NUMBER THEORY (Module 1)

Total Page:16

File Type:pdf, Size:1020Kb

NUMBER THEORY (Module 1) NUMBER THEORY (Module 1) [MTH1C05] STUDY MATERIAL I SEMESTER CORE COURSE M.Sc. Mathematics (2019 Admission onwards) UNIVERSITY OF CALICUT SCHOOL OF DISTANCE EDUCATION CALICUT UNIVERSITY- P.O MALAPPURAM- 673635, KERALA 190555 MTH1C05-NUMBER THEORY (MODULE-1) SCHOOL OF DISTANCE EDUCATION UNIVERSITY OF CALICUT STUDY MATERIAL FIRST SEMESTER M.Sc. Mathematics (2019 ADMISSION ONWARDS) CORE COURSE: MTH1C05-NUMBER THEORY (Module-1) Prepared by: Dr. Anil Kumar V Professor Department of Mathematics University of Calicut Scrutinized By: Dr. Preethi Kuttipulackal Associate Professor & Head Department of Mathematics University of Calicut MTH1C05-NUMBER THEORY (MODULE-1) Anil Kumar V. Number Theory c 2020 University of Calicut All rights reserved. This work may be distributed and/or modified under the conditions of the University of Calicut. The Current Maintainer of this work is School of Distance Education, University of Calicut. First edition: July 2020 Author Anil Kumar V. Professor. Department of Mathematics University of Calicut ISBN The University of Calicut Press, Malappuram 2 School of Distance Education, University of Calicut Contents 1 Arithmetical Functions and its Averages 5 1.1 Arithmetical functions . .5 1.1.1 The M¨obiusfunction µ(n)................6 1.1.2 Euler totient function '(n)...............7 1.1.3 A relation connecting ' and µ..............9 1.1.4 A product formula for '(n)............... 10 1.1.5 Dirichlet product of arithmetical functions . 15 1.1.6 Dirichlet inverses and Mobius inversion formula . 17 1.1.7 The Mangoldt function Λ(n).............. 21 1.1.8 Multiplicative functions . 23 1.1.9 Examples of completely multiplicative functions . 26 1.1.10 Examples of multiplicative functions . 27 1.1.11 Multiplicative functions and Dirichlet multiplication . 28 1.1.12 The inverse of a completely multiplicative function . 31 1.1.13 Liouville's function λ(n)................. 36 1.1.14 The divisor function σα(n)............... 38 1.1.15 Generalised convolution . 41 1.1.16 Derivatives of arithmetical functions . 43 1.1.17 The Selberg identity . 45 1.1.18 Exercises . 46 1.2 Averages of arithmetical functions . 47 1.2.1 The big oh notation. Asymptotic equality of functions 48 1.2.2 Partial sums of a Dirichlet product . 56 1.2.3 Applications to µ(n) and Λ(n)............. 58 1.2.4 Another identity for the partial sums of a Dirichlet product . 64 1.2.5 Exercises . 66 3 Anil Kumar V. Number Theory Bibliography 69 1.A Syllabus . 70 1.A Notations . 71 4 School of Distance Education, University of Calicut Module 1 Arithmetical Functions and its Averages This module consists of two sections. Let N be the set of natural numbers. Then f : N ! C is called a sequence. In number theory such functions are called arithmetical functions. In the first section introduces several arithmetical functions. The Dirichlet product of two arithmetical func- tions are included. Moreover we will prove that the set of all arithmetical functions which do not vanish at 1 form an abelian group under Dirichlet multiplication. Furthermore, M¨obiusinversion is included. This section also includes generalized convolutions and gives relation between asso- ciative property of Dirichlet multiplication and convolution. Generalized inversion formula is also included. The second section is devoted to av- erages of Arithmetical functions. The well known Euler's summation formula is derived. Several asymptotic formulas are also derived. 