The Appalachian-Ouachita Rifted Margin of Southeastern North America

Total Page:16

File Type:pdf, Size:1020Kb

The Appalachian-Ouachita Rifted Margin of Southeastern North America The Appalachian-Ouachita rifted margin of southeastern North America WILLIAM A. THOMAS* Department of Geology, University of Alabama, Tuscaloosa, Alabama 35487 ABSTRACT component of extension propagated north- rocks of Early and Middle Cambrian age along eastward to form the intracratonic fault the Southern Oklahoma fault system are over- Promontories and embayments along the systems northeast of the transform fault, but stepped by post-rift strata of Late Cambrian age late Precambrian-early Paleozoic Appala- most of the extension of the Ouachita rift was (Ham and others, 1964). The purposes of this chian-Ouachita continental margin of south- transformed along the Alabama-Oklahoma article are to synthesize available data into an eastern North America are framed by a transform fault to the Mid-Iapetus Ridge interpretation of the mechanisms controlling the northeast-striking rift system offset by outboard from the Blue Ridge passive shape of the rifted margin and to consider the northwest-striking transform faults. Inboard margin. implications of differences in age of rifting. from the continental margin, basement fault INTRODUCTION systems have two sets of orientation; one is RIFT-RELATED ROCKS AND northeast parallel with rift segments, and the Late Precambrian-early Paleozoic rifting and STRUCTURES other is northwest parallel with transform opening of the Iapetus (proto-Atlantic) Ocean faults. produced a North American continental margin Blue Ridge Late Precambrian clastic and volcanic syn- along which the late Paleozoic Appalachian- rift rocks overlie Precambrian basement Ouachita orogenic belt subsequently formed General Setting. The Blue Ridge is an elon- rocks along the Appalachian Blue Ridge. (Figs. 1, 2). Several interpretations have con- gate external basement massif (Fig. 1) along Lower Cambrian sandstone at the base of a verged on the conclusion that a zigzag trace of which late Precambrian syn-rift sedimentary and transgressive passive-margin succession over- the Appalachian-Ouachita rifted margin out- volcanic rocks, as well as older basement rocks, steps the rift-fill successions and basement lines large-scale promontories and embayments have been translated and deformed by younger rocks, defining the time of transition from an in the edge of North American continental crust Appalachian compressional structures, espe- active rift to a passive margin along the Blue (for example, Hoffman and others, 1974; Cebull cially large-scale Alleghanian (late Paleozoic) Ridge. Locally thick Early Late Cambrian and others, 1976; Rankin, 1976; Thomas, 1976, thrust faults. Westward-directed thrust faults of and older sedimentary rocks fill downthrown 1977, 1985a; Lowe, 1985); however, these in- large displacement characterize the southern blocks of the intracratonic Mississippi Val- terpretations differ in detail and in mechanisms part of the Blue Ridge. Toward the northeast ley-Rough Creek-Rome graben system and of rifting. Among the more significant differ- along strike, the surface structure is a northeast- Birmingham basement fault system. These ences, each of the large-scale embayments in the plunging anticlinorium above a blind detach- basement fault systems, which indicate north- continental margin is interpreted (1) as framed ment. Although rift-related rocks are in several west-southeast extension like the Blue Ridge by an intersection of the rift with a transform separate thrust sheets, along-strike distribution is rift, are overstepped by Upper Cambrian fault (Thomas, 1976, 1977) or (2) as formed at defined by mapping, and across-strike distribu- strata. The northwest-striking Southern Ok- the intersection of two "successful" arms of a tion can be inferred from restored cross sections lahoma fault system is interpreted to be a three-armed radial rift (rift-rift-rift triple junction) (for example, see Rast and Kohles, 1986). transform fault that propagated into the con- (Burke and Dewey, 1973; Hoffman and others, The tectonic framework of accumulation of tinent from the Ouachita rift. Early and Mid- 1974; Rankin, 1976). The trace and nature of late Precambrian sedimentary and volcanic dle Cambrian rift-related igneous rocks along intracratonic fault systems that extend from the rocks along the Blue Ridge is generally inter- the fault system and adjacent Precambrian Appalachian-Ouachita orogen into the craton preted in the context of fault-bounded basins basement are overstepped by Upper Cam- ("aulacogens" as defined by N. S. Shatski; see along an Atlantic-type rifted continental margin brian sandstone. discussion in Hoffman and others, 1974) are (for example, Hatcher, 1972, 1978; Rankin, The differences in age of rift-related rocks critical to discrimination between these alterna- 1975, 1976; Thomas, 1976, 1977; Wehr and suggest a spreading-center shift at the begin- tives, because syn-rift intracratonic fault systems Glover, 1985; Rast and Kohles, 1986; Schwab, ning of the Cambrian Period from the Blue must be (1) intracratonic projections of either 1986; Simpson and Eriksson, 1989). In the Ridge rift to the Ouachita rift southwest of transform faults or rift segments or (2) the failed northwestern part of the Blue Ridge, rift-related the Alabama-Oklahoma transform fault. arms of three-armed radial rifts. Components of rocks are in laterally discontinuous and variable From Early to Early Late Cambrian, a small the Appalachian-Ouachita rift are diachronous. accumulations that overlie Precambrian (-1.0 For example, rift-related rocks in the Appala- Ga and older) crystalline basement rocks and chian Blue Ridge are overstepped by post-rift are overlain by post-rift strata in the Lower •Present address: Department of Geological Sci- strata of Early Cambrian age (Simpson and ences, University of Kentucky, Lexington, Kentucky Cambrian Chilhowee Group (Fig. 3). Along the 40506. Eriksson, 1989), whereas rift-related igneous southeastern side of the Blue Ridge, rift-related Geological Society of America Bulletin, v. 103, p. 415-431, 6 figs., 1 table, March 1991. 415 Downloaded from http://pubs.geoscienceworld.org/gsa/gsabulletin/article-pdf/103/3/415/3381149/i0016-7606-103-3-415.pdf by guest on 26 September 2021 J- y & t ^r northeastern limit \PENNy of Catoctin outcrop ^ along Blue Ridge southwestern limit of ^ Swift Run-Catoctin along SJ y ^ ,N/ northwest limb of Blue Ridge J\ //7s of EXPLANATION —v— cratonward limit of Appalachian-Ouachita detachment —»— thrust fault anticline - M> cratonward limit of Appalachian accreted terranes intracratonic basement fault margin of Gulf and Atlantic Coastal Plains outline of Altamaha magnetic anomaly Marathon outcrop Figure 1. Outline map of Appalachian-Ouachita orogenic belt and intracratonic fault systems. Locations of rift-related rocks are shown in present structural position. Map and locations of structures and rocks compiled from references cited in text. End points of cross sections of Figures 3,4, and 5 indicated by letters. Downloaded from http://pubs.geoscienceworld.org/gsa/gsabulletin/article-pdf/103/3/415/3381149/i0016-7606-103-3-415.pdf by guest on 26 September 2021 EXPLANATION rifted margin of continental crust O— • transform fault Intracratonlc basement fault crustal-scale southeast-dipping seismic reflectors palinspastically restored width of passive-margin shelf fades OKLA foc, %Q abrupt margin of \ i continental crust ARK. °°c, (PASSCAL data) cK ... % V TEXAS ST^S. \ %/> ^ MARATHON %>CPROMONTORY - SCALE EMBAYMENT^ ll 0 100 km Figure 2. Outline map of interpreted late Precambrian-eariy Paleozoic continental margin as bounded by rift segments and transform faults. Map includes locations of observations that