Cisplatin Alters Nitric Oxide Synthase Levels in Human Ovarian Cancer Cells: Involvement in P53 Regulation and Cisplatin Resistance

Total Page:16

File Type:pdf, Size:1020Kb

Cisplatin Alters Nitric Oxide Synthase Levels in Human Ovarian Cancer Cells: Involvement in P53 Regulation and Cisplatin Resistance British Journal of Cancer (2008) 98, 1803 – 1809 & 2008 Cancer Research UK All rights reserved 0007 – 0920/08 $30.00 www.bjcancer.com Cisplatin alters nitric oxide synthase levels in human ovarian cancer cells: involvement in p53 regulation and cisplatin resistance 1,2,3 1,2,4 3,5 *,1,2 EL Leung , M Fraser , RR Fiscus and BK Tsang 1 Reproductive Biology Unit and Division of Gynecologic Oncology, Department of Obstetrics and Gynecology and Cellular and Molecular Medicine, 2 University of Ottawa, Ottawa, Ontario, Canada K1Y 4E9; Chronic Disease Program, Ottawa Health Research Institute, Ottawa, Ontario, Canada K1Y 3 4E9; Department of Physiology, Faculty of Medicine and Centre of Gerontology and Geriatrics, Chinese University of Hong Kong, Shatin, NT, Hong Kong The present study determines if (1) basal protein levels of nitric oxide (NO) synthases (eNOS, iNOS, and nNOS) are different in cisplatin-sensitive (OV2008) and counterpart cisplatin-resistant (C13*) human ovarian cancer cells, (2) cisplatin alters NOS levels, (3) NO donor causes apoptosis and p53 upregulation, (4) NO donor sensitises C13* cells to cisplatin via p53 upregulation (determined by p53 siRNA gene-knockdown), and (5) inhibition of endogenous NOS alters cisplatin-induced apoptosis. Basal iNOS levels were higher in OV2008 cells than in C13* cells. Cisplatin upregulated iNOS, but dramatically reduced eNOS and nNOS, in OV2008 cells only. Failure of cisplatin to upregulate iNOS and downregulate eNOS/nNOS in cisplatin-resistant C13* cells may be an aetiological factor in the development of resistance. The NO donor S-nitroso-N-acetylpenicillamine (SNAP) increased p53 protein levels and induced apoptosis in both cell types, and enhanced cisplatin-induced apoptosis in C13* cells in a p53-dependent manner (i.e., enhancement blocked by p53 siRNA). Specific iNOS inhibitor 1400W partially blocked cisplatin-induced apoptosis in OV2008 cells. G In cisplatin-resistant C13* cells, blocking all NOSs with N -amino-L-arginine dramatically changed these cells from cisplatin-resistant to cisplatin-sensitive, greatly potentiating cisplatin-induced apoptosis. The data suggest important roles for the three NOSs in regulating chemoresistance to cisplatin in ovarian cancer cells. British Journal of Cancer (2008) 98, 1803–1809. doi:10.1038/sj.bjc.6604375 www.bjcancer.com Published online 27 May 2008 & Translational Therapeutics 2008 Cancer Research UK Keywords: nitric oxide; ovarian cancer; apoptosis; NOS; p53; cisplatin Cisplatin (CDDP) is a widely used first-line chemotherapeutic At high concentrations (typically 4100 mM), NO donors agent for ovarian cancer (Siddik, 2003), and the induction of generate toxic concentrations of NO (e.g., 4100 nM), inducing apoptosis is a key determinant of CDDP sensitivity. Indeed, we and apoptosis in many mammalian cells (Fiscus, 2002; Fiscus et al, others have demonstrated that failure of CDDP to induce apoptosis 2002), including cancer cells (Wink et al, 1998). However, NO at is a major component of CDDP resistance (Sasaki et al, 2000; Yuan lower, more physiological levels (e.g., 1–20 nM) often has the et al, 2003; Fraser et al, 2003a). CDDP induces DNA crosslinks, opposite effect, preventing (or attenuating) the onset of apoptosis upregulation of p53, and subsequent p53-dependent apoptosis in many mammalian cells, including lung fibroblasts (Wink et al, (Siddik, 2003). However, in CDDP-resistant ovarian cancer cells, 1993), human B lymphocytes (Mannick et al, 1994), and many failure to properly regulate p53 can contribute to the resistance normal and transformed