1.1 Arithmetical functions Definition 1.1.1. A complex valued function defined on the set of natural numbers is called an arithmetical function or a number theoretic function. That is, a function f : N ! C is called an arithmetical function . 5 Anil Kumar V. Number Theory 1.1.1 The M¨obiusfunction µ(n) Definition 1.1.2. The Mobius function µ is defined as: 8 1 if n = 1; <> µ(n) = (−1)k if n is a product k distinct primes; :>0 otherwise: From the definition of µ it clear that µ(n) = 0 if and only if n has a square factor > 1.Obviously, µ(1) = 1; µ(2) = −1; µ(3) = −1; µ(4) = 0; µ(5) = −1; µ(6) = 1; µ(8) = 0 and so on. Theorem 1.1.1. If n ≥ 1 we have ( X 1 1 if n = 1; µ(d) = = n 0 if n > 1: djn Proof. We consider two cases. Case 1: Suppose n = 1. In this case X X µ(d) = µ(d) = µ(1) = 1: djn dj1 Case 2: Suppose n > 1. Then by fundamental theorem of arithmetic, n can be expressed in the following form: a1 a2 ak n = p1 p2 ··· pk ; where pi's are distinct primes and α1; α2; : : : ; αk are integers greater than or equal to 1. Now consider X X µ(d) = µ(d): djn a1 a2 ak djp1 p2 ···pk Note that µ(d) = 0 if and only if d has a square factor. Therefore µ(d) 6= 0 if and only if d = 1; p1; p2; : : : ; pk; p1p2; : : : ; pk−1pk; p1p2p3; : : : pk−2pk−1pk; ··· ; p1p2 ··· pk : | {z } | {z } k | {zk } | {zk } k (1) (2) (3) (k) 6 School of Distance Education, University of Calicut Anil Kumar V. Number Theory Hence X µ(d) = µ(1) + [µ(p1) + µ(p2) + ··· + µ(pk)] + [µ(p1p2) + ··· + µ(pk−1pk)] + djn [µ(p1p2p3) + ··· + µ(pk−2pk−1pk)] + [µ(p1p2 ··· pk)] = 1 + [(−1) + (−1) + ··· + (−1)] + (−1)2 + (−1)2 + ··· + (−1)2 + | {z } k | {zk } (1) (2) (−1)3 + (−1)3 + ··· + (−1)3 + ··· + (−1)k | {z } | {zk } k (3) (k) k k k k = 1 + (−1) + (−1)2 + (−1)3 + ··· + (−1)k 1 2 3 k = (1 − 1)n = 0: This completes the proof. 1.1.2 Euler totient function '(n) Definition 1.1.3. If n ≥ 1 the Euler totient function '(n) is defined as '(n) := #fa 2 N : a ≤ n; (a; n) = 1g: Thus n 0 X '(n) = 1; k=1 where dash denotes the sum is taken over those k which are relatively prime to n. That is n n X X 1 '(n) = 1 = : (n; k) k=1 k=1 (k;n)=1 Theorem 1.1.2. If n ≥ 1 we have X '(d) = n: djn Proof. Let S = f1; 2; 3; : : : ; ng We partition the set S into mutually disjoint subsets as follows: For each divisor d of n, let A(d) := fk :(k; n) = d; 1 ≤ k ≤ ng: 7 School of Distance Education, University of Calicut Anil Kumar V. Number Theory Claim 1: If d1 and d2 are distinct divisors of n, then A(d1) \ A(d2) = ;: x 2 A(d1) \ A(d2) ) x 2 A(d1) and x 2 A(d2) ) (x; n) = d1 and (x; n) = d2 ) d1 = d2; contradiction: Claim 2: f1; 2; : : : ; ng = [djnA(d). Obviously [djn A(d) ⊆ S: (1.1) Now x 2 S ) (x; n) = d for some d; 1 ≤ d ≤ n ) x 2 A(d) ) x 2 [djnA(d) for some djn: Thus S ⊆ [djnA(d): (1.2) From equations (1.1) and (1.2) it follows that S = [djnA(d): Therefore X #(S) = #(A(d)): djn This implies that X n = #(A(d)): (1.3) djn Claim : #(A(d)) = '(d): Now k 2 A(d) , (k; n) = d , (k=d; n=d) = 1; 0 < k=d ≤ n=d , (q; n=d) = 1; 0 < q ≤ n=d , q 2 fk :(k; n=d) = 1; 0 < k ≤ n=dg | {z } B , q 2 B 8 School of Distance Education, University of Calicut Anil Kumar V. Number Theory This implies that there is a one to one correspondence between the elements of A(d) and B. Hence #A(d) = #(B) = '(n=d): Hence equation (1.3) becomes: X n = '(n=d) (1.4) djn Observe that if d is a divisor of n, then n=d is also a divisor of n. The divisors d and n=d are called conjugate divisors of n. Hence X X '(n) = '(n=d): djn djn Hence equation (1.4) can be written as X '(d) = n: djn This completes the proof of the theorem. 1.1.3 A relation connecting ' and µ. Theorem 1.1.3. If n ≥ 1 we have X n '(n) = µ(d) : d djn Proof. By the definition of ', we have n X 1 '(n) = (n; k) k=1 n X X = µ(d) (by theorem 1.1.1) k=1 dj(n;k) n X X = µ(d) k=1 djn&djk 2 n 3 X X X = 4 µ(d)5 (1.5) djn k=1 djk 9 School of Distance Education, University of Calicut Anil Kumar V. Number Theory Pn P Note that for a fixed d, k=1 djk µ(d) denotes the summation over all those k in the set f1; 2; : : : ; ng which are multiples of d. Question: How many multiples of d are there in the set f1; 2; 3; : : : ; ng? Suppose 1 ≤ k ≤ n and k = qd. Now 1 ≤ k ≤ n , 0 < k ≤ n k n , 0 < ≤ d d k n , 1 ≤ ≤ d d n , 1 ≤ q ≤ d This implies that in the set f1; 2; : : : ; ng there are n=d numbers which are multiples of d. These multiples of d are fd; 2d; : : : ; (n=d)dg Hence equation (1.5) can be written as: X n '(n) = µ(d) : d djn This completes the proof of the theorem. 1.1.4 A product formula for '(n) Theorem 1.1.4. For n ≥ 1 we have Y 1 '(n) = n 1 − ; p pjn where p is a prime divisor of n. Proof. Here we consider two cases. Case 1: Suppose n = 1. Note that when n = 1, '(n) = '(1) = 1. Also when n = 1, Y 1 Y 1 n 1 − = 1 − p p pjn pj1 Since there are no prime divide 1, we define Y 1 1 − = 1: p pj1 10 School of Distance Education, University of Calicut Anil Kumar V.
Recommended publications
  • A Note on P´Olya's Observation Concerning
    A NOTE ON POLYA'S´ OBSERVATION CONCERNING LIOUVILLE'S FUNCTION RICHARD P. BRENT AND JAN VAN DE LUNE Dedicated to Herman J. J. te Riele on the occasion of his retirement from the CWI in January 2012 Abstract. We show that a certain weighted mean of the Liou- ville function λ(n) is negative. In this sense, we can say that the Liouville function is negative \on average". 1. Introduction Q ep(n) For n 2 N let n = pjn p be the canonical prime factorization P of n and let Ω(n) := pjn ep(n). Here (as always in this paper) p is prime. Thus, Ω(n) is the total number of prime factors of n, counting multiplicities. For example: Ω(1) = 0, Ω(2) = 1, Ω(4) = 2, Ω(6) = 2, Ω(8) = 3, Ω(16) = 4, Ω(60) = 4, etc. Define Liouville's multiplicative function λ(n) = (−1)Ω(n). For ex- ample λ(1) = 1, λ(2) = −1, λ(4) = 1, etc. The M¨obiusfunction µ(n) may be defined to be λ(n) if n is square-free, and 0 otherwise. It is well-known, and follows easily from the Euler product for the Riemann zeta-function ζ(s), that λ(n) has the Dirichlet generating function 1 X λ(n) ζ(2s) = ns ζ(s) n=1 for Re (s) > 1. This provides an alternative definition of λ(n). Let L(n) := P λ(k) be the summatory function of the Liouville k≤n P function; similarly M(n) := k≤n µ(k) for the M¨obiusfunction.
    [Show full text]
  • Mathematical Constants and Sequences
    Mathematical Constants and Sequences a selection compiled by Stanislav Sýkora, Extra Byte, Castano Primo, Italy. Stan's Library, ISSN 2421-1230, Vol.II. First release March 31, 2008. Permalink via DOI: 10.3247/SL2Math08.001 This page is dedicated to my late math teacher Jaroslav Bayer who, back in 1955-8, kindled my passion for Mathematics. Math BOOKS | SI Units | SI Dimensions PHYSICS Constants (on a separate page) Mathematics LINKS | Stan's Library | Stan's HUB This is a constant-at-a-glance list. You can also download a PDF version for off-line use. But keep coming back, the list is growing! When a value is followed by #t, it should be a proven transcendental number (but I only did my best to find out, which need not suffice). Bold dots after a value are a link to the ••• OEIS ••• database. This website does not use any cookies, nor does it collect any information about its visitors (not even anonymous statistics). However, we decline any legal liability for typos, editing errors, and for the content of linked-to external web pages. Basic math constants Binary sequences Constants of number-theory functions More constants useful in Sciences Derived from the basic ones Combinatorial numbers, including Riemann zeta ζ(s) Planck's radiation law ... from 0 and 1 Binomial coefficients Dirichlet eta η(s) Functions sinc(z) and hsinc(z) ... from i Lah numbers Dedekind eta η(τ) Functions sinc(n,x) ... from 1 and i Stirling numbers Constants related to functions in C Ideal gas statistics ... from π Enumerations on sets Exponential exp Peak functions (spectral) ..
    [Show full text]
  • The Liouville Function in Short Intervals [After Matomaki and Radziwill]
    S´eminaire BOURBAKI Juin 2016 68`eme ann´ee, 2015-2016, no 1119 THE LIOUVILLE FUNCTION IN SHORT INTERVALS [after Matom¨aki and Radziwi l l] by Kannan SOUNDARARAJAN R´esum´e: (1) (2) (3) La fonction de Liouville λ est une fonction compl`etement multiplica- tive `avaleur λ(n) = +1 [resp. 1] si n admet un nombre pair [resp. impair] de facteurs − premiers, compt´es avec multiplicit´e. On s’attend `ace qu’elle se comporte comme une collection ≪al´eatoire≫ de signes, +1 et 1 ´etant ´equiprobables. Par exemple, une con- − jecture c´el`ebre de Chowla dit que les valeurs λ(n) et λ(n + 1) (plus g´en´eralement en arguments translat´es par k entiers distincts fixes) ont corr´elation nulle. Selon une autre croyance r´epandue, presque tous les intervalles de longueur divergeant vers l’infini de- vraient donner `apeu pr`es le mˆeme nombre de valeurs +1 et 1 de λ. R´ecemment − Matom¨aki et Radziwi l l ont ´etabli que cette croyance ´etait en effet vraie, et de plus ´etabli une variante d’un tel r´esultat pour une classe g´en´erale de fonctions multiplica- tives. Leur collaboration ult´erieure avec Tao a conduit ensuite `ala d´emonstration des versions moyennis´ees de la conjecture de Chowla, ainsi qu’`acelle de l’existence de nou- veaux comportements de signes de la fonction de Liouville. Enfin un dernier travail de Tao v´erifie une version logarithmique de ladite conjecture et, de l`a, r´esout la conjecture de la discr´epance d’Erd˝os.
