Cytoplasm External Environment Membrane Receptor Intracellular Receptor Plasma Membrane Signal Transduction Pathway Signal Trans

Total Page:16

File Type:pdf, Size:1020Kb

Cytoplasm External Environment Membrane Receptor Intracellular Receptor Plasma Membrane Signal Transduction Pathway Signal Trans Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display. External environment Cytoplasm Signal Cellular transduction response pathway Membrane receptor Signal Cellular transduction Hydrophilic response pathway ligand Intracellular receptor Hydrophobic ligand Plasma membrane 1 Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display. Direct Contact Paracrine Signaling Endocrine Signaling Synaptic Signaling Hormone secretion into Secretory cell Nerve cell blood by endocrine gland Neurotransmitter Adjacent plasma membrane Blood vessel Synaptic gap Plasma Adjacent membrane target cells Distant target cells Target cell a. b. c. d. 2 Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display. ATP ADP O Ser Ser Kinase or OH or O P O– Thr Thr Phosphatase O– Pi ATP ADP O Kinase Tyr Tyr – OH O P O – Phosphatase O Pi 3 Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display. Ligand (signal) Ions Ligand (signal) Inactive Active Cellular Ions response a. b. Ligand (signal) Ions GPCR γ γ β β G protein α Ion channel Enzyme α α GDP G protein activates GTP GTP either enzyme or ion channel c. 4 Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display. 2. Hormone binding alters receptor 5. Cellular Inhibitor Hormone conformation so it no response is longer binds inhibitor. a change in Signal molecule- gene binding domain expression. DNA-binding site exposed 1. Hormones cross plasma membrane and bind to cytoplasmic Inhibitor receptors. DNA-binding 3. Hormone–receptor site blocked complex translocates Gene Transcription-activating domain to nucleus. transcription 4. Hormone–receptor complex binds to DNA. This usually turns on transcription, but can also turn it off. 5 Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display. Ligands P P P P Phosphate P P P groups P P P P P P P P P P P Dimerization and Cellular autophosphorylation response Transmembrane RTK proteins Phosphorylated protein Intracellular kinase domain Extracellular ligand-binding domain 2. Two receptors associate (dimerize) 3. Response proteins bind to phospho- 1. Ligand binds to the receptor. and phosphorylate each other tyrosine on receptor. Receptor can (autophosphorylation). phosphorylate other response proteins. 6 Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display. MAP kinase cascade Signal amplification Signal Signal Receptor Receptor Activator MKKKMKKK MKKKMKKK Activator Ras MKKMKK MKKMKK MKK First MKKKMKKK kinase MKKKMKKK Active Inactive MK MK MK MK P P Second Response proteins MKK P kinase MKKMKK Active Inactive P P MAP Cellular responses kinase MK P MK Active Inactive b. Response Response proteins proteins Cellular Response response a. 7 Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display. ATP cAMP + PPi NH NH2 2 cAMP O O O –O N CH N P O P O P O CH2 2 O O Adenylyl cyclase PP i – – – O O O O O O –O P O P O– O P O – – – O O O a. Extracellular space Plasma membrane O C C O O C C O O O O O DAG O– Cytoplasm C C C C C C O P O– – O OH O –O P O O Cleaved by O P O– O phospholipase C O – O O P O OH OH OH Phospholipase C O O OH OH OH – O O P O – O– IP O P O 3 O– PIP DAG + IP 2 3 b. 8 Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display. Ligand Adenylyl cyclase GPCR β γ γ β γ γ α GDP GTP cAMP ATP Cytoplasm Activates PKA Response protein Cellular Nucleus response 9 Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display. Ligand GPCR Phospholipase C β γ β γ α PIP GDP GTP DAG IP 3 Cytoplasm Ca2+ binding protein ER Ca2+ Cellular response 10 Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display. Ca2+ Ca2+ Ca2+ Inactive protein Calmodulin Calmodulin Ca2+ Active Ca2+ protein a. b. 11 Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display. Epinephrine Adenylyl GPCR cyclase Adenylyl cyclase Glucagon GTP GTP GD P ATP ATP cAM P PK A GD P Cytoplasm P P P P Phosphorylase kinase P P P P Glycogen phosphorylase P CH 2 Glycogen Glucose-6-phosphate 12 .
Recommended publications
  • Pdgfb and P53 in Brain Tumorigenesis
    From the Department of Oncology-Pathology Karolinska Institutet, Stockholm, Sweden PDGFB AND P53 IN BRAIN TUMORIGENESIS Sanna-Maria Hede Stockholm 2010 All previously published papers were reproduced with permission from the publisher. Published by Karolinska Institutet. Printed by Larserics Digital Print AB. © Sanna-Maria Hede, 2010 ISBN 978-91-7457-054-0 ABSTRACT Glioblastoma is the most common, and malignant form of brain tumor. It is characterized by a rapid growth and diffuse spread to surrounding brain tissue. The cell of origin is still not known, but experimental data suggest an origin from a glial precursor or neural stem cell. Analysis of human glioma tissue has revealed many genetic aberrations, among which mutations and loss of TP53 together with amplification and over-expression of PDGFRA are common. Many of the pathways that are found mutated in gliomas, are normally important in regulating stem cell functions. We have investigated the role of p53 in adult neural stem cells, and found that the p53 protein is expressed in the SVZ in mice. Comparison of neurosphere cultures derived from wt and Trp53-/- mice showed that neural stem cells lacking p53 have an increased self-renewal capacity, proliferate faster and display reduced apoptosis. Gene expression profiling revealed differential expression of many genes, the most prominent being Cdkn1a (p21) which was down-regulated in Trp53-/- neural stem cells. Mice lacking p53 do not develop gliomas, but the combination of TP53 mutation/deletion together with other genetic aberrations is common in human gliomas of all grades. We generated a transgenic mouse model mimicking human glioblastoma, by over-expressing PDGFB under the GFAP promoter in Trp53-/- mice.