neural cells (Fiscus, 2002; Fiscus et al, (Fraser et al, 2003a, b). Furthermore, basal activity of soluble 2002). In most cells, the anti-apoptotic effects of low-level NO are guanylyl cyclase (sGC), an intracellular receptor for nitric oxide attributed to the stimulation of sGC with subsequent elevation of (NO), suppresses apoptosis in ovarian cancer cells, partly via cyclic guanosine monophosphate (cGMP) levels and increased inhibition of p53 accumulation and activation (Fraser et al, 2006). activation of protein kinase G (PKG). The anti-apoptotic role of We hypothesised that basal sGC activity and regulation of p53 may cGMP/PKG signalling pathway has been further established using depend on endogenous NO formed by one of the three NO natriuretic peptides, atrial natriuretic peptide, and B-type/brain synthases (NOSs), eNOS (also called NOS3), iNOS (also called natriuretic peptide (BNP), which activate cGMP/PKG via an NOS2), or nNOS (also called NOS1) and that resistance to CDDP in alternate pathway (i.e., activation of particulate guanylyl cyclase). ovarian cancer cells may involve altered expression of the NOSs. Atrial natriuretic peptide and BNP are exceptionally effective inhibitors of stress-induced apoptosis in PC-12 phaeochromo- *Correspondence: Dr BK Tsang, Chronic Disease Program, Ottawa cytoma and in NG108-15 neuroblastoma–glioma hybrid cells, Health Research Institute, 725 Parkdale Avenue, Ottawa, Ontario, including suppressing the toxic/pro-apoptotic effects of high-level Canada K1Y 4E9; NO (Fiscus et al, 2001; Cheng Chew et al, 2003). Even basal E-mail: [email protected] levels of cGMP, generated primarily by basal sGC activity, and 4 Current address: Ontario Cancer Institute, Princess Margaret Hospital, subsequent partial activation of PKG are sufficient (in fact, Toronto, Ontario, Canada M5G 2M9. necessary) to prevent spontaneous apoptosis in certain 5 Current address: Nevada Cancer Institute, One Breakthrough Way, Las cells, including NG108-15 cells (Fiscus, 2002; Fiscus et al, 2002), Vegas, NV, 89135, USA. immortalised uterine epithelial cells (Chan and Fiscus, 2003), and Received 3 January 2008; revised 7 April 2007; accepted 8 April 2008; human ovarian cancer cells (Fraser et al, 2006). Because sGC is published online 27 May 2008 activated by NO at very low concentrations (i.e., 50% of maximal NOSs regulate chemoresistance/p53 in ovarian cancer EL Leung et al 1804 sGC activity stimulated by only 4 nM NO; Bellamy et al, 2002), low Protein extraction and western blotting endogenous level of NO, generated by one of the three NOSs, may be responsible for stimulating basal sGC activity and inhibiting Cells were pelleted and lysed in ice-cold lysis buffer (pH 7.4) apoptosis in these cells. containing 50 mM Hepes, 150 mM NaCl, 1.5 mM MgCl2,1mM EGTA, 100 mM NaF, 10 mM NaPPi, 10% glycerol, and 1% Triton X-100. Previously, melanoma cells (Tang and Grimm, 2004), transformed À1 b-cell line RINm5F (Tejedo et al, 2001), and transformed human Protease inhibitors PMSF (1 mM), aprotinin (125 000 IU ml ), and leukocytes (Mannick et al, 1997) were reported to generate Na3VO4 (1 mM) were added to the lysis buffer freshly. Cell lysates 1 endogenous NO capable of suppressing apoptosis. Endogenous NO were sonicated briefly for three cycles (5 s per cycle, 0 C). is also believed to be responsible for aggressive tumour progression, Sonicates were incubated on ice for 1 h and pelleted by metastasis, and poor survival in cancer patients with tumours centrifugation (15 000 g; 20 min). Protein concentration was exhibiting increased iNOS expression (Thomsen and Miles, 1998). determined using Bio-Rad DC Protein Assay Kits. Equal amounts However, other studies focusing on ovarian cancer have shown that of proteins (50–100 mg) were loaded and resolved by 15% overexpression of iNOS correlates with increased apoptosis (Son and SDS-PAGE and