provide control for the reconstruction of the continental margin and intracratonic fault systems (compiled from references cited in text). Intersections between rift segments and transform faults are drawn orthogonally as a simplifying generalization. End points of cross sections of Figures 3,4, and 5 indicated by letters. Downloaded from http://pubs.geoscienceworld.org/gsa/gsabulletin/article-pdf/103/3/415/3381149/i0016-7606-103-3-415.pdf by guest on 26 September 2021 A A' ROME TROUGH BLUE RIDGE RIFT # Knox # Knox • Mount Simon # Elbrook # Rome Base of transgressive Sauk sequence: # Shady Late Cambrian # Chilhowee EXPLANATION Base of transgressive Sauk sequence: DOMINANT ROCK TYPES Early Cambrian OF LITHQSTRATIGRAPHIC UNITS • siliciclastic rocks # Grove # carbonate rocks # Frederick v volcanic rocks Araby LOCATIONS OF KEY STRUCTURES present leading edge • palinspastic leading edge Rome trough sedimentary 10 km -, Early Late Cambrian and older SCALE (3.2 km) •v Mechum River (0.7 km) • Fauquier Goochland terrane • Blue Ridge 50 km B' ROME TROUGH BLUE RIDGE RIFT • Knox • Conasauga • Rome • Shady • Chilhowee Shady (Lower Cambrian) shelf edge Rome trough sedimentary Early Late Cambrian and older (1.9 km) •v Grandfather Mountain Ocoee (9 km) (12 km) Kings Mountain belt Blue Ridge I C Great Smoky Mountains Blue Ridge Corbin-Salem Church basement massif northern end of Catoctin outcrop DATUM: TOP OF CHILHOWEE Chilhowee Precambrian basement • Ocoee v Catoctin v Mount Rogers c • Swift Run srr,b. ^ (12 km) (3 km) ar> b, (1 km) basalt in Unicoi (lower part of Chilhowee) Figure 3. Palinspastic cross sections of the Blue Ridge rift and Rome trough. Cross sections A-A' and B-B' are perpendicular to strike; cross section C-C' is parallel with strike of the present Blue Ridge structures. Names of lithostratigraphic units in rift-related successions (maximum thickness in parentheses)
Recommended publications
  • Intrusive and Depositional Constraints on the Cretaceous Tectonic History of the Southern Blue Mountains, Eastern Oregon
    THEMED ISSUE: EarthScope IDOR project (Deformation and Magmatic Modification of a Steep Continental Margin, Western Idaho–Eastern Oregon) Intrusive and depositional constraints on the Cretaceous tectonic history of the southern Blue Mountains, eastern Oregon R.M. Gaschnig1,*, A.S. Macho2,*, A. Fayon3, M. Schmitz4, B.D. Ware4,*, J.D. Vervoort5, P. Kelso6, T.A. LaMaskin7, M.J. Kahn2, and B. Tikoff2 1SCHOOL OF EARTH AND ATMOSPHERIC SCIENCES, GEORGIA INSTITUTE OF TECHNOLOGY, 311 FERST DRIVE, ATLANTA, GEORGIA 30332, USA 2DEPARTMENT OF GEOSCIENCE, UNIVERSITY OF WISCONSIN-MADISON, 1215 W DAYTON STREET, MADISON, WISCONSIN 53706, USA 3DEPARTMENT OF EARTH SCIENCES, UNIVERSITY OF MINNESOTA TWIN CITIES, 310 PILLSBURY DRIVE SE, MINNEAPOLIS, MINNESOTA 55455, USA 4DEPARTMENT OF GEOSCIENCES, BOISE STATE UNIVERSITY, 1910 UNIVERSITY DRIVE, BOISE, IDAHO 83725, USA 5SCHOOL OF THE ENVIRONMENT, WASHINGTON STATE UNIVERSITY, PO BOX 64281, PULLMAN, WASHINGTON 99164, USA 6DEPARTMENT OF GEOLOGY AND PHYSICS, LAKE SUPERIOR STATE UNIVERSITY, CRAWFORD HALL OF SCIENCE, SAULT STE. MARIE, MICHIGAN 49783, USA 7DEPARTMENT OF GEOGRAPHY AND GEOLOGY, UNIVERSITY OF NORTH CAROLINA, DELOACH HALL, 601 SOUTH COLLEGE ROAD, WILMINGTON, NORTH CAROLINA 28403, USA ABSTRACT We present an integrated study of the postcollisional (post–Late Jurassic) history of the Blue Mountains province (Oregon and Idaho, USA) using constraints from Cretaceous igneous and sedimentary rocks. The Blue Mountains province consists of the Wallowa and Olds Ferry arcs, separated by forearc accretionary material of the Baker terrane. Four plutons (Lookout Mountain, Pedro Mountain, Amelia, Tureman Ranch) intrude along or near the Connor Creek fault, which separates the Izee and Baker terranes. High-precision U-Pb zircon ages indicate 129.4–123.8 Ma crystallization ages and exhibit a north-northeast–younging trend of the magmatism.
    [Show full text]
  • Water-Mass Evolution in the Cretaceous Western Interior Seaway of North America and Equatorial Atlantic
    Clim. Past, 13, 855–878, 2017 https://doi.org/10.5194/cp-13-855-2017 © Author(s) 2017. This work is distributed under the Creative Commons Attribution 3.0 License. Water-mass evolution in the Cretaceous Western Interior Seaway of North America and equatorial Atlantic James S. Eldrett1, Paul Dodsworth2, Steven C. Bergman3, Milly Wright4, and Daniel Minisini3 1Shell International Exploration & Production B.V, Kesslerpark 1, 2288 GS Rijswijk, the Netherlands 2StrataSolve Ltd, 42 Gaskell Street, Stockton Heath, Warrington, WA4 2UN, UK 3Shell International Exploration and Production Inc, 200 N. Dairy Ashford, Houston, TX 77079, USA 4Chemostrat Inc., 3760 Westchase Drive, Houston, Texas, TX 77042, USA Correspondence to: James S. Eldrett ([email protected]) Received: 1 November 2016 – Discussion started: 25 November 2016 Revised: 4 May 2017 – Accepted: 29 May 2017 – Published: 14 July 2017 Abstract. The Late Cretaceous Epoch was characterized by tion event related to open water-mass exchange and may have major global perturbations in the carbon cycle, the most been complicated by variable contribution of organic matter prominent occurring near the Cenomanian–Turonian (CT) from different sources (e.g. refractory/terrigenous material), transition marked by Oceanic Anoxic Event 2 (OAE-2) requiring further investigation. at 94.9–93.7 Ma. The Cretaceous Western Interior Sea- way (KWIS) was one of several epicontinental seas in which a complex water-mass evolution was recorded in widespread sedimentary successions. This contribution integrates new 1 Introduction data on the main components of organic matter, geochem- istry, and stable isotopes along a north–south transect from The Late Cretaceous Epoch was characterized by sus- the KWIS to the equatorial western Atlantic and Southern tained global warming, emplacement of several large igneous Ocean.
    [Show full text]
  • A Simple Synthesis of Caribbean Geology
    Transactions of the 16th Caribbean Geological Conference, Barbados. Caribbean Journal of Earth Science, 39 (2005), 69-82. © Geological Society of Jamaica. A simple synthesis of Caribbean geology KEITH H. JAMES Consultant Geologist, Plaza de la Cebada, 3, 09346 Covarrubias (Burgos), Spain, and Honorary Departmental Fellow, Institute of Geography and Earth Sciences, Aberystwyth, Wales, UK. E-mail: [email protected] ABSTRACT. The complex area between the continental masses of North and South America is a collage of many continental, stretched continental, island arc and oceanic elements described by numerous works. Some areas are poorly exposed and not well known. Others are intensely explored and well documented. Syntheses of this geology popularly derive the Caribbean Plate from the Pacific and require major rotation of island arc elements and continental blocks along with major changes in plate migration direction. These models are complex and geometrically unlikely. This paper suggests a simple, in situ evolution from a Pangean configuration principally via regional (North - South America), Jurassic-Late Cretaceous, WNW oriented sinistral transtension, followed by a Palaeocene–Middle Eocene compressional event and Oligocene-Recent, E-W strike-slip between the Caribbean and American Plates. 1. INTRODUCTION southern Guatemala, Honduras, Nicaragua and El Salvador. Extended continental crust forms the The Middle America area of this paper lies northern part of the Gulf of Mexico, the eastern between the continental masses of North and margin of Mexico, the eastern and western South America (Fig. 1). The present-day margins of the Florida Platform, the eastern Caribbean Plate interacts with Atlantic plates to Bahamas Platform and the Nicaragua the north, south and east and with the Nazca and Rise/Jamaica and the Guyana Platform.
    [Show full text]
  • Azuero Peninsula, Panama)
    Geologica Acta, Vol.9, N o s 3-4, September - December 2011, 481-498 DOI: 10.1344/105.000001742 Available online at www.geologica-acta.com Geology of the Cerro Quema Au-Cu deposit (Azuero Peninsula, Panama) 1 1 1 1 2 3 1 I. CORRAL A. GRIERA D. GÓMEZ-GRAS M. CORBELLA À. CANALS M. PINEDA-FALCONETT E. CARDELLACH 1 Departament de Geologia, Universitat Autònoma de Barcelona (UAB) 08193 Barcelona, Spain. Corral E-mail: [email protected] Griera E-mail: [email protected] Gómez-Gras E-mail: [email protected] Corbella E-mail: [email protected] Cardellach E-mail: [email protected] 2 Facultat de Geologia, Universitat de Barcelona (UAB) 08028 Barcelona, Spain. Canals E-mail: [email protected] 3 Departamento de Geografía, Universidad de Panamá 082304747, Chitré, Panamá. Pineda-Falconett E-mail: [email protected] ABS TRACT The Cerro Quema district, located on the Azuero Peninsula, Panama, is part of a large regional hydrothermal system controlled by regional faults striking broadly E-W, developed within the Río Quema Formation. This formation is composed of volcanic, sedimentary and volcano-sedimentary rocks indicating a submarine depositional environment, corresponding to the fore-arc basin of a Cretaceous–Paleogene volcanic arc. The structures observed in the area and their tectono-stratigraphic relationship with the surrounding formations suggest a compressive and/or transpressive tectonic regime, at least during Late Cretaceous–Oligocene times. The igneous rocks of the Río Quema Formation plot within the calc-alkaline field with trace and rare earth element (REE) patterns of volcanic arc affinity.
    [Show full text]
  • Decade of North American Geology Geologic Map of North America—Perspectives and Explanation
    Decade of North American Geology Geologic Map of North America—Perspectives and explanation John C. Reed Jr. U.S. Geological Survey MS 980, Denver Federal Center Denver, Colorado 80225 USA John O. Wheeler Geological Survey of Canada 605 Robson Street Vancouver, British Columbia V6B 5J3 Canada Brian E. Tucholke Woods Hole Oceanographic Institution Department of Geology and Geophysics MS 22, Woods Hole, Massachusetts 02543-1541 USA with contributions from Will R. Stettner and David R. Soller 3300 Penrose Place, P.O. Box 9140 Boulder, Colorado 80301-9140 USA 2005 Copyright © 2005, The Geological Society of America, Inc. (GSA). All rights reserved. GSA grants permission to individual scientists to make unlimited photocopies of one or more items from this volume for noncommercial purposes advancing science or education, including classroom use. For permission to make photocopies of any item in this volume for other noncommercial, nonprofit purposes, contact the Geological Society of America. Written permission is required from GSA for all other forms of capture or reproduction of any item in the volume including, but not limited to, all types of electronic or digital scanning or other digital or manual transformation of articles or any portion thereof, such as abstracts, into computer-readable and/or transmittable form for personal or corporate use, either noncommercial or commercial, for-profit or otherwise. Send permission requests to GSA Copyright Permissions, 3300 Penrose Place, P.O. Box 9140, Boulder, Colorado 80301-9140, USA. Copyright is not claimed on any material prepared wholly by government employees within the scope of their employment. Published by The Geological Society of America, Inc.
    [Show full text]
  • GEOLOGIC MAP of the PLAINS 30'X 60' QUADRANGLE
    GEOLOGIC MAP OF THE PLAINS 30’x 60’ QUADRANGLE, WESTERN MONTANA Jeffrey D. Lonn, Larry N. Smith, and Robin B. McCulloch Montana Bureau of Mines and Geology Open-File Report 554 2007 This report has had preliminary reviews for conformity with Montana Bureau of Mines and Geology’s technical and editorial standards. Partial support has been provided by the STATEMAP component of the National Cooperative Geologic mapping Program of the U.S. Geological Survey under contract number 06HQAG0029. INTRODUCTION Montana Bureau of Mines and Geology (MBMG) staff selected the Plains 30’x 60’ quadrangle in western Montana for 1:100,000-scale mapping in order to fill the gap between the already completed Wallace (Lonn and McFaddan, 1999) and Missoula West (Lewis, 1998a) 30’x 60’ quadrangles (fig. 1). Bedrock of the map area is comprised mostly of low-grade metasedimentary rocks of the middle Proterozoic Belt Supergroup. The extraordinary thickness (>13 kilometers) of the Belt Supergroup and its complex deformation in western Montana have contributed to substantial stratigraphic and structural complexity in this region, and a geologically sound regional interpretation for this part of western Montana has been a goal of MBMG’s mapping program for the past decade. Harrison and others (1986) provided the foundation for mapping in this area with the publication of the Wallace 1O x 2O quadrangle, a 1:250,000-scale compilation that includes the Plains 30’ x 60’ quadrangle. The southwestern third of the Plains quadrangle contains structures of the Lewis and Clark Line, a poorly understood zone of west- northwest-trending faults and folds that transects the more northerly structural grain of western Montana (fig.
    [Show full text]
  • Caribbean Geology: an Introduction © 1994 the Authors U.W.I
    Caribbean Geology: An Introduction © 1994 The Authors U.W.I. Publishers' Association, Kingston CHAPTER 2 Evolution of the Gulf of Mexico and the Caribbean JAMES L. PINDELL Department of Earth Sciences, Fairchild Center, Dartmouth College, Hanover, New Hampshire 03755, U.S.A. INTRODUCTION discussed: FIXIST AND mobilist views of the evolution of Caribbean (A) The reconstructions of Pangea, including the restoration 63 region have both been proposed. Strictly fixist views are of syn-rift extension along passive margins during con difficult to entertain in light of the very well-documented tinental breakup; the bulk shape changes due to opening history of the Atlantic Ocean and the fairly accurate transcurrent and convergent faulting in northern South Pangean continental assemblies, both of which show that America during Andean orogenesis; and the removal of little or no Gulf of Mexico and Caribbean region existed Mesozoic -Cenozoic accreted arc terranes from northern between the larger continents during the Triassic, Jurassic South America for times prior to accretion. 14,48,49,65,70,81 and early Cretaceous . Mobilist views all ac cept (B) Atlantic opening kinematics and implications for North- significant amounts of eastward Caribbean migration South America motion. relative to the Americas, but are split between models which (C) Mesozoic kinematic significance of the Equatorial At- generate the lithosphere of the Caribbean Plate between the lantic reconstruction. 6,29,42,48,82 Americas and models which generate that litho- (D) The opening history of the Gulf of Mexico. 27,30,69,72 67 sphere in the Pacific . Pindell listed cogent arguments (E) The eastward migration of the Caribbean Plate from the for the plate's Pacific origin, but definitive proof will only Pacific, independent of Cayman Trough magnetics, by come when the deep interior, and not just the rims, of the tracing the timing of overthrusting of circum-Caribbean Caribbean Plate is shown to be pre-Aptian in origin, as foredeep basins by Caribbean terranes.