    [Show full text]
  • AP-1- Dependent Pathway Receptor, Focal
    Peptidoglycan Enhances IL-6 Production in Human Synovial Fibroblasts via TLR2 Receptor, Focal Adhesion Kinase, Akt, and AP-1- Dependent Pathway This information is current as of September 25, 2021. Yung-Cheng Chiu, Ching-Yuang Lin, Chao-Ping Chen, Kui-Chou Huang, Kwok-Man Tong, Chung-Yuh Tzeng, Tu-Sheng Lee, Horng-Chaung Hsu and Chih-Hsin Tang J Immunol 2009; 183:2785-2792; Prepublished online 27 July 2009; Downloaded from doi: 10.4049/jimmunol.0802826 http://www.jimmunol.org/content/183/4/2785 http://www.jimmunol.org/ References This article cites 38 articles, 20 of which you can access for free at: http://www.jimmunol.org/content/183/4/2785.full#ref-list-1 Why The JI? Submit online. • Rapid Reviews! 30 days* from submission to initial decision • No Triage! Every submission reviewed by practicing scientists by guest on September 25, 2021 • Fast Publication! 4 weeks from acceptance to publication *average Subscription Information about subscribing to The Journal of Immunology is online at: http://jimmunol.org/subscription Permissions Submit copyright permission requests at: http://www.aai.org/About/Publications/JI/copyright.html Email Alerts Receive free email-alerts when new articles cite this article. Sign up at: http://jimmunol.org/alerts The Journal of Immunology is published twice each month by The American Association of Immunologists, Inc., 1451 Rockville Pike, Suite 650, Rockville, MD 20852 Copyright © 2009 by The American Association of Immunologists, Inc. All rights reserved. Print ISSN: 0022-1767 Online ISSN: 1550-6606. The Journal of Immunology Peptidoglycan Enhances IL-6 Production in Human Synovial Fibroblasts via TLR2 Receptor, Focal Adhesion Kinase, Akt, and AP-1- Dependent Pathway1 Yung-Cheng Chiu,*§¶ Ching-Yuang Lin,* Chao-Ping Chen,§ Kui-Chou Huang,§ Kwok-Man Tong,§ Chung-Yuh Tzeng,§ Tu-Sheng Lee,§ Horng-Chaung Hsu,2* and Chih-Hsin Tang2†‡ Peptidoglycan (PGN), the major component of the cell wall of Gram-positive bacteria, activates the innate immune system of the host and induces the release of cytokines and chemokines.
    [Show full text]
  • Homeobox Gene Expression Profile in Human Hematopoietic Multipotent
    Leukemia (2003) 17, 1157–1163 & 2003 Nature Publishing Group All rights reserved 0887-6924/03 $25.00 www.nature.com/leu Homeobox gene expression profile in human hematopoietic multipotent stem cells and T-cell progenitors: implications for human T-cell development T Taghon1, K Thys1, M De Smedt1, F Weerkamp2, FJT Staal2, J Plum1 and G Leclercq1 1Department of Clinical Chemistry, Microbiology and Immunology, Ghent University Hospital, Ghent, Belgium; and 2Department of Immunology, Erasmus Medical Center, Rotterdam, The Netherlands Class I homeobox (HOX) genes comprise a large family of implicated in this transformation proces.14 The HOX-C locus transcription factors that have been implicated in normal and has been primarily implicated in lymphomas.15 malignant hematopoiesis. However, data on their expression or function during T-cell development is limited. Using degener- Hematopoietic cells are derived from stem cells that reside in ated RT-PCR and Affymetrix microarray analysis, we analyzed fetal liver (FL) in the embryo and in the adult bone marrow the expression pattern of this gene family in human multipotent (ABM), which have the unique ability to self-renew and thereby stem cells from fetal liver (FL) and adult bone marrow (ABM), provide a life-long supply of blood cells. T lymphocytes are a and in T-cell progenitors from child thymus. We show that FL specific type of hematopoietic cells that play a major role in the and ABM stem cells are similar in terms of HOX gene immune system. They develop through a well-defined order of expression, but significant differences were observed between differentiation steps in the thymus.16 Several transcription these two cell types and child thymocytes.
    [Show full text]
  • RANK Interaction and Signaling − RANKL Structural and Functional
    Structural and Functional Insights of RANKL −RANK Interaction and Signaling Changzhen Liu, Thomas S. Walter, Peng Huang, Shiqian Zhang, Xuekai Zhu, Ying Wu, Lucy R. Wedderburn, Peifu This information is current as Tang, Raymond J. Owens, David I. Stuart, Jingshan Ren and of October 1, 2021. Bin Gao J Immunol published online 14 May 2010 http://www.jimmunol.org/content/early/2010/05/14/jimmun ol.0904033 Downloaded from Why The JI? Submit online. http://www.jimmunol.org/ • Rapid Reviews! 30 days* from submission to initial decision • No Triage! Every submission reviewed by practicing scientists • Fast Publication! 4 weeks from acceptance to publication *average Subscription Information about subscribing to The Journal of Immunology is online at: by guest on October 1, 2021 http://jimmunol.org/subscription Permissions Submit copyright permission requests at: http://www.aai.org/About/Publications/JI/copyright.html Email Alerts Receive free email-alