Near Earth Asteroid Observation Program
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Cross-References ASTEROID IMPACT Definition and Introduction History of Impact Cratering Studies
18 ASTEROID IMPACT Tedesco, E. F., Noah, P. V., Noah, M., and Price, S. D., 2002. The identification and confirmation of impact structures on supplemental IRAS minor planet survey. The Astronomical Earth were developed: (a) crater morphology, (b) geo- 123 – Journal, , 1056 1085. physical anomalies, (c) evidence for shock metamor- Tholen, D. J., and Barucci, M. A., 1989. Asteroid taxonomy. In Binzel, R. P., Gehrels, T., and Matthews, M. S. (eds.), phism, and (d) the presence of meteorites or geochemical Asteroids II. Tucson: University of Arizona Press, pp. 298–315. evidence for traces of the meteoritic projectile – of which Yeomans, D., and Baalke, R., 2009. Near Earth Object Program. only (c) and (d) can provide confirming evidence. Remote Available from World Wide Web: http://neo.jpl.nasa.gov/ sensing, including morphological observations, as well programs. as geophysical studies, cannot provide confirming evi- dence – which requires the study of actual rock samples. Cross-references Impacts influenced the geological and biological evolu- tion of our own planet; the best known example is the link Albedo between the 200-km-diameter Chicxulub impact structure Asteroid Impact Asteroid Impact Mitigation in Mexico and the Cretaceous-Tertiary boundary. Under- Asteroid Impact Prediction standing impact structures, their formation processes, Torino Scale and their consequences should be of interest not only to Earth and planetary scientists, but also to society in general. ASTEROID IMPACT History of impact cratering studies In the geological sciences, it has only recently been recog- Christian Koeberl nized how important the process of impact cratering is on Natural History Museum, Vienna, Austria a planetary scale. -
The Impact and Recovery of Asteroid 2008 TC3 P
Vol 458 | 26 March 2009 | doi:10.1038/nature07920 LETTERS The impact and recovery of asteroid 2008 TC3 P. Jenniskens1, M. H. Shaddad2, D. Numan2, S. Elsir3, A. M. Kudoda2, M. E. Zolensky4,L.Le4,5, G. A. Robinson4,5, J. M. Friedrich6,7, D. Rumble8, A. Steele8, S. R. Chesley9, A. Fitzsimmons10, S. Duddy10, H. H. Hsieh10, G. Ramsay11, P. G. Brown12, W. N. Edwards12, E. Tagliaferri13, M. B. Boslough14, R. E. Spalding14, R. Dantowitz15, M. Kozubal15, P. Pravec16, J. Borovicka16, Z. Charvat17, J. Vaubaillon18, J. Kuiper19, J. Albers1, J. L. Bishop1, R. L. Mancinelli1, S. A. Sandford20, S. N. Milam20, M. Nuevo20 & S. P. Worden20 In the absence of a firm link between individual meteorites and magnitude H 5 30.9 6 0.1 (using a phase angle slope parameter their asteroidal parent bodies, asteroids are typically characterized G 5 0.15). This is a measure of the asteroid’s size. only by their light reflection properties, and grouped accordingly Eyewitnesses in Wadi Halfa and at Station 6 (a train station between into classes1–3. On 6 October 2008, a small asteroid was discovered Wadi Halfa and Al Khurtum, Sudan) in the Nubian Desert described a with a flat reflectance spectrum in the 554–995 nm wavelength rocket-like fireball with an abrupt ending. Sensors aboard US govern- range, and designated 2008 TC3 (refs 4–6). It subsequently hit the ment satellites first detected the bolide at 65 km altitude at Earth. Because it exploded at 37 km altitude, no macroscopic 02:45:40 UTC (ref. 8). The optical signal consisted of three peaks span- fragments were expected to survive. -
Using a Nuclear Explosive Device for Planetary Defense Against an Incoming Asteroid
Georgetown University Law Center Scholarship @ GEORGETOWN LAW 2019 Exoatmospheric Plowshares: Using a Nuclear Explosive Device for Planetary Defense Against an Incoming Asteroid David A. Koplow Georgetown University Law Center, [email protected] This paper can be downloaded free of charge from: https://scholarship.law.georgetown.edu/facpub/2197 https://ssrn.com/abstract=3229382 UCLA Journal of International Law & Foreign Affairs, Spring 2019, Issue 1, 76. This open-access article is brought to you by the Georgetown Law Library. Posted with permission of the author. Follow this and additional works at: https://scholarship.law.georgetown.edu/facpub Part of the Air and Space Law Commons, International Law Commons, Law and Philosophy Commons, and the National Security Law Commons EXOATMOSPHERIC PLOWSHARES: USING A NUCLEAR EXPLOSIVE DEVICE FOR PLANETARY DEFENSE AGAINST AN INCOMING ASTEROID DavidA. Koplow* "They shall bear their swords into plowshares, and their spears into pruning hooks" Isaiah 2:4 ABSTRACT What should be done if we suddenly discover a large asteroid on a collision course with Earth? The consequences of an impact could be enormous-scientists believe thatsuch a strike 60 million years ago led to the extinction of the dinosaurs, and something ofsimilar magnitude could happen again. Although no such extraterrestrialthreat now looms on the horizon, astronomers concede that they cannot detect all the potentially hazardous * Professor of Law, Georgetown University Law Center. The author gratefully acknowledges the valuable comments from the following experts, colleagues and friends who reviewed prior drafts of this manuscript: Hope M. Babcock, Michael R. Cannon, Pierce Corden, Thomas Graham, Jr., Henry R. Hertzfeld, Edward M. -
Detecting and Avoiding Killer Asteroids
Target Earth! Detecting and Avoiding Killer Asteroids by Trudy E. Bell (Copyright 2013 Trudy E. Bell) ARTH HAD NO warning. When a mountain- above 2000°C and triggering earthquakes and volcanoes sized asteroid struck at tens of kilometers (miles) around the globe. per second, supersonic shock waves radiated Ocean water suctioned from the shoreline and geysered outward through the planet, shock-heating rocks kilometers up into the air; relentless tsunamis surged e inland. At ground zero, nearly half the asteroid’s kinetic energy instantly turned to heat, vaporizing the projectile and forming a mammoth impact crater within minutes. It also vaporized vast volumes of Earth’s sedimentary rocks, releasing huge amounts of carbon dioxide and sulfur di- oxide into the atmosphere, along with heavy dust from both celestial and terrestrial rock. High-altitude At least 300,000 asteroids larger than 30 meters revolve around the sun in orbits that cross Earth’s. Most are not yet discovered. One may have Earth’s name written on it. What are engineers doing to guard our planet from destruction? winds swiftly spread dust and gases worldwide, blackening skies from equator to poles. For months, profound darkness blanketed the planet and global temperatures dropped, followed by intense warming and torrents of acid rain. From single-celled ocean plank- ton to the land’s grandest trees, pho- tosynthesizing plants died. Herbivores starved to death, as did the carnivores that fed upon them. Within about three years—the time it took for the mingled rock dust from asteroid and Earth to fall out of the atmosphere onto the ground—70 percent of species and entire genera on Earth perished forever in a worldwide mass extinction. -
NASA Ames Jim Arnold, Craig Burkhardt Et Al