    [Show full text]
  • Wilson Cycles, Tectonic Inheritance, and Rifting of the North American Gulf of Mexico Continental Margin
    Making the Southern Margin of Laurentia themed issue Wilson cycles, tectonic inheritance, and rifting of the North American Gulf of Mexico continental margin Audrey D. Huerta1 and Dennis L. Harry2 1Department of Geological Sciences, Central Washington University, Ellensburg, Washington 98926-7418, USA 2Department of Geosciences, Colorado State University, Fort Collins, Colorado 80523, USA ABSTRACT beneath the coastal plain and continental strength of the lithosphere by replacing strong shelf, are direct consequences of the prerift ultramafi c mantle with relatively weak felsic The tectonic evolution of the North Amer- structure of the margin. crust (Fig. 1) (Braun and Beaumont, 1987; ican Gulf of Mexico continental margin is Dunbar and Sawyer, 1989; Chery et al., 1990; characterized by two Wilson cycles, i.e., INTRODUCTION Krabbendam , 2001). repeated episodes of opening and closing The Gulf of Mexico continental margin is of ocean basins along the same structural The spatial association between continen- similar to the U.S. Atlantic margin in that the trend. This evolution includes (1) the Pre- tal breakup and preexisting orogens is often axis of Mesozoic continental breakup trended cambrian Grenville orogeny; (2) formation described within the context of a Wilson cycle, subparallel to the buried middle Paleozoic of a rift-transform margin during late Pre- wherein orogenic belts formed by continen- Ouachita fold-and-thrust belt (Pindell and cambrian opening of the Iapetus Ocean; tal collision during closure of ancient ocean Dewey, 1982; Salvador, 1991a; Thomas, 1976, (3) the late Paleozoic Ouachita orogeny dur- basins are reactivated during subsequent rifting 1991). However, extension on the central North ing assembly of Pangea; and (4) Mesozoic episodes (Wilson, 1966; Vauchez et al., 1997).
    [Show full text]
  • Bedrock Geology of Round Rock and Surrounding Areas, Williamson and Travis Counties, Texas
    Bedrock Geology of Round Rock and Surrounding Areas, Williamson and Travis Counties, Texas Todd B. Housh Bedrock Geology of Round Rock and Surrounding Areas, Williamson and Travis Counties, Texas Todd B. Housh Copyright 2007 Todd B Housh, PhD, PG Round Rock, TX 78664 Cover photograph: The “Round Rock,” an erosional pedestal of Edward’s limestone that marked the low‐water crossing of Brushy Creek by the Chisholm Trail. 2 Table of Contents Introduction 5 Tectonic History 6 Previous Studies 8 Other Geologic Constraints 9 Stratigraphy 9 Comanche Series Fredericksburg Group Walnut Formation 10 Comanche Peak 10 Edwards 12 Kiamichi 13 Washita Group Georgetown 14 Del Rio 15 Buda 16 Gulf Series Woodbine Group Pepper 16 Eagle Ford Group 17 Austin Group 19 Taylor Group 21 Tertiary and Quaternary Systems Plio‐Pleistocene to Recent 22 Structure 23 Acknowledgements 27 Bibliography 28 Appendix 1. Compilation of sources of other geologic information. 34 Appendix 2. Localities of note to observe important geologic 40 features in the Round Rock Area. Appendix 3. Checklist of Cretaceous and Pleistocene fossils 45 3 4 Bedrock Geology of Round Rock and Surrounding Areas, Williamson and Travis Counties, Texas Todd B. Housh Introduction The purpose of this study was to produce a map of the bedrock geology of the city of Round Rock, Texas and its environs and to evaluate the geologic structure of the area. Most of the City of Round Rock lies within the Round Rock 7.5 minute quadrangle, Williamson County, Texas1, although parts of the city also lie within the Pflugerville West 7.5 minute quadrangle, Travis County, Texas2 and the Hutto 7.5 minute quadrangle, Williamson County, Texas3.
    [Show full text]
  • Western Interior Seaway
    () . Paleogeo.graphy of the Late Cretaceous of the Western Interior otMfddle North America+­ j?'oal .Blstribution anct,Sedimen~cumulation By Laura N. Robinson Roberts and Mark A. Kirschbaum U.S. GEOLOGICAL SURVEY PROFESSIONAL PAPER 1561 UNITED STATES GOVERNMENT PRINTING OFFICE, WASHINGTON : 1995 U.S. DEPARTMENT OF THE INTERIOR BRUCE BABBITT, Secretary U.S. GEOLOGICAL SURVEY Gordon P. Eaton, Director For sale by U.S. Geological Survey, Information Services Box 25286, Federal Center Denver, CO 80225 Any use of trade, product, or finn names in this publication is for descriptive purposes only and does not imply endorsement by the U.S. Government Library of Congress Cataloging-in-Publication Data Roberts, Laura N. Robinson. Paleogeography of the Late Cretaceous of the western interior of middle North America : coal distribution and sediment accumulation I by Laura N. Robinson Roberts and Mark A. Kirschbaum. p. em.- (U.S. Geological Survey professional paper ; 1561) Includes bibliographical references. Supt. of Docs. no.: I 19.16: 1561 1. Paleogeography-Cretaceous. 2. Paleogeography-West (U.S.). 3. Coal­ Geology-West (U.S.). I. Kirschbaum, Mark A. II. Title. III. Series. QE50 1.4.P3R63 1995 553.2'1'0978-dc20 94-39032 CIP CONTENTS Abstract........................................................................................................................... 1" Introduction ................................................................................................................... Western Interior Seaway ... .. ... ... ... .. .. ..
