specification, which enables ordinary scientific programmers to make interactive visualization a part of their simulation codes. Moreover, the Java programs are machine independent at the source level. Object oriented programming (OOP) methods used in Java programming will be useful for developing large scientific codes which includes number of modules with better maintenance ability. -
Eric Franklin Enslen
Eric Franklin Enslen email:[email protected]!403 Terra Drive phone:!(302) 827-ERIC (827-3742)!Newark, DE website:! www.cis.udel.edu/~enslen!19702 Education: Bachelor of Science in Computer and Information Sciences University of Delaware, Newark, DE!May 2011 Major GPA: 3.847/4.0 Academic Experience: CIS Study Abroad, London, UK!Summer 2008 Visited research labs at University College London, King"s College, and Brunel University, as well as IBM"s Hursley Park, and studied Software Testing and Tools for the Software Life Cycle Relevant Courses: Computer Ethics, Digital Intellectual Property, Computer Graphics, and Computational Photography Academic Honors: Alumni Enrichment Award, University of Delaware Alumni Association, Newark, DE!May 2009 Travel fund to present a first-author paper at the the 6th Working Conference on Mining Software Repositories (MSR), collocated with the 2009 International Conference on Software Engineering (ICSE) Hatem M. Khalil Memorial Award, College of Arts and Sciences, University of Delaware, Newark, DE!May 2009 Awarded to a CIS major in recognition of outstanding achievement in software engineering, selected by CIS faculty Deanʼs List, University of Delaware, Newark, DE!Fall 2007, Spring 2008, Fall 2008 and Fall 2009 Research Experience: Undergraduate Research, University of Delaware, Newark, DE!January 2009 - Present Developing, implementing, evaluating and documenting an algorithm to split Java identifiers into their component words in order to improve natural-language-based software maintenance tools. Co-advisors: Lori Pollock, K. Vijay-Shanker Research Publications: Eric Enslen, Emily Hill, Lori Pollock, K. Vijay-Shanker. “Mining Source Code to Automatically Split Identifiers for Software Analysis.” 6th Working Conference on Mining Software Repositories, May 2009. -
Functional and Logic Programming - Wolfgang Schreiner
COMPUTER SCIENCE AND ENGINEERING - Functional and Logic Programming - Wolfgang Schreiner FUNCTIONAL AND LOGIC PROGRAMMING Wolfgang Schreiner Research Institute for Symbolic Computation (RISC-Linz), Johannes Kepler University, A-4040 Linz, Austria, [email protected]. Keywords: declarative programming, mathematical functions, Haskell, ML, referential transparency, term reduction, strict evaluation, lazy evaluation, higher-order functions, program skeletons, program transformation, reasoning, polymorphism, functors, generic programming, parallel execution, logic formulas, Horn clauses, automated theorem proving, Prolog, SLD-resolution, unification, AND/OR tree, constraint solving, constraint logic programming, functional logic programming, natural language processing, databases, expert systems, computer algebra. Contents 1. Introduction 2. Functional Programming 2.1 Mathematical Foundations 2.2 Programming Model 2.3 Evaluation Strategies 2.4 Higher Order Functions 2.5 Parallel Execution 2.6 Type Systems 2.7 Implementation Issues 3. Logic Programming 3.1 Logical Foundations 3.2. Programming Model 3.3 Inference Strategy 3.4 Extra-Logical Features 3.5 Parallel Execution 4. Refinement and Convergence 4.1 Constraint Logic Programming 4.2 Functional Logic Programming 5. Impacts on Computer Science Glossary BibliographyUNESCO – EOLSS Summary SAMPLE CHAPTERS Most programming languages are models of the underlying machine, which has the advantage of a rather direct translation of a program statement to a sequence of machine instructions. Some languages, however, are based on models that are derived from mathematical theories, which has the advantages of a more concise description of a program and of a more natural form of reasoning and transformation. In functional languages, this basis is the concept of a mathematical function which maps a given argument values to some result value.