The re-entry of artificial meteoroid WT1190F AIAA SciTech 2016 1/5/2016 2008 TC3 Impact October 7, 2008 Mohammad Odeh International Astronomical Center, Abu Dhabi Peter Jenniskens SETI Institute Asteroid Threat Assessment Project (ATAP) - NASA Ames Jim Arnold, Craig Burkhardt et al. Michael Aftosmis - NASA Ames 2 Darrel Robertson - NASA Ames Next TC3 Consortium http://impact.seti.org Mission Statement: Steve Larson (Catalina Sky Survey) “Be prepared for the next 2008 TC3 John Tonry (ATLAS) impact” José Luis Galache (Minor Planet Center) Focus on two aspects: Steve Chesley (NASA JPL) 1. Airborne observations of the reentry Alan Fitzsimmons (Queen’s Univ. Belfast) 2. Rapid recovery of meteorites Eileen Ryan (Magdalena Ridge Obs.) Franck Marchis (SETI Institute) Ron Dantowitz (Clay Center Observatory) Jay Grinstead (NASA Ames Res. Cent.) Peter Jenniskens (SETI Institute - POC) You? 5 NASA/JPL “Sentry” early alert October 3, 2015: WT1190F Davide Farnocchia (NASA/JPL) Catalina Sky Survey: Richard Kowalski Steve Chesley (NASA/JPL) Marco Michelli (ESA NEOO CC) 6 WT1190F Found: October 3, 2015: one more passage Oct. 24 Traced back to: 2013, 2012, 2011, …, 2009 Re-entry: Friday November 13, 2015 10.61 km/s 20.6º angle Bill Gray 11 IAC + UAE Space Agency chartered commercial G450 Mohammad Odeh (IAC, Abu Dhabi) Support: UAE Space Agency Dexter Southfield /Embry-Riddle AU 14 ESA/University Stuttgart 15 SETI Institute 16 Dexter Southfield team Time UAE Camera Trans-Lunar Insertion Stage Leading candidate (1/13/2016): LUNAR PROSPECTOR T.L.I.S. Launch: January 7, 1998 UT Lunar Prospector itself was deliberately crashed on Moon July 31, 1999 Carbon fiber composite Spin hull thrusters Titanium case holds Amonium Thiokol Perchlorate fuel and Star Stage 3700S HTPB binder (both contain H) P.I.: Alan Binder Scott Hubbard 57-minutes later: Mission Director Separation of TLIS NASA Ames http://impact.seti.org 30 . -
Graphite-Based Geothermometry on Almahata Sitta Ureilitic Meteorites
minerals Article Graphite-Based Geothermometry on Almahata Sitta Ureilitic Meteorites Anna Barbaro 1,*, M. Chiara Domeneghetti 1, Cyrena A. Goodrich 2, Moreno Meneghetti 3 , Lucio Litti 3, Anna Maria Fioretti 4, Peter Jenniskens 5 , Muawia H. Shaddad 6 and Fabrizio Nestola 7,8 1 Department of Earth and Environmental Sciences, University of Pavia, 27100 Pavia, Italy; [email protected] 2 Lunar and Planetary Institute, Universities Space Research Association, Houston, TX 77058, USA; [email protected] 3 Department of Chemical Sciences, University of Padova, 35131 Padova, Italy; [email protected] (M.M.); [email protected] (L.L.) 4 Institute of Geosciences and Earth Resources, National Research Council, 35131 Padova, Italy; anna.fi[email protected] 5 SETI Institute, Mountain View, CA 94043, USA; [email protected] 6 Department of Physics and Astronomy, University of Khartoum, Khartoum 11111, Sudan; [email protected] 7 Department of Geosciences, University of Padova, 35131 Padova, Italy; [email protected] 8 Geoscience Institute, Goethe-University Frankfurt, 60323 Frankfurt, Germany * Correspondence: [email protected]; Tel.: +39-3491548631 Received: 13 October 2020; Accepted: 10 November 2020; Published: 12 November 2020 Abstract: The thermal history of carbon phases, including graphite and diamond, in the ureilite meteorites has implications for the formation, igneous evolution, and impact disruption of their parent body early in the history of the Solar System. Geothermometry data were obtained by micro-Raman spectroscopy on graphite in Almahata Sitta (AhS) ureilites AhS 72, AhS 209b and AhS A135A from the University of Khartoum collection. In these samples, graphite shows G-band peak centers between 1 1578 and 1585 cm− and the full width at half maximum values correspond to a crystallization temperature of 1266 ◦C for graphite for AhS 209b, 1242 ◦C for AhS 72, and 1332 ◦C for AhS A135A. -