    [Show full text]
  • Number Theory, Lecture 3
    Number Theory, Lecture 3 Number Theory, Lecture 3 Jan Snellman Arithmetical functions, Dirichlet convolution, Multiplicative functions, Arithmetical functions M¨obiusinversion Definition Some common arithmetical functions Dirichlet 1 Convolution Jan Snellman Matrix interpretation Order, Norms, 1 Infinite sums Matematiska Institutionen Multiplicative Link¨opingsUniversitet function Definition Euler φ M¨obius inversion Multiplicativity is preserved by multiplication Matrix verification Divisor functions Euler φ again µ itself Link¨oping,spring 2019 Lecture notes availabe at course homepage http://courses.mai.liu.se/GU/TATA54/ Number Summary Theory, Lecture 3 Jan Snellman Arithmetical functions Definition Some common Definition arithmetical functions 1 Arithmetical functions Dirichlet Euler φ Convolution Definition Matrix 3 M¨obiusinversion interpretation Some common arithmetical Order, Norms, Multiplicativity is preserved by Infinite sums functions Multiplicative multiplication function Dirichlet Convolution Definition Matrix verification Euler φ Matrix interpretation Divisor functions M¨obius Order, Norms, Infinite sums inversion Euler φ again Multiplicativity is preserved by multiplication 2 Multiplicative function µ itself Matrix verification Divisor functions Euler φ again µ itself Number Summary Theory, Lecture 3 Jan Snellman Arithmetical functions Definition Some common Definition arithmetical functions 1 Arithmetical functions Dirichlet Euler φ Convolution Definition Matrix 3 M¨obiusinversion interpretation Some common arithmetical Order, Norms,
    [Show full text]
  • Sign Changes of the Liouville Function on Quadratics
    Canad. Math. Bull. Vol. 56 (2), 2013 pp. 251–257 http://dx.doi.org/10.4153/CMB-2011-166-9 c Canadian Mathematical Society 2011 Sign Changes of the Liouville Function on Quadratics Peter Borwein, Stephen K. K. Choi, and Himadri Ganguli Abstract. Let λ(n) denote the Liouville function. Complementary to the prime number theorem, Chowla conjectured that X (∗) λ( f (n)) = o(x) n≤x for any polynomial f (x) with integer coefficients which is not of form bg(x)2. When f (x) = x,(∗) is equivalent to the prime number theorem. Chowla’s conjecture has been proved for linear functions, but for degree greater than 1, the conjecture seems to be extremely hard and remains wide open. One can consider a weaker form of Chowla’s conjecture. Conjecture 1 (Cassaigne et al.) If f (x) 2 Z[x] and is not in the form of bg2(x) for some g(x) 2 Z[x], then λ( f (n)) changes sign infinitely often. Clearly, Chowla’s conjecture implies Conjecture1. Although weaker, Conjecture1 is still wide open for polynomials of degree > 1. In this article, we study Conjecture1 for quadratic polynomials. One of our main theorems is the following. Theorem 1 Let f (x) = ax2 + bx + c with a > 0 and l be a positive integer such that al is not a perfect 2 2 square. If the equation f (n) = lm has one solution (n0; m0) 2 Z , then it has infinitely many positive solutions (n; m) 2 N2. As a direct consequence of Theorem 1, we prove the following.
