Haag's Theorem in Renormalised Quantum Field Theories

Total Page:16

File Type:pdf, Size:1020Kb

Haag's Theorem in Renormalised Quantum Field Theories HAAG'S THEOREM IN RENORMALISED QUANTUM FIELD THEORIES LUTZ KLACZYNSKI Abstract. We review a package of no-go results in axiomatic quantum field theory with Haag's theorem at its centre. Since the concept of operator-valued distributions in this framework comes very close to what we believe canonical quantum fields are about, these results are of consequence to quantum field theory: they suggest the seeming absurdity that this highly victorious theory is incapable of describing interactions. We single out unitarity of the interaction picture's intertwiner as the most salient provision of Haag's theorem and critique canonical perturbation theory to argue that renormalisation bypasses Haag's theorem by violating this very assumption. Contents 1. Introduction 2 Part 1. Historical account 5 2. The representation issue & Haag's theorem 5 3. Other versions of Haag's theorem 13 4. Superrenormalisable theories evade Haag's theorem 16 5. What to do about Haag's theorem: reactions 18 Part 2. Axiomatic quantum field theory & Haag's theorem 23 6. The interaction picture in Fock space 23 7. Canonical (anti)commutation relations and no-interaction theorems 27 8. Wave-function renormalisation constant 32 9. Canonical quantum fields: too singular to be nontrivial 36 10. Wightman axioms and reconstruction theorem 40 11. Proof of Haag's theorem 45 12. Haag's theorem for fermion and gauge fields 50 Part 3. Renormalisation wrecks unitary equivalence 56 13. The theorem of Gell-Mann and Low 56 arXiv:1602.00662v1 [hep-th] 1 Feb 2016 14. The CCR question 58 15. Divergencies of the interaction picture 59 16. The renormalisation narrative 63 17. Renormalisation circumvents Haag's theorem 68 18. Conclusion: renormalisation staves off triviality 71 Acknowledgements 71 Part 4. Appendices 71 Appendix A. Baumann's theorem 71 Appendix B. Wightman's reconstruction theorem 73 Appendix C. Jost-Schroer theorem 75 References 77 Date: February 2, 2016. 1 2 LUTZ KLACZYNSKI 1. Introduction Quantum field theory (QFT) is undoubtedly one of the most successful physical theories. Besides the often cited extraordinary precision with which the anomalous magnetic moment of the electron had been computed in quantum electrodynamics (QED), this framework enabled theorists to predict the existence of hitherto unknown particles. As Dirac was trying to make sense of the negative energy solutions of the equation which was later named after him, he proposed the existence of a positively charged electron [Schw94]. This particle, nowadays known as the positron, presents an early example of a so-called antiparticle. It is fair to say that it was the formalism he was playing with that led him to think of such entities. And here we have theoretical physics at its best: the formulae under investigation only make sense provided an entity so-and-so exists. Here are Dirac's words: "A hole, if there were one, would be a new kind of particle, unknown to experi- mental physics, having the same mass and opposite charge to the electron. We may call such a particle an anti-electron. We should not expect to find any of them in nature, on account of their rapid rate of recombination with electrons, but if they could be produced experimentally in high vacuum, they would be quite stable and amenable to observations"[Dir31]. Of course, the positron was not the only particle to be predicted by quantum field theory. W and Z bosons, ie the carrier particles of the weak force, both bottom and top quark and probably also the Higgs particle are all examples of matter particles whose existence was in some sense necessitated by theory prior to their discovery. Yet canonical QFT presents itself as a stupendous and intricate jigsaw puzzle. While some massive chunks are for themselves coherent, we shall see that some connecting pieces are still only tenuously locked, though simply taken for granted by many practising physicists, both of phenomenological and of theoretical creed. 1.1. Constructive and axiomatic quantum field theory. In the light of this success, it seems ironic that so far physically realistic quantum field theories like the standard model (SM) and its subtheories quantum electrodynamics (QED) and quantum chromodynamics (QCD) all defy a mathematically rigorous description [Su12]. Take QED. While gauge transformations are classically well-understood as representations of a unitary group acting on sections of a principle bundle [Blee81], it is not entirely clear what becomes of them once the theory is quantised [StroWi74, Stro13]. However, Wightman and G˚ardinghave shown that the quantisation of the free electromagnetic field due to Gupta and Bleuler is mathematically consistent in the context of Krein spaces (see [Stro13] and references there, p.156). Drawing on the review article [Su12], we make the following observations as to what the state of affairs broadly speaking currently is. First, all approaches to construct quantum field models in a way seen as mathematically • sound and rigorous employ methods from operator theory and stochastic analysis, the latter only in the