Arxiv:1710.07684V1 [Astro-Ph.EP] 20 Oct 2017 Significant Non-Gravitational Perturbations Due to the Effects of Radiation Pressure (Gray, 2015)
The observing campaign on the deep-space debris WT1190F as a test case for short-warning NEO impacts Marco Michelia,b,, Alberto Buzzonic, Detlef Koschnya,d,e, Gerhard Drolshagena,f, Ettore Perozzih,a,g, Olivier Hainauti, Stijn Lemmensj, Giuseppe Altavillac,b, Italo Foppianic, Jaime Nomenk, Noelia Sánchez-Ortizk, Wladimiro Marinellol, Gianpaolo Pizzettil, Andrea Soffiantinil, Siwei Fanm, Carolin Fruehm aESA SSA-NEO Coordination Centre, Largo Galileo Galilei, 1, 00044 Frascati (RM), Italy bINAF - Osservatorio Astronomico di Roma, Via Frascati, 33, 00040 Monte Porzio Catone (RM), Italy cINAF - Osservatorio Astronomico di Bologna, Via Gobetti, 93/3, 40129 Bologna (BO), Italy dESTEC, European Space Agency, Keplerlaan 1, 2201 AZ Noordwijk, The Netherlands eTechnical University of Munich, Boltzmannstraße 15, 85748 Garching bei München, Germany fSpace Environment Studies - Faculty VI, Carl von Ossietzky University of Oldenburg, 26111 Oldenburg, Germany gDeimos Space Romania, Strada Buze¸sti75-77, Bucure¸sti011013, Romania hAgenzia Spaziale Italiana, Via del Politecnico, 1, 00133 Roma (RM), Italy iEuropean Southern Observatory, Karl-Schwarzschild-Straße 2, 85748 Garching bei München, Germany jESA Space Debris Office, Robert-Bosch-Straße 5, 64293 Darmstadt, Germany kDeimos Space S.L.U., Ronda de Pte., 19, 28760 Tres Cantos, Madrid, Spain lOsservatorio Astronomico “Serafino Zani”, Colle San Bernardo, 25066 Lumezzane Pieve (BS), Italy mSchool of Aeronautics and Astronautics, Purdue University, 701 W Stadium Ave, West Lafayette, IN 47907, USA Abstract On 2015 November 13, the small artificial object designated WT1190F entered the Earth atmosphere above the Indian Ocean offshore Sri Lanka after being discovered as a possible new asteroid only a few weeks earlier. At ESA’s SSA-NEO Coordination Centre we took advantage of this opportunity to organize a ground-based observational campaign, using WT1190F as a test case for a possible similar future event involving a natural asteroidal body. -
Mercurian Impact Ejecta: Meteorites and Mantle
Meteoritics & Planetary Science 44, Nr 2, 285–291 (2009) Abstract available online at http://meteoritics.org Mercurian impact ejecta: Meteorites and mantle Brett GLADMAN* and Jaime COFFEY University of British Columbia, Department of Physics and Astronomy, 6244 Agricultural Road, Vancouver, British Columbia V6T 1Z1, Canada *Corresponding author. E-mail: [email protected] (Submitted 28 January 2008; revision accepted 15 October2008) Abstract–We have examined the fate of impact ejecta liberated from the surface of Mercury due to impacts by comets or asteroids, in order to study 1) meteorite transfer to Earth, and 2) reaccumulation of an expelled mantle in giant-impact scenarios seeking to explain Mercury’s large core. In the context of meteorite transfer during the last 30 Myr, we note that Mercury’s impact ejecta leave the planet’s surface much faster (on average) than other planets in the solar system because it is the only planet where impact speeds routinely range from 5 to 20 times the planet’s escape speed; this causes impact ejecta to leave its surface moving many times faster than needed to escape its gravitational pull. Thus, a large fraction of Mercurian ejecta may reach heliocentric orbit with speeds sufficiently high for Earth-crossing orbits to exist immediately after impact, resulting in larger fractions of the ejecta reaching Earth as meteorites. We calculate the delivery rate to Earth on a time scale of 30 Myr (typical of stony meteorites from the asteroid belt) and show that several percent of the high-speed ejecta reach Earth (a factor of 2–3 less than typical launches from Mars); this is one to two orders of magnitude more efficient than previous estimates. -