    [Show full text]
  • Arxiv:2104.15004V2 [Math.NT] 21 May 2021 Eoe H Ubro Rm Atr Fteinteger the of Factors Words, Prime Other in of Multiplicity
    INFINITELY MANY SIGN CHANGES OF THE LIOUVILLE FUNCTION ON x2 + d ANITHA SRINIVASAN Abstract. We show that the Liouville function λ changes sign infinitely often on n2 + d for any non-zero integer d. 1. Introduction For a given non-zero integer d, is n2 + d prime for infinitely many integers n? While hardly anyone would doubt that the answer here is a yes, no one has been able to prove it yet! In order to make some progress towards the answer, one could modify the question to ask instead, whether n2 + d has an odd number of prime divisors (count- ing multiplicities) infinitely often. In this work we answer this latter question in the affirmative. The Liouville function is defined as λ(n)=( 1)Ω(n), where Ω(n) denotes the number of prime factors of the integer− n counted with multiplicity. In other words, λ is a completely multiplicative function, where λ(p)= 1 for each prime p and λ(1) is taken as 1. Cassaigne et− al. in [CFMRS00] made the following conjecture. Conjecture 1.1. (Cassaigne et al.) If f(x) Z[x] and f(x) = b(g(x))2 for any integer b and g(x) Z[x], then λ(f∈(n) changes sign6 infinitely often. ∈ arXiv:2104.15004v2 [math.NT] 21 May 2021 This was a weaker form of the following conjecture made by Chowla in [C65, p. 96]. Conjecture 1.2. (Chowla) Let f(x) be an arbitrary polynomial with integer coefficients, which is not, however, of the form c(g(x))2 where c is an integer and g(x) is a polynomial with integer coefficients.
    [Show full text]
  • Möbius Inversion from the Point of View of Arithmetical Semigroup Flows
    Biblioteca de la Revista Matematica´ Iberoamericana Proceedings of the \Segundas Jornadas de Teor´ıa de Numeros"´ (Madrid, 2007), 63{81 M¨obiusinversion from the point of view of arithmetical semigroup flows Manuel Benito, Luis M. Navas and Juan Luis Varona Abstract Most, if not all, of the formulas and techniques which in number theory fall under the rubric of “M¨obiusinversion" are instances of a single general formula involving the action or flow of an arithmetical semigroup on a suitable space and a convolution-like operator on functions. The aim in this exposition is to briefly present the general formula in its abstract context and then illustrate the above claim using an extensive series of examples which give a flavor for the subject. For simplicity and to emphasize the unifying character of this point of view, these examples are mostly for the traditional number theoretical semigroup N and the spaces R or C. 1. Introduction The “M¨obiusInversion Formula" in elementary number theory most often refers to the formula X X n (1.1) fb(n) = f(d) () f(n) = µ(d)fb ; d djn djn where f is an arithmetical function, that is, a function on N with values typically in Z, R or C; the sum ranges over the positive divisors d of a given 2000 Mathematics Subject Classification: Primary 11A25. Keywords: M¨obiusfunction, M¨obius transform, Dirichlet convolution, inversion formula, arithmetical semigroup, flow. 64 M. Benito, L. M. Navas and J. L. Varona n 2 N, and µ is of course the M¨obiusfunction, given by 8 µ(1) = 1; <> (1.2) µ(n) = 0 if n has a squared factor, > k : µ(p1p2 ··· pk) = (−1) when p1; p2; : : : ; pk are distint primes.