Euclidean case. This is certainly natural given the corresponding heuristically very successful notions used in Lagrangian quantum field theory and the formalism of functional integrals. These endeavours are widely known under the label constructive quantum field theory, where a common objective of those approaches was to obtain a theory of quantum fields with some reasonable properties. Axiomatic quantum field theory refined these properties further to a system of axioms. Several more or less equivalent such axiomatic systems have been proposed, the most prominent of which are: (1) the so-called Wightman axioms [StreatWi00, Streat75], HAAG'S THEOREM IN RENORMALISED QUANTUM FIELD THEORIES 3 (2) their Euclidean counterparts Osterwalder-Schrader axioms [OSchra73, Stro13] and (3) a system of axioms due to Araki, Haag and Kastler [HaKa64, Ha96, Stro13]. These axioms were enunciated in an attempt to clarify and discern what a quantum field theory should or could reasonably be. In contrast to this, the proponents of the somewhat idiosyncratic school of axiomatic S-matrix theory tried to discard the notion of quantum fields all together by setting axioms for the S- matrix [Sta62]. However, it lost traction when it was trumped by QCD in describing the strong interaction and later merged into the toolshed of string theory [Ri14]. Second, efforts were made in two directions. In the constructive approach, models were • built and then proven to conform with these axioms [GliJaf68, GliJaf70], whereas on the axiomatic side, the general properties of quantum fields defined in such a way were investigated under the proviso that they exist. Among the achievements of the axiomatic community are rigorous proofs of the PCT and also the spin-statistics theorem [StreatWi00]. Third, within the constructive framework, the first attempts started with superrenor- • malisable QFTs to stay clear of ultraviolet (UV) divergences. The emerging problems with these models had been resolved immediately: the infinite volume divergences encountered there were cured by a finite number of subtractions, once the appropri- ate counterterms had been identified [GliJaf68, GliJaf70]. Fourth, however, these problems exacerbated to serious and to this day unsurmountable • obstructions as soon as the realm of renormalisable theories was entered. 4 In the case of (φ )d, the critical dimension turned out to be d = 4, that is, rigorous results were attained only for the cases d = 2; 3. The issue there is that UV divergences cannot be defeated by a finite number of substractions. To our mind, it is their ’prolific’ nature which lets these divergences preclude any nonperturbative treatment in the spirit of the constructive approach. For this introduction, suffice it to assert that a nonperturbative definition of renormalisation for renormalisable fields is clearly beyond constructive methods of the above type. In particular, the fact that the regularised renormalisation Z factors can only be expected to have asymptotic perturbation series is obviously not conducive to their rigorous treatment. Although formally appearing in nonperturbative treatments as factors, they can a priori only be defined in terms of their perturbation series [Ost86]. However, for completeness, we mention [Schra76] in which a possible path towards the (in 4 some sense implicit) construction of (φ )4 in the context of the lattice approach was discussed. As one might expect, the remaining problem was to prove the existence of the renormalised limit to the continuum theory. 1.2. Haag's theorem and other triviality results. Around the beginning of the 1950s, soon after QED had been successfully laid out and heuristically shown to be renormalisable by its founding fathers [Dys49b], there was a small group of mathematical physicists who detected inconsistencies in its formulation. Their prime concern turned out to be the interaction picture of a quantum field theory [vHo52, Ha55]. In particular, Haag concluded that it cannot exist unless it is trivial, ie only describing a free theory. Rigorous proofs for these suspicions could at the time not be given for a simple reason: in order to prove that a mathematical object does not exist or that it can only have certain characteristics, one has to say and clarifiy what kind of mathematical thing it actually is or what it is supposed to be. But the situation changed when QFT was put on an axiomatic footing by Wightman and collaborators who made a number of reasonable assumptions and proved that the arguments put forward earlier against the interaction picture and Dyson's matrix were well-founded [WiHa57]. 4 LUTZ KLACZYNSKI This result was then called Haag('s) theorem. It entails in particular that if a quantum field purports to be unitarily equivalent to a free field, it must be free itself. Other important issues were the canonical (anti)commuation relations and the ill-definedness of quantum fields at sharp spacetime points. The ensuing decade brought to light a number of triviality results of the form "If X is a QFT with properties so-and-so, then it is trivial", where 'trivial' comes in 3 types, with increasing strength: the quantum fields are free fields, identity operators or vanishing.