    [Show full text]
  • Caribbean Geology: an Introduction ©1994 the Authors U.W.I
    Caribbean Geology: An Introduction ©1994 The Authors U.W.I. Publishers' Association, Kingston CHAPTER 1 Geologic Provinces of the Caribbean Region GRENVILLE DRAPER1, TREVOR A. JACKSON2 and STEPHEN K. DONOVAN2 1Department of Geology, Florida International University, Miami, Florida 33199, U.SA. 2Department of Geology, University of the West Indies, Mona, Kingston 7, Jamaica INTRODUCTION South American continent. The western boundary com- prises Central America and the Isthmus of Panama, and the THE CARIBBEAN is a geologically complex region that eastern limits are defined by the Lesser Antilles archipelago. displays a variety of plate boundary interactions including Within these boundaries there are several deeper water subduction in the Lesser Antilles and Central America, regions; the Yucatan Basin, the Cayman Trough, the Colom- transcurrent (strike-slip) motions on the northern and southern bian Basin, the Venezuelan Basin and the Grenada Basin. boundaries, and sea floor spreading in the Cayman These are separated by several more or less linear ridges and Trough. The central Caribbean is a lithospheric plate con- rises; by the Cayman Ridge, the Nicaraguan Rise, the Beata sisting mainly of an anomalously thick, oceanic plateau Ridge and the Aves Ridge, respectively. The physiographic situated between two major continental regions and therein units correspond in part to the different crustal provinces lies its geological importance. Classic studies of the Alps, that make up the Caribbean and in part to the active tectonic Himalayas and Appalachians have documented the effects elements that make up the present Caribbean Plate. of major continent-continent collisions. The Caribbean pro- vides the opportunity to study the nature of the geological evolution of island arcs, and the tectonic interaction between PRESENT PLATE CONFIGURATION anomalously thick oceanic crust and continental crust.
    [Show full text]
  • WGBH/NOVA #4222 Making North America
    WGBH/NOVA #4222 Making North America: Human 00:00 KIRK JOHNSON (Sant Director, Smithsonian National Museum of Natural History): North America, the land that we love: it looks pretty familiar, don’t you think? Well, think again! The ground that we walk on is full of surprises, if you know where to look. As a geologist, the Grand Canyon is perhaps the best place in the world. Every single one of these layers tells its own story about what North America was like when that layer was deposited. So, are you ready for a little time-travelling? I’m Kirk Johnson, the director of the Smithsonian National Museum of Natural History, and I’m taking off on the fieldtrip of a lifetime, Look at that rock there. That is crazy! In this episode, North America is locked behind an enormous wall of ice. How did the first humans to ever set foot on the continent manage to get in? This is not the easiest thing in the world. 01:10 Once they got here, the challenges were daunting, but somehow, we turn the rocks of our homeland… Oh, man! …into riches. This thing is phenomenal. But what challenges lie ahead? Because our continent may be hiding some pretty dangerous secrets. Making North America: Human, right now, on NOVA. Today, North America boasts fertile farmlands, gleaming cities, the incredible wealth of our land, supporting a population of over half-a- billion, but rewind the clock, just 15,000 years, and our continent was truly a wild kingdom, filled with amazing Ice Age creatures.
    [Show full text]