Arxiv:1406.5253V1 [Astro-Ph.EP] 20 Jun 2014
Physical Properties of Near-Earth Asteroid 2011 MD M. Mommert Department of Physics and Astronomy, Northern Arizona University, PO Box 6010, Flagstaff, AZ 86011, USA D. Farnocchia Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA 91109, USA J. L. Hora Harvard-Smithsonian Center for Astrophysics, 60 Garden Street, MS 65, Cambridge, MA 02138-1516, USA S. R. Chesley Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA 91109, USA D. E. Trilling Department of Physics and Astronomy, Northern Arizona University, PO Box 6010, Flagstaff, AZ 86011, USA P. W. Chodas Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA 91109, USA arXiv:1406.5253v1 [astro-ph.EP] 20 Jun 2014 M. Mueller SRON Netherlands Institute for Space Research, Postbus 800, 9700 AV, Groningen, The Netherlands A. W. Harris DLR Institute of Planetary Research, Rutherfordstrasse 2, 12489 Berlin, Germany H. A. Smith –2– Harvard-Smithsonian Center for Astrophysics, 60 Garden Street, MS 65, Cambridge, MA 02138-1516, USA and G. G. Fazio Harvard-Smithsonian Center for Astrophysics, 60 Garden Street, MS 65, Cambridge, MA 02138-1516, USA Received ; accepted accepted by ApJL –3– ABSTRACT We report on observations of near-Earth asteroid 2011 MD with the Spitzer Space Telescope. We have spent 19.9 h of observing time with channel 2 (4.5 µm) of the Infrared Array Camera and detected the target within the 2σ positional uncertainty ellipse. Using an asteroid thermophysical model and a model of non- gravitational forces acting upon the object we constrain the physical properties of 2011 MD, based on the measured flux density and available astrometry data. -
Dean Cain Bettina Zimmermann
DEAN CAIN BETTINA ZIMMERMANN POST IMPACT POST IMPACT In 2012, a meteor crashes into tion plane to Europe is destroyed Siberia with the force of several by a mysterious satellite signal, thousand nuclear warheads. In controlled from the ruins of Berlin, 2015, a few survivors will travel a city that was considered dead into “the death zone”, to try and and buried – under 30 feet of ice locate a device that could give and snow – the President of the mankind new hope – or forever New United Northern Sates orders finish it… a new expedition to find and destroy the base and the satellite. In 2012, a meteor strikes Earth, Tom Parker (Dean Cain) volunteers causing earthquakes, tidal waves, to lead a group of highly trained and a dust cloud that soon covers specialists on a suicide mission most of the Northern hemisphere, to Berlin – with ground vehicles, turning it into an ice-covered no reliable intel, and zero radio “death-zone”. contact. Three years later, most of the sur- In the ruins of what was once one vivors have settled in the only hab- of the most dynamic cities in itable territories below the equa- Europe, a desperate fight ensues tor. It’s a harsh life, with little hope for the power to change every- of Earth’s climate ever reverting thing – for better or for worse… back to normal. When an expedi- POST IMPACT SNOWBLIND LLC presents a TANDEM PRODUCTIONS GMBH, UFO IPS LLC in co-production with LUCKY 7 PRODUCTIONS LLC and AMERICAN FILM CINEMA in association with RTL TELEVISION GMBH and THE TOWER LIMITED LIABILITY PARTNERSHIP Production -
Detecting the Yarkovsky Effect Among Near-Earth Asteroids From
Detecting the Yarkovsky effect among near-Earth asteroids from astrometric data Alessio Del Vignaa,b, Laura Faggiolid, Andrea Milania, Federica Spotoc, Davide Farnocchiae, Benoit Carryf aDipartimento di Matematica, Universit`adi Pisa, Largo Bruno Pontecorvo 5, Pisa, Italy bSpace Dynamics Services s.r.l., via Mario Giuntini, Navacchio di Cascina, Pisa, Italy cIMCCE, Observatoire de Paris, PSL Research University, CNRS, Sorbonne Universits, UPMC Univ. Paris 06, Univ. Lille, 77 av. Denfert-Rochereau F-75014 Paris, France dESA SSA-NEO Coordination Centre, Largo Galileo Galilei, 1, 00044 Frascati (RM), Italy eJet Propulsion Laboratory/California Institute of Technology, 4800 Oak Grove Drive, Pasadena, 91109 CA, USA fUniversit´eCˆote d’Azur, Observatoire de la Cˆote d’Azur, CNRS, Laboratoire Lagrange, Boulevard de l’Observatoire, Nice, France Abstract We present an updated set of near-Earth asteroids with a Yarkovsky-related semi- major axis drift detected from the orbital fit to the astrometry. We find 87 reliable detections after filtering for the signal-to-noise ratio of the Yarkovsky drift esti- mate and making sure the estimate is compatible with the physical properties of the analyzed object. Furthermore, we find a list of 24 marginally significant detec- tions, for which future astrometry could result in a Yarkovsky detection. A further outcome of the filtering procedure is a list of detections that we consider spurious because unrealistic or not explicable with the Yarkovsky effect. Among the smallest asteroids of our sample, we determined four detections of solar radiation pressure, in addition to the Yarkovsky effect. As the data volume increases in the near fu- ture, our goal is to develop methods to generate very long lists of asteroids with reliably detected Yarkovsky effect, with limited amounts of case by case specific adjustments. -
Post-Impact Hydrothermal Activity in Meteorite Impact Craters and Potential Opportunities for Life
Bioastronomy 2002: Life Among the Stars IAU Symposium, Vol. 213, 2004 R.P.Norris and F.H.Stootman (eds.) Post-Impact Hydrothermal Activity in Meteorite Impact Craters and Potential Opportunities for Life Christian Koeberl Department of Geological Sciences, University of Vienna, Althanstrasse 14, A-1090 Vienna, Austria, [email protected] Wolf Uwe Reimold Impact Cratering Research Group, School of Geosciences, University of the Witwatersrand, Johannesburg 2050, South Africa, [email protected] Abstract. Impact craters are prominent landforms on all objects with a solid surface in the solar system. The formation of an impact structure is a high-energy, high-temperature transient event which introduces large amounts of energy into a limited area. This energy can, in part, be expanded on the creation and activation of a hydrothermal system within and even outside of the crater. Depending on the crater size and geology of the target region, this hydrothermal system may persist for extended periods of time. Such impact-induced hydrothermal systems could well have provided conditions supportive of the development of life on the early Earth and it is not unreasonable to assume that similar conditions could have led to life-favoring circumstances on other planets and satellites. 1. Introduction Studies during the last few decades have convinced most workers that the planets formed by collision and hierarchical growth starting from small objects, Le., from dust to planetesimals to planets. All planets and satellites of the solar system that have solid surfaces (e.g., Mercury, Venus, Mars, the asteroids) are covered by craters. Impact cratering has been either the most important, or one of the most important processes that affected the shaping of their surfaces.