Recommended publications
  • Perturbative Versus Non-Perturbative Quantum Field Theory: Tao’S Method, the Casimir Effect, and Interacting Wightman Theories
    universe Review Perturbative versus Non-Perturbative Quantum Field Theory: Tao’s Method, the Casimir Effect, and Interacting Wightman Theories Walter Felipe Wreszinski Instituto de Física, Universidade de São Paulo, São Paulo 05508-090, SP, Brazil; [email protected] Abstract: We dwell upon certain points concerning the meaning of quantum field theory: the problems with the perturbative approach, and the question raised by ’t Hooft of the existence of the theory in a well-defined (rigorous) mathematical sense, as well as some of the few existent mathematically precise results on fully quantized field theories. Emphasis is brought on how the mathematical contributions help to elucidate or illuminate certain conceptual aspects of the theory when applied to real physical phenomena, in particular, the singular nature of quantum fields. In a first part, we present a comprehensive review of divergent versus asymptotic series, with qed as background example, as well as a method due to Terence Tao which conveys mathematical sense to divergent series. In a second part, we apply Tao’s method to the Casimir effect in its simplest form, consisting of perfectly conducting parallel plates, arguing that the usual theory, which makes use of the Euler-MacLaurin formula, still contains a residual infinity, which is eliminated in our approach. In the third part, we revisit the general theory of nonperturbative quantum fields, in the form of newly proposed (with Christian Jaekel) Wightman axioms for interacting field theories, with applications to “dressed” electrons in a theory with massless particles (such as qed), as well as Citation: Wreszinski, W.F. unstable particles. Various problems (mostly open) are finally discussed in connection with concrete Perturbative versus Non-Perturbative models.
    [Show full text]
  • Renormalisation Circumvents Haag's Theorem
    Some no-go results & canonical quantum fields Axiomatics & Haag's theorem Renormalisation bypasses Haag's theorem Renormalisation circumvents Haag's theorem Lutz Klaczynski, HU Berlin Theory seminar DESY Zeuthen, 31.03.2016 Lutz Klaczynski, HU Berlin Renormalisation circumvents Haag's theorem Some no-go results & canonical quantum fields Axiomatics & Haag's theorem Renormalisation bypasses Haag's theorem Outline 1 Some no-go results & canonical quantum fields Sharp-spacetime quantum fields Interaction picture Theorems by Powers & Baumann (CCR/CAR) Schrader's result 2 Axiomatics & Haag's theorem Wightman axioms Haag vs. Gell-Mann & Low Haag's theorem for nontrivial spin 3 Renormalisation bypasses Haag's theorem Renormalisation Mass shift wrecks unitary equivalence Conclusion Lutz Klaczynski, HU Berlin Renormalisation circumvents Haag's theorem Sharp-spacetime quantum fields Some no-go results & canonical quantum fields Interaction picture Axiomatics & Haag's theorem Theorems by Powers & Baumann (CCR/CAR) Renormalisation bypasses Haag's theorem Schrader's result The quest for understanding canonical quantum fields 1 1 Constructive approaches by Glimm & Jaffe : d ≤ 3 2 2 Axiomatic quantum field theory by Wightman & G˚arding : axioms to construe quantum fields in terms of operator theory hard work, some results (eg PCT, spin-statistics theorem) interesting: triviality results (no-go theorems) 3 other axiomatic approaches, eg algebraic quantum field theory General form of no-go theorems φ quantum field with properties so-and-so ) φ is trivial. 3 forms