electrotransferred (110 V, 1 h) onto nitrocellulose Hall, 2000; Rieder et al,2001).Thus,endogenousNOmaycontribute membranes (Bio-Rad) as previously described (Fraser et al, 2006). to either anti-apoptotic or pro-apoptotic effects in cancer cells, Membranes were blocked (at room temperature, 1 h) with 5% most likely depending on cell type, local NO levels, source of NO Blotto (Tris-HCl (10 mM; pH 8.0), NaCl (150 mM), Tween 20 production, and other conditions (e.g., concurrent overproduction of (0.05%, v/v; TBS-Tween 20) containing skim milk (5%; w/v)), then superoxide anion, which can combine with NO to form the toxic pro- incubated overnight with primary antibodies iNOS, eNOS, nNOS, oxidant peroxynitrite) (Fiscus, 2002; Fiscus et al, 2002). and p53 (1 : 1000) or GAPDH (1 : 200 000)), and subsequently with The present study determines whether eNOS, iNOS, and nNOS the appropriate horseradish peroxidase-conjugated secondary Translational Therapeutics are involved in regulating p53 accumulation and CDDP resistance antibody (1 : 2000 in 5% Blotto; at room temperature for 1 h). in ovarian cancer cells. CDDP-sensitive OV2008 cells and its The membranes were washed with TBS-Tween 20 thrice (15 min resistant variant C13* cells were used. Effects of NO donor and per wash), peroxidase activity was visualised with ECL reagent NOS inhibitors on CDDP-induced p53 regulation and apoptosis (Amersham Biosciences), and exposed to Hyperfilm ECL (Amer- were also studied. Overall, the present study shows that all three sham Biosciences, Buckinghamshire, UK). Signal intensity was isoforms of NOS are expressed in both cell lines, but protein determined densitometrically by Scion Image Software (version levels are differentially regulated by CDDP in CDDP-sensitive and 4.02; Scion Corporation, Frederick, MD, USA). CDDP-resistant cells. Furthermore, the data suggest that iNOS contributes to CDDP-induced apoptosis in CDDP-sensitive cells, RNA interference whereas eNOS/nNOS contributes (in a p53-independent manner) to chemoresistance by suppressing CDDP-induced apoptosis in After plating cells
Recommended publications
  • Pdgfb and P53 in Brain Tumorigenesis
    From the Department of Oncology-Pathology Karolinska Institutet, Stockholm, Sweden PDGFB AND P53 IN BRAIN TUMORIGENESIS Sanna-Maria Hede Stockholm 2010 All previously published papers were reproduced with permission from the publisher. Published by Karolinska Institutet. Printed by Larserics Digital Print AB. © Sanna-Maria Hede, 2010 ISBN 978-91-7457-054-0 ABSTRACT Glioblastoma is the most common, and malignant form of brain tumor. It is characterized by a rapid growth and diffuse spread to surrounding brain tissue. The cell of origin is still not known, but experimental data suggest an origin from a glial precursor or neural stem cell. Analysis of human glioma tissue has revealed many genetic aberrations, among which mutations and loss of TP53 together with amplification and over-expression of PDGFRA are common. Many of the pathways that are found mutated in gliomas, are normally important in regulating stem cell functions. We have investigated the role of p53 in adult neural stem cells, and found that the p53 protein is expressed in the SVZ in mice. Comparison of neurosphere cultures derived from wt and Trp53-/- mice showed that neural stem cells lacking p53 have an increased self-renewal capacity, proliferate faster and display reduced apoptosis. Gene expression profiling revealed differential expression of many genes, the most prominent being Cdkn1a (p21) which was down-regulated in Trp53-/- neural stem cells. Mice lacking p53 do not develop gliomas, but the combination of TP53 mutation/deletion together with other genetic aberrations is common in human gliomas of all grades. We generated a transgenic mouse model mimicking human glioblastoma, by over-expressing PDGFB under the GFAP promoter in Trp53-/- mice.