    [Show full text]
  • Package 'Numbers'
    Package ‘numbers’ May 14, 2021 Type Package Title Number-Theoretic Functions Version 0.8-2 Date 2021-05-13 Author Hans Werner Borchers Maintainer Hans W. Borchers <[email protected]> Depends R (>= 3.1.0) Suggests gmp (>= 0.5-1) Description Provides number-theoretic functions for factorization, prime numbers, twin primes, primitive roots, modular logarithm and inverses, extended GCD, Farey series and continuous fractions. Includes Legendre and Jacobi symbols, some divisor functions, Euler's Phi function, etc. License GPL (>= 3) NeedsCompilation no Repository CRAN Date/Publication 2021-05-14 18:40:06 UTC R topics documented: numbers-package . .3 agm .............................................5 bell .............................................7 Bernoulli numbers . .7 Carmichael numbers . .9 catalan . 10 cf2num . 11 chinese remainder theorem . 12 collatz . 13 contFrac . 14 coprime . 15 div.............................................. 16 1 2 R topics documented: divisors . 17 dropletPi . 18 egyptian_complete . 19 egyptian_methods . 20 eulersPhi . 21 extGCD . 22 Farey Numbers . 23 fibonacci . 24 GCD, LCM . 25 Hermite normal form . 27 iNthroot . 28 isIntpower . 29 isNatural . 30 isPrime . 31 isPrimroot . 32 legendre_sym . 32 mersenne . 33 miller_rabin . 34 mod............................................. 35 modinv, modsqrt . 37 modlin . 38 modlog . 38 modpower . 39 moebius . 41 necklace . 42 nextPrime . 43 omega............................................ 44 ordpn . 45 Pascal triangle . 45 previousPrime . 46 primeFactors . 47 Primes
    [Show full text]
  • The Dirichlet Series for the Liouville Function and the Riemann Hypothesis
    The Dirichlet Series for the Liouville Function and the Riemann Hypothesis By K. Eswaran Srinidhi Institute of Science and Technology, Hyderabad, India.y This paper investigates the analytic properties of the Liouville function’s Dirichlet series that obtains from the function F (s) ≡ ζ(2s)/ζ(s), where s is a complex variable and ζ(s) is the Riemann zeta function. The paper employs a novel method of summing the series by casting it as an infinite number of sums over sub-series that exhibit a certain symmetry and rapid convergence. In this procedure, which heavily invokes the prime factorization theorem, each sub-series has the property that it oscillates in a predictable fashion, rendering the analytic properties of the Dirichlet series determinable. With this method, the paper demonstrates that, for every integer with an even number of primes in its factorization, there is another integer that has an odd number of primes (multiplicity counted) in its factorization. Furthermore, by showing that a sufficient condition derived by Littlewood (1912) is satisfied, the paper demonstrates that the function F (s) is analytic over the two half-planes Re(s) > 1=2 and Re(s) < 1=2. This establishes that the nontrivial zeros of the Riemann zeta function can only occur on the critical line Re(s) = 1=2. Keywords: Liouville function, multiplicative function, factorization into primes, Mobius function, Riemann hypothesis 1. Introduction This paper investigates the behaviour of the Liouville function which is related to Riemann’s zeta function, ζ(s), defined by 1 X 1 ζ(s) = ; (1.1) ns n=1 where n is a positive integer and s is a complex number, with the series being convergent for Re(s) > 1.
    [Show full text]
  • On Consecutive Values of the Liouville Function
    ON CONSECUTIVE VALUES OF THE LIOUVILLE FUNCTION Autor(en): Hildebrand, Adolf Objekttyp: Article Zeitschrift: L'Enseignement Mathématique Band (Jahr): 32 (1986) Heft 1-2: L'ENSEIGNEMENT MATHÉMATIQUE PDF erstellt am: 29.09.2021 Persistenter Link: http://doi.org/10.5169/seals-55088 Nutzungsbedingungen Die ETH-Bibliothek ist Anbieterin der digitalisierten Zeitschriften. Sie besitzt keine Urheberrechte an den Inhalten der Zeitschriften. Die Rechte liegen in der Regel bei den Herausgebern. Die auf der Plattform e-periodica veröffentlichten Dokumente stehen für nicht-kommerzielle Zwecke in Lehre und Forschung sowie für die private Nutzung frei zur Verfügung. Einzelne Dateien oder Ausdrucke aus diesem Angebot können zusammen mit diesen Nutzungsbedingungen und den korrekten Herkunftsbezeichnungen weitergegeben werden. Das Veröffentlichen von Bildern in Print- und Online-Publikationen ist nur mit vorheriger Genehmigung der Rechteinhaber erlaubt. Die systematische Speicherung von Teilen des elektronischen Angebots auf anderen Servern bedarf ebenfalls des schriftlichen Einverständnisses der Rechteinhaber. Haftungsausschluss Alle Angaben erfolgen ohne Gewähr für Vollständigkeit oder Richtigkeit. Es wird keine Haftung übernommen für Schäden durch die Verwendung von Informationen aus diesem Online-Angebot oder durch das Fehlen von Informationen. Dies gilt auch für Inhalte Dritter, die über dieses Angebot zugänglich sind. Ein Dienst der ETH-Bibliothek ETH Zürich, Rämistrasse 101, 8092 Zürich, Schweiz, www.library.ethz.ch http://www.e-periodica.ch L'Enseignement Mathématique, t. 32 (1986), p. 219-226 ON CONSECUTIVE VALUES OF THE LIOUVILLE FUNCTION by Adolf Hildebrand Abstract: It is shown that for every choice of s£ ± 1, i 1, 2, 3, there exist infinitely many positive integers n, such that X(n + i) si7 i 1,2, 3, where X denotes the Liouville function.x) 1.
    [Show full text]
  • RIEMANN's HYPOTHESIS and the LIOUVILLE FUNCTION for THE
    RIEMANN’S HYPOTHESIS and the LIOUVILLE FUNCTION for THE PROOF OF RH Another case that I SEE IT, BUT I CAN’T BELIEVE IT Fausto Galetto To cite this version: Fausto Galetto. RIEMANN’S HYPOTHESIS and the LIOUVILLE FUNCTION for THE PROOF OF RH Another case that I SEE IT, BUT I CAN’T BELIEVE IT. 2018. hal-01815387 HAL Id: hal-01815387 https://hal.archives-ouvertes.fr/hal-01815387 Preprint submitted on 14 Jun 2018 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. RIEMANN’S HYPOTHESIS and the LIOUVILLE FUNCTION for THE PROOF OF RH Another case that I SEE IT, BUT I CAN’T BELIEVE IT FAUSTO GALETTO Independent Researcher, Past Professor of "Industrial Quality Management" at Politecnico of Turin. [email protected] Abstract: It is well known that “The Riemann hypothesis is equivalent to the statement that for every > 0 the function L(x)/x1/2+ approaches zero as x ”, where L is the “cumulative” Liouville function. Starting from the definitions of L(x) and (s) we derive an integral equation about L(x): from that we derive that |L(x)|<x1/2+; the proof of the Riemann hypothesis follows.
    [Show full text]
  • Riemann Zeta Function -- from Wolfram Mathworld
    Riemann Zeta Function -- from Wolfram MathWorld Search Site Calculus and Analysis > Special Functions > Riemann Zeta Function Other Wolfram Sites: Algebra Foundations of Mathematics > Mathematical Problems > Unsolved Problems Wolfram Research Applied Mathematics Recreational Mathematics > Interactive Entries > webMathematica Examples Integrator Calculus and Analysis MathWorld Contributors > Cloitre Discrete Mathematics MathWorld Contributors > Drane Tones Foundations of Mathematics MathWorld Contributors > Huvent Functions Site Geometry MathWorld Contributors > Plouffe Wolfram Science MathWorld Contributors > Sondow History and Terminology more… MathWorld Contributors > Terr Number Theory MathWorld Contributors > Trott Latest Mathematica Information >> Probability and Statistics Recreational Mathematics Download Mathematica Trial >> Topology Riemann Zeta Function Complete Mathematica Alphabetical Index Documentation >> Interactive Entries Show your math savvy with a Random Entry MathWorld T-shirt. New in MathWorld Read the latest Technical Software MathWorld Classroom News. Compute the Riemann zeta function About MathWorld anywhere in the complex plane with Send a Message to the Team Mathematica. Order book from Amazon 12,646 entries Sun Mar 4 2007 Min Max Re Register for Unlimited Interactive Examples >> Im http://mathworld.wolfram.com/RiemannZetaFunction.html (1 of 20)2007-03-17 오후 5:50:17 Riemann Zeta Function -- from Wolfram MathWorld The Riemann zeta function is an extremely important special function of mathematics and physics that
    [Show full text]