    [Show full text]
  • 275 – Quantum Field Theory
    Quantum eld theory Lectures by Richard Borcherds, notes by Søren Fuglede Jørgensen Math 275, UC Berkeley, Fall 2010 Contents 1 Introduction 1 1.1 Dening a QFT . 1 1.2 Constructing a QFT . 2 1.3 Feynman diagrams . 4 1.4 Renormalization . 4 1.5 Constructing an interacting theory . 6 1.6 Anomalies . 6 1.7 Infrared divergences . 6 1.8 Summary of problems and solutions . 7 2 Review of Wightman axioms for a QFT 7 2.1 Free eld theories . 8 2.2 Fixing the Wightman axioms . 10 2.2.1 Reformulation in terms of distributions and states . 10 2.2.2 Extension of the Wightman axioms . 12 2.3 Free eld theory revisited . 12 2.4 Propagators . 13 2.5 Review of properties of distributions . 13 2.6 Construction of a massive propagator . 14 2.7 Wave front sets . 17 Disclaimer These are notes from the rst 4 weeks of a course given by Richard Borcherds in 2010.1 They are discontinued from the 7th lecture due to time constraints. They have been written and TeX'ed during the lecture and some parts have not been completely proofread, so there's bound to be a number of typos and mistakes that should be attributed to me rather than the lecturer. Also, I've made these notes primarily to be able to look back on what happened with more ease, and to get experience with TeX'ing live. That being said, feel very free to send any comments and or corrections to [email protected]. 1st lecture, August 26th 2010 1 Introduction 1.1 Dening a QFT The aim of the course is to dene a quantum eld theory, to nd out what a quantum eld theory is, and to dene Feynman measures, renormalization, anomalies, and regularization.
    [Show full text]
  • The Renormalization Group in Quantum Field Theory
    COARSE-GRAINING AS A ROUTE TO MICROSCOPIC PHYSICS: THE RENORMALIZATION GROUP IN QUANTUM FIELD THEORY BIHUI LI DEPARTMENT OF HISTORY AND PHILOSOPHY OF SCIENCE UNIVERSITY OF PITTSBURGH [email protected] ABSTRACT. The renormalization group (RG) has been characterized as merely a coarse-graining procedure that does not illuminate the microscopic content of quantum field theory (QFT), but merely gets us from that content, as given by axiomatic QFT, to macroscopic predictions. I argue that in the constructive field theory tradition, RG techniques do illuminate the microscopic dynamics of a QFT, which are not automatically given by axiomatic QFT. RG techniques in constructive field theory are also rigorous, so one cannot object to their foundational import on grounds of lack of rigor. Date: May 29, 2015. 1 Copyright Philosophy of Science 2015 Preprint (not copyedited or formatted) Please use DOI when citing or quoting 1. INTRODUCTION The renormalization group (RG) in quantum field theory (QFT) has received some attention from philosophers for how it relates physics at different scales and how it makes sense of perturbative renormalization (Huggett and Weingard 1995; Bain 2013). However, it has been relatively neglected by philosophers working in the axiomatic QFT tradition, who take axiomatic QFT to be the best vehicle for interpreting QFT. Doreen Fraser (2011) has argued that the RG is merely a way of getting from the microscopic principles of QFT, as provided by axiomatic QFT, to macroscopic experimental predictions. Thus, she argues, RG techniques do not illuminate the theoretical content of QFT, and we should stick to interpreting axiomatic QFT. David Wallace (2011), in contrast, has argued that the RG supports an effective field theory (EFT) interpretation of QFT, in which QFT does not apply to arbitrarily small length scales.
    [Show full text]
  • Quantum Field Theory a Tourist Guide for Mathematicians
    Mathematical Surveys and Monographs Volume 149 Quantum Field Theory A Tourist Guide for Mathematicians Gerald B. Folland American Mathematical Society http://dx.doi.org/10.1090/surv/149 Mathematical Surveys and Monographs Volume 149 Quantum Field Theory A Tourist Guide for Mathematicians Gerald B. Folland American Mathematical Society Providence, Rhode Island EDITORIAL COMMITTEE Jerry L. Bona Michael G. Eastwood Ralph L. Cohen Benjamin Sudakov J. T. Stafford, Chair 2010 Mathematics Subject Classification. Primary 81-01; Secondary 81T13, 81T15, 81U20, 81V10. For additional information and updates on this book, visit www.ams.org/bookpages/surv-149 Library of Congress Cataloging-in-Publication Data Folland, G. B. Quantum field theory : a tourist guide for mathematicians / Gerald B. Folland. p. cm. — (Mathematical surveys and monographs ; v. 149) Includes bibliographical references and index. ISBN 978-0-8218-4705-3 (alk. paper) 1. Quantum electrodynamics–Mathematics. 2. Quantum field theory–Mathematics. I. Title. QC680.F65 2008 530.1430151—dc22 2008021019 Copying and reprinting. Individual readers of this publication, and nonprofit libraries acting for them, are permitted to make fair use of the material, such as to copy a chapter for use in teaching or research. Permission is granted to quote brief passages from this publication in reviews, provided the customary acknowledgment of the source is given. Republication, systematic copying, or multiple reproduction of any material in this publication is permitted only under license from the American Mathematical Society. Requests for such permission should be addressed to the Acquisitions Department, American Mathematical Society, 201 Charles Street, Providence, Rhode Island 02904-2294 USA. Requests can also be made by e-mail to [email protected].
    [Show full text]
  • An Introduction to Rigorous Formulations of Quantum Field Theory
    An introduction to rigorous formulations of quantum field theory Daniel Ranard Perimeter Institute for Theoretical Physics Advisors: Ryszard Kostecki and Lucien Hardy May 2015 Abstract No robust mathematical formalism exists for nonperturbative quantum field theory. However, the attempt to rigorously formulate field theory may help one understand its structure. Multiple approaches to axiomatization are discussed, with an emphasis on the different conceptual pictures that inspire each approach. 1 Contents 1 Introduction 3 1.1 Personal perspective . 3 1.2 Goals and outline . 3 2 Sketches of quantum field theory 4 2.1 Locality through tensor products . 4 2.2 Schr¨odinger(wavefunctional) representation . 6 2.3 Poincar´einvariance and microcausality . 9 2.4 Experimental predictions . 12 2.5 Path integral picture . 13 2.6 Particles and the Fock space . 17 2.7 Localized particles . 19 3 Seeking rigor 21 3.1 Hilbert spaces . 21 3.2 Fock space . 23 3.3 Smeared fields . 23 3.4 From Hilbert space to algebra . 25 3.5 Euclidean path integral . 30 4 Axioms for quantum field theory 31 4.1 Wightman axioms . 32 4.2 Haag-Kastler axioms . 32 4.3 Osterwalder-Schrader axioms . 33 4.4 Consequences of the axioms . 34 5 Outlook 35 6 Acknowledgments 35 2 1 Introduction 1.1 Personal perspective What is quantum field theory? Rather than ask how nature truly acts, simply ask: what is this theory? For a moment, strip the physical theory of its interpretation. What remains is the abstract mathematical arena in which one performs calculations. The theory of general relativity becomes geometry on a Lorentzian manifold; quantum theory becomes the analysis of Hilbert spaces and self-adjoint operators.
    [Show full text]
  • Ed Nelson's Work in Quantum Theory 1
    ED NELSON’S WORK IN QUANTUM THEORY BARRY SIMON¤ Abstract. We review Edward Nelson’s contributions to nonrel- ativistic quantum theory and to quantum field theory. 1. Introduction It is a pleasure to contribute to this celebration of Ed Nelson’s scien- tific work, not only because of the importance of that work but because it allows me an opportunity to express my gratitude and acknowledge my enormous debt to Ed. He and Arthur Wightman were the key for- mulative influences on my education, not only as a graduate student but during my early postdoctoral years. Thanks, Ed! I was initially asked to talk about Ed’s work in quantum field theory (QFT), but I’m going to exceed my assignment by also discussing Ed’s impact on conventional nonrelativistic quantum mechanics (NRQM). There will be other talks on his work on unconventional quantum the- ory. After discussion of NRQM and the Nelson model, I’ll turn to the truly great contributions: the first control of a renormalization, albeit the Wick ordering that is now regarded as easy, and the seminal work on Euclidean QFT. Many important ideas I’ll discuss below involve crucial remarks of Ed that — in his typically generous fashion — he allowed others to publish. 2. NRQM Ed has very little published specifically on conventional NRQM but he had substantial impact through his lectures, students, and ideas from his papers that motivated work on NRQM. In particular, two of Date: August 12, 2004. ¤ Mathematics 253-37, California Institute of Technology, Pasadena, CA 91125, USA. E-mail: [email protected].
    [Show full text]
  • Quantum Scalar Field Theory in Ads and the Ads/CFT Correspondence
    Quantum Scalar Field Theory in AdS and the AdS/CFT Correspondence Igor Bertan Munich, September 2019 Quantum Scalar Field Theory in AdS and the AdS/CFT Correspondence Igor Bertan Dissertation an der Fakultät für Physik der Ludwig–Maximilians–Universität München vorgelegt von Igor Bertan München, den 2. September 2019 “It is reminiscent of what distinguishes the good theorists from the bad ones. The good ones always make an even number of sign errors, and the bad ones always make an odd number.” – Anthony Zee Erstgutachter: Prof. Dr. Ivo Sachs Zweitgutachter: Prof. Dr. Gerhard Buchalla Tag der mündlichen Prüfung: 11. November 2019 i Contents Zusammenfassung iii Abstract v I Introduction1 1.1 Motivation . .1 1.2 Research statement and results . .7 1.3 Content of the thesis . 10 1.4 List of published papers . 11 1.5 Acknowledgments . 12 II QFT in flat space-time 13 2.1 Axiomatic quantum field theory . 13 2.2 The Wightman functions . 18 2.3 Analytic continuation of correlation functions . 22 2.4 Free scalar quantum field theory . 27 III QFT in curved space-times 41 3.1 Free scalar quantum field theory . 41 3.2 Generalized Wightman axioms . 52 IV The anti–de Sitter space-time 55 4.1 Geometry of AdS . 56 4.2 Symmetries . 61 4.3 Conformal boundary . 62 V Free scalar QFT in (E)AdS 65 5.1 Free scalar quantum field theory . 65 5.2 Correlation functions . 71 5.3 The holographic correlators and the CFT dual . 75 VI Interacting scalar QFT in EAdS 79 6.1 Correlation functions .
    [Show full text]
  • Solutions in Constructive Field Theory
    Solutions in Constructive Field Theory Bihui Li [email protected] April 26, 2016 Abstract Constructive field theory aims to rigorously construct concrete solutions to Lagrangians used in particle physics, where the solutions satisfy some relevant set of axioms. I examine the nature of solutions in constructive field theory and their relationship to both axiomatic and Lagrangian quantum field theory (QFT). I argue that Lagrangian QFT provides conditions for what counts as a successful constructive solution, and that it provides other important information that guides constructive field theorists to solutions. Solutions matter because they describe the behavior of systems in QFT, and thus what QFT says the world is like. Constructive field theory, in incorporating ingredients from both axiomatic and Lagrangian QFT, clarifies existing disputes about which parts of QFT are relevant to philosophers and the role of rigor in these disputes. 1 1 Introduction To date, philosophers of quantum field theory (QFT) have paid much attention to roughly two kinds of QFT: axiomatic approaches to algebraic QFT (Halvorson & M¨uger,2006), and Lagrangian-based QFT as used by particle physicists (Wallace, 2006). Comparatively less attention, however, has been paid to constructive QFT, an approach that aims to rigorously construct solutions of QFT for Lagrangians and Hamiltons that are important in particle physics, ensuring that such solutions satisfy certain axioms. In doing so, constructive QFT mediates between axiomatic approaches to QFT (of which algebraic QFT is one kind) and physicists' Lagrangian-based QFT. It ensures that the various axiom systems have a physically meaningful correspondence with the world. Since we usually take solutions in physical theories to describe the behavior of systems falling under the theory and constructive QFT aims to produce these solutions, constructive QFT deserves some philosophical attention.