    [Show full text]
  • AP-1- Dependent Pathway Receptor, Focal
    Peptidoglycan Enhances IL-6 Production in Human Synovial Fibroblasts via TLR2 Receptor, Focal Adhesion Kinase, Akt, and AP-1- Dependent Pathway This information is current as of September 25, 2021. Yung-Cheng Chiu, Ching-Yuang Lin, Chao-Ping Chen, Kui-Chou Huang, Kwok-Man Tong, Chung-Yuh Tzeng, Tu-Sheng Lee, Horng-Chaung Hsu and Chih-Hsin Tang J Immunol 2009; 183:2785-2792; Prepublished online 27 July 2009; Downloaded from doi: 10.4049/jimmunol.0802826 http://www.jimmunol.org/content/183/4/2785 http://www.jimmunol.org/ References This article cites 38 articles, 20 of which you can access for free at: http://www.jimmunol.org/content/183/4/2785.full#ref-list-1 Why The JI? Submit online. • Rapid Reviews! 30 days* from submission to initial decision • No Triage! Every submission reviewed by practicing scientists by guest on September 25, 2021 • Fast Publication! 4 weeks from acceptance to publication *average Subscription Information about subscribing to The Journal of Immunology is online at: http://jimmunol.org/subscription Permissions Submit copyright permission requests at: http://www.aai.org/About/Publications/JI/copyright.html Email Alerts Receive free email-alerts when new articles cite this article. Sign up at: http://jimmunol.org/alerts The Journal of Immunology is published twice each month by The American Association of Immunologists, Inc., 1451 Rockville Pike, Suite 650, Rockville, MD 20852 Copyright © 2009 by The American Association of Immunologists, Inc. All rights reserved. Print ISSN: 0022-1767 Online ISSN: 1550-6606. The Journal of Immunology Peptidoglycan Enhances IL-6 Production in Human Synovial Fibroblasts via TLR2 Receptor, Focal Adhesion Kinase, Akt, and AP-1- Dependent Pathway1 Yung-Cheng Chiu,*§¶ Ching-Yuang Lin,* Chao-Ping Chen,§ Kui-Chou Huang,§ Kwok-Man Tong,§ Chung-Yuh Tzeng,§ Tu-Sheng Lee,§ Horng-Chaung Hsu,2* and Chih-Hsin Tang2†‡ Peptidoglycan (PGN), the major component of the cell wall of Gram-positive bacteria, activates the innate immune system of the host and induces the release of cytokines and chemokines.
    [Show full text]
  • RANK Interaction and Signaling − RANKL Structural and Functional
    Structural and Functional Insights of RANKL −RANK Interaction and Signaling Changzhen Liu, Thomas S. Walter, Peng Huang, Shiqian Zhang, Xuekai Zhu, Ying Wu, Lucy R. Wedderburn, Peifu This information is current as Tang, Raymond J. Owens, David I. Stuart, Jingshan Ren and of October 1, 2021. Bin Gao J Immunol published online 14 May 2010 http://www.jimmunol.org/content/early/2010/05/14/jimmun ol.0904033 Downloaded from Why The JI? Submit online. http://www.jimmunol.org/ • Rapid Reviews! 30 days* from submission to initial decision • No Triage! Every submission reviewed by practicing scientists • Fast Publication! 4 weeks from acceptance to publication *average Subscription Information about subscribing to The Journal of Immunology is online at: by guest on October 1, 2021 http://jimmunol.org/subscription Permissions Submit copyright permission requests at: http://www.aai.org/About/Publications/JI/copyright.html Email Alerts Receive free email-alerts when new articles cite this article. Sign up at: http://jimmunol.org/alerts The Journal of Immunology is published twice each month by The American Association of Immunologists, Inc., 1451 Rockville Pike, Suite 650, Rockville, MD 20852 All rights reserved. Print ISSN: 0022-1767 Online ISSN: 1550-6606. Published May 14, 2010, doi:10.4049/jimmunol.0904033 The Journal of Immunology Structural and Functional Insights of RANKL–RANK Interaction and Signaling Changzhen Liu,*,†,1 Thomas S. Walter,‡,1 Peng Huang,x Shiqian Zhang,{ Xuekai Zhu,*,† Ying Wu,*,† Lucy R. Wedderburn,‖ Peifu Tang,x Raymond J. Owens,‡ David I. Stuart,‡ Jingshan Ren,‡ and Bin Gao*,†,‖ Bone remodeling involves bone resorption by osteoclasts and synthesis by osteoblasts and is tightly regulated by the receptor activator of the NF-kB ligand (RANKL)/receptor activator of the NF-kB (RANK)/osteoprotegerin molecular triad.
    [Show full text]
  • Gene Expression and Signal Transduction
    Chapter14 Gene Expression and Signal Transduction PLANT BIOLOGISTS MAY BE FORGIVEN for taking abiding satisfac- tion in the fact that Mendel’s classic studies on the role of heritable fac- tors in development were carried out on a flowering plant: the garden pea. The heritable factors that Mendel discovered, which control such characteristics as flower color, flower position, pod shape, stem length, seed color, and seed shape, came to be called genes. Genes are the DNA sequences that encode the RNA molecules directly involved in making the enzymes and structural proteins of the cell. Genes are arranged lin- early on chromosomes, which form linkage groups—that is, genes that are inherited together. The total amount of DNA or genetic information contained in a cell, nucleus, or organelle is termed its genome. Since Mendel’s pioneering discoveries in his garden, the principle has become firmly established that the growth, development, and environ- mental responses of even the simplest microorganism are determined by the programmed expression of its genes. Among multicellular organ- isms, turning genes on (gene expression) or off alters a cell’s comple- ment of enzymes and structural proteins, allowing cells to differentiate. In the chapters that follow, we will discuss various aspects of plant development in relation to the regulation of gene expression. Various internal signals are required for coordinating the expression of genes during development and for enabling the plant to respond to environmental signals. Such internal (as well as external) signaling agents typically bring about their effects by means of sequences of bio- chemical reactions, called signal transduction pathways, that greatly amplify the original signal and ultimately result in the activation or repression of genes.
    [Show full text]
  • Biochem II Signaling Intro and Enz Receptors
    Signal Transduction What is signal transduction? Binding of ligands to a macromolecule (receptor) “The secret life is molecular recognition; the ability of one molecule to “recognize” another through weak bonding interactions.” Linus Pauling Pleasure or Pain – it is the receptor ligand recognition So why do cells need to communicate? -Coordination of movement bacterial movement towards a chemical gradient green algae - colonies swimming through the water - Coordination of metabolism - insulin glucagon effects on metabolism -Coordination of growth - wound healing, skin. blood and gut cells Hormones are chemical signals. 1) Every different hormone binds to a specific receptor and in binding a significant alteration in receptor conformation results in a biochemical response inside the cell 2) This can be thought of as an allosteric modification with two distinct conformations; bound and free. Log Dose Response • Log dose response (Fractional Bound) • Measures potency/efficacy of hormone, agonist or antagonist • If measuring response, potency (efficacy) is shown differently Scatchard Plot Derived like kinetics R + L ó RL Used to measure receptor binding affinity KD (KL – 50% occupancy) in presence or absence of inhibitor/antagonist (B = Receptor bound to ligand) 3) The binding of the hormone leads to a transduction of the hormone signal into a biochemical response. 4) Hormone receptors are proteins and are typically classified as a cell surface receptor or an intracellular receptor. Each have different roles and very different means of regulating biochemical / cellular function. Intracellular Hormone Receptors The steroid/thyroid hormone receptor superfamily (e.g. glucocorticoid, vitamin D, retinoic acid and thyroid hormone receptors) • Protein receptors that reside in the cytoplasm and bind the lipophilic steroid/thyroid hormones.
    [Show full text]
  • (RACK1) Protein
    ANTICANCER RESEARCH 26: 4539-4548 (2006) The Prion-like Protein Doppel (Dpl) Interacts with the Human Receptor for Activated C-Kinase 1 (RACK1) Protein ALBERTO AZZALIN, IGOR DEL VECCHIO, LUCA FERRETTI and SERGIO COMINCINI Dipartimento di Genetica e Microbiologia, Università di Pavia, via Ferrata 1, 27100 Pavia, Italy Abstract. Background: Doppel (Dpl) is a homologue of the expressed in the testis, especially in Sertoli cells and in prion protein (PrPC). In contrast to PrPC, Dpl is dispensable for spermatozoa, and its involvement in male fertility has been prion disease, but appears to have an essential function in male recently proposed (4, 5). NMR studies of Dpl have revealed a spermatogenesis. Recently, Dpl has been found to be aberrantly high structural similarity with the prion protein (PrPC) (6, 7), expressed in astrocytic and leukaemic tumor specimens, showing which supported the possibility that the two proteins share a peculiar cytosolic cellular localization. The aim of this study similar functions in vivo. Despite a multitude of studies, the was to clarify some of the putative Dpl interacting proteins. cellular functions of Dpl and PrPC are still unknown. However, Materials and Methods: A yeast two hybrid system was employed current data suggested that Dpl, unlike PrPC, is probably not and the results were verified by co-immunoprecipitation using required for the pathogenesis of prion diseases (8, 9) and is not transfected cells. Results: Several potential Dpl-binding converted into a PrPSc-like isoform (10, 11). Importantly, Dpl candidates were identified and, among them, the receptor for can cause Purkinje cell death and ataxia when over-expressed activated C-kinase (RACK1) protein was further investigated.
    [Show full text]
  • Progesterone Receptor Transcription and Non-Transcription Signaling Mechanisms Susan A
    Steroids 68 (2003) 761–770 Progesterone receptor transcription and non-transcription signaling mechanisms Susan A. Leonhardt a, Viroj Boonyaratanakornkit a, Dean P. Edwards b,∗ a Department of Pathology B216, School of Medicine University of Colorado Health Sciences Center, 4200 East Ninth Avenue, Campus Box B216, Denver, CO 80262, USA b Department of Pathology and Program in Molecular Biology, University of Colorado Health Sciences Center, 4200 East Ninth Avenue, Campus Box B216, Denver, CO 80262, USA Abstract The diverse effects of progesterone on female reproductive tissues are mediated by the progesterone receptor (PR), a member of the nuclear receptor family of ligand-dependent transcription factors. Thus, PR is an important therapeutic target in female reproduction and in certain endocrine dependent cancers. This paper reviews our understanding of the mechanism of action of the most widely used PR antagonist RU486. Although RU486 is a competitive steroidal antagonist that can displace the natural hormone for PR, it’s potency derives from additional “active antagonism” that involves inhibiting the activity of PR hormone agonist complexes in trans through heterodimerization and competition for binding to progesterone response elements on target DNA, and by recruitment of corepressors that have the potential to actively repress gene transcription. An additional functional role for PR has recently been defined whereby a subpopulation of PR in the cytoplasm or cell membrane is capable of mediating rapid progesterone induced activation of certain signal transduction pathways in the absence of gene transcription. This paper also reviews recent results on the mechanism of the extra-nuclear action of PR and the potential biological roles and implications of this novel PR signaling pathway.
    [Show full text]
  • Role of Transcription Factors in Inflammatory Lung Diseases
    Thorax 1998;53:601–612 601 Role of transcription factors in inflammatory lung diseases Thorax: first published as 10.1136/thx.53.7.601 on 1 July 1998. Downloaded from Irfan Rahman, William MacNee Acute and chronic alveolar and/or bronchial nuclear receptor co-activators which facilitate inflammation is thought to be central to the DNA binding of transcription factors,8 notably pathogenesis of many lung disorders such as the CREB-binding protein (CBP), adenovirus asthma, chronic obstructive pulmonary disease E1A-associated protein p300/CBP-associated (COPD), adult respiratory distress syndrome factor (p/CAF), and the steroid receptor (ARDS), and idiopathic pulmonary fibrosis co-activator-1 (SRC-1), which interact with (IPF). The site and specific characteristics of basal transcription factors and transcription the inflammatory responses may be diVerent in machinery and are of particular importance in each of these diseases, but all are characterised the transactivation and regulation of gene tran- by the recruitment to the lungs and activation scription involved in the immune and inflam- of immune and inflammatory cells. These acti- matory responses. Understanding the function vated cells produce cytokines, oxidants and and regulation of basal transcription factors is many other mediators which are involved in fundamental to the study of lung inflammation inflammation.12 Recent data indicate that, in and may provide novel therapeutic strategies addition, airway epithelial cells are able to act for a number of inflammatory lung diseases. In as immune eVector cells by secreting pro- this review we will focus on recent progress in inflammatory mediators, oxidants, and our understanding of the role of the NF-êB, cytokines.3 Once triggered, an inappropriate AP-1, NF-IL6, and NFAT transcription fac- chronic inflammatory response persists in tors in the pathogenesis of inflammatory lung these conditions and is presumed to result in diseases and discuss synergistic interactions lung injury.