    [Show full text]
  • Footnotes Section 1 1) a Vivid Account of the of the Idea, Influenced
    Footnotes Section 1 1) A vivid account of the of the idea, influenced particularly by remarks of Dirac [2J, has been given by FeYnman himself in [3J. 2) For the physical foundation see the original work of FeYnman and the book by FeYnman and Hibbs (Ref. [1J). Also e s g , [7J. 3) Actually, Holder continuous of index 1ess than 1/2 , see e s g , [8J. 4) For the definition by a "sequential limit", in more general situations, see e.g. [11J. 5) See also e.g. the references given in [41J and [42J. 6) The results are also briefly announced in [42J. 7) A theory of related pseudomeasures has inbetween been developed by P. Kree. See e.g. and references therein. 8) Besides the topics touched in this brief historical sketch of the mathematical study of FeYnman path integrals of non relativistic quantum mechanics there are others we did not mention, either because they concern problems other than those tackled later in this work or because no clear cut mathematical re­ sults are available. Let us mention however three more areas in which Feynman path integrals have been discussed and used, at least heuristically. a) Questions of the relation between FeYnman's quantization and the usual one: see e.g. [10J,6), [31J, [35J. b) FeYnman's path integrals on functions defined on manifolds other than Euclidean space, in particular for spin part­ icles. Attempts Using the sequential limit and analytic continuation approaches have been discussed to some extent, see e.g. [6J,7), [36J and references given therein.
    [Show full text]
  • Deciphering the Algebraic CPT Theorem
    Deciphering the Algebraic CPT Theorem Noel Swanson∗ October 17, 2018 Abstract The CPT theorem states that any causal, Lorentz-invariant, thermodynam- ically well-behaved quantum field theory must also be invariant under a reflection symmetry that reverses the direction of time (T), flips spatial parity (P), and conjugates charge (C). Although its physical basis remains obscure, CPT symmetry appears to be necessary in order to unify quantum mechanics with relativity. This paper attempts to decipher the physical reasoning behind proofs of the CPT theorem in algebraic quantum field theory. Ultimately, CPT symmetry is linked to a systematic reversal of the C∗-algebraic Lie product that encodes the generating relationship be- tween observables and symmetries. In any physically reasonable relativistic quantum field theory it is always possible to systematically reverse this gen- erating relationship while preserving the dynamics, spectra, and localization properties of physical systems. Rather than the product of three separate reflections, CPT symmetry is revealed to be a single global reflection of the theory's state space. Contents 1 Introduction: The CPT Puzzle 2 2 The Algebraic CPT Theorem 5 2.1 Assumptions . 7 2.2 Charges and Superselection Structure . 9 2.3 CPT Symmetry and the Bisognano-Wichmann Property . 11 ∗Department of Philosophy, University of Delaware, 24 Kent Way, Newark, DE 19716, USA, [email protected] 1 3 Deciphering the Theorem 14 3.1 The Canonical Involution . 15 3.2 The Dual Lie-Jordan Product . 17 3.3 Tomita-Takesaki Modular Theory . 19 3.4 Time Reversal . 22 3.5 Wedge Reflection . 24 3.6 Charge Conjugation . 28 3.7 Summary .
    [Show full text]
  • A Perspective on Constructive Quantum Field Theory
    A Perspective on Constructive Quantum Field Theory Stephen J. Summers Department of Mathematics, University of Florida, Gainesville FL 32611, USA March 31, 2016 Abstract An overview of the accomplishments of constructive quantum field theory is provided.1 1 Introduction: Background and Motivations Quantum field theory (QFT) is widely viewed as one of the most successful theories in science — it has predicted phenomena before they were observed in nature2, and its predictions are believed to be confirmed by experiments to within an extraor- dinary degree of accuracy3. Though it has undergone a long and complex devel- opment from its origins4 in the 1929/30 papers of Heisenberg and Pauli [107,108] and has attained an ever increasing theoretical sophistication, it is still not clear in which sense the physically central quantum field theories such as quantum elec- trodynamics (QED), quantum chromodynamics (QCD) and the Standard Model arXiv:1203.3991v2 [math-ph] 30 Mar 2016 (SM) are mathematically well defined theories based upon fundamental physical principles that go beyond the merely ad hoc. Needless to say, there are many physicists working with quantum field theories for whom the question is of little 1This is an expanded version of an article commissioned for UNESCO’s Encyclopedia of Life Support Systems (EOLSS). 2For example, the existence and properties of the W and Z bosons, as well as the top and charm quarks, were predicted before they were found experimentally. 3For example, the two parts in one billion difference between the theoretical prediction from the Standard Model and the experimentally measured value of the anomalous magnetic moment of the muon [46].
    [Show full text]