    [Show full text]
  • Biochemical Pharmacology of the Sigma-1 Receptor
    1521-0111/89/1/142–153$25.00 http://dx.doi.org/10.1124/mol.115.101170 MOLECULAR PHARMACOLOGY Mol Pharmacol 89:142–153, January 2016 Copyright ª 2015 by The American Society for Pharmacology and Experimental Therapeutics MINIREVIEW Biochemical Pharmacology of the Sigma-1 Receptor Uyen B. Chu and Arnold E. Ruoho Department of Neuroscience, School of Medicine and Public Health, University of Wisconsin, Madison, Wisconsin Received July 31, 2015; accepted November 6, 2015 Downloaded from ABSTRACT The sigma-1 receptor (S1R) is a 223 amino acid two transmem- been discovered by the use of pharmacologic, biochemical, brane (TM) pass protein. It is a non-ATP-binding nonglycosylated biophysical, and molecular biology approaches. The S1R exists ligand-regulated molecular chaperone of unknown three-dimensional in monomer, dimer, tetramer, hexamer/octamer, and higher structure. The S1R is resident to eukaryotic mitochondrial-associated oligomeric forms that may be important determinants in defining molpharm.aspetjournals.org endoplasmic reticulum and plasma membranes with broad functions the pharmacology and mechanism(s) of action of the S1R. A that regulate cellular calcium homeostasis and reduce oxidative canonical GXXXG in putative TM2 is important for S1R oligomer- stress. Several multitasking functions of the S1R are underwritten ization. The ligand-binding regions of S1R have been identified by chaperone-mediated direct (and indirect) interactions with and include portions of TM2 and the TM proximal regions of the C ion channels, G-protein coupled receptors and cell-signaling terminus. Some client protein chaperone functions and interac- molecules involved in the regulation of cell growth. The S1R is a tions with the cochaperone 78-kDa glucose-regulated protein promising drug target for the treatment of several neurodegen- (binding immunoglobulin protein) involve the C terminus.
    [Show full text]
  • Receptor Chimeras Demonstrate That the C-Terminal Domain of The
    The University of San Francisco USF Scholarship: a digital repository @ Gleeson Library | Geschke Center Biology Faculty Publications Biology 2012 Receptor Chimeras Demonstrate That the C- Terminal Domain of the Human Cytomegalovirus US27 Gene Product Is Necessary and Sufficient for Intracellular Receptor Localization Lance K. Stapleton Kathleen L. Arnolds Angela P. Lares Tori M. Devito Juliet V. Spencer University of San Francisco, [email protected] Follow this and additional works at: http://repository.usfca.edu/biol_fac Part of the Biology Commons Recommended Citation Lance K Stapleton, Kathleen L Arnolds, Angela P Lares, Tori M Devito and Juliet V Spencer. Receptor chimeras demonstrate that the C-terminal domain of the human cytomegalovirus US27 gene product is necessary and sufficient for intracellular receptor localization. Virol J. 2012 Feb 16;9:42 This Article is brought to you for free and open access by the Biology at USF Scholarship: a digital repository @ Gleeson Library | Geschke Center. It has been accepted for inclusion in Biology Faculty Publications by an authorized administrator of USF Scholarship: a digital repository @ Gleeson Library | Geschke Center. For more information, please contact [email protected]. Stapleton et al. Virology Journal 2012, 9:42 http://www.virologyj.com/content/9/1/42 RESEARCH Open Access Receptor chimeras demonstrate that the C- terminal domain of the human cytomegalovirus US27 gene product is necessary and sufficient for intracellular receptor localization Lance K Stapleton, Kathleen L Arnolds, Angela P Lares, Tori M Devito and Juliet V Spencer* Abstract Background: Human cytomegalovirus (HCMV) is ubiquitous in the population but generally causes only mild or asymptomatic infection except in immune suppressed individuals.
    [Show full text]
  • The P23 Molecular Chaperones Act at a Late Step in Intracellular Receptor Action to Differentially Affect Ligand Efficacies
    Downloaded from genesdev.cshlp.org on September 29, 2021 - Published by Cold Spring Harbor Laboratory Press The p23 molecular chaperones act at a late step in intracellular receptor action to differentially affect ligand efficacies Brian C. Freeman,1 Sara J. Felts,2 David O. Toft,2 and Keith R. Yamamoto1,3 1Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, California 94143-0450 USA; 2Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, Minnesota 55905 USA Multiple molecular chaperones, including Hsp90 and p23, interact with members of the intracellular receptor (IR) family. To investigate p23 function, we compared the effects of three p23 proteins on IR activities, yeast p23 (sba1p) and the two human p23 homologs, p23 and tsp23. We found that Sba1p was indistinguishable from human p23 in assays of seven IR activities in both animal cells and in yeast; in contrast, certain effects of tsp23 were specific to that homolog. Transcriptional activation by two IRs was increased by expression of any of the p23 species, whereas activation by five other IRs was decreased by Sba1p or p23, and unaffected by tsp23. p23 was expressed in all tissues examined except striated and cardiac muscle, whereas tsp23 accumulated in a complementary pattern; hence, p23 proteins might contribute to tissue-specific differences in IR activities. Unlike Hsp90, which acts on IR aporeceptors to stimulate ligand potency (i.e., hormone-binding affinity), p23 proteins acted on IR holoreceptors to alter ligand efficiencies (i.e., transcriptional activation activity). Moreover, the p23 effects developed slowly, requiring prolonged exposure to hormone.
    [Show full text]
  • The Dioxin Receptor Mediates Induction of Cytochrome P-450IA1
    MOLECULAR AND CELLULAR BIOLOGY, Jan. 1993, p. 677-689 Vol. 13, No. 1 0270-7306/93/010677-13$02.00/0 Copyright © 1993, American Society for Microbiology Cross-Coupling of Signal Transduction Pathways: the Dioxin Receptor Mediates Induction of Cytochrome P-450IA1 Expression via a Protein Kinase C-Dependent Mechanism ANNA BERGHARD,l* KATARINA GRADIN,1 INGEMAR PONGRATZ,2 MURRAY WHITELAW,2 AND LORENZ POELLINGER2 Centerfor Biotechnology' and Department ofMedical Nutrition,2 Karolinska Institute, Novum, 5-141 57 Huddinge, Sweden Received 24 April 1992/Returned for modification 29 June 1992/Accepted 19 October 1992 Signal transduction by dioxin (2,3,7,8-tetrachlorodibenzo-p-dioxin) is mediated by the intracellular dioxin receptor which, in its dioxin-activated state, regulates transcription oftarget genes encoding drug-metabolizing enzymes, such as cytochrome P-45OIA1 and glutathione S-transferase Ya. Exposure of the dioxin receptor to dioxin leads to an apparent translocation of the receptor to the nucleus in vivo and to a rapid conversion of the receptor from a latent, non-DNA-binding form to a species that binds to dioxin-responsive positive control elements in vitro. This DNA-binding form of receptor appears to be a heterodimeric complex with the helix-loop-helix factor Arnt. In this study, we show that activation of the cytochrome P-450IA1 gene and minimal dioxin-responsive reporter constructs by the dioxin receptor was inhibited following prolonged treatment of human keratinocytes with the phorbol ester 12-0-tetradecanoylphorbol-13-acetate. Inhibition of the receptor-mediated activation response was also achieved by treatment of the cells with a number of protein kinase inhibitors, one ofwhich, calphostin C, shows selectivity for protein kinase C.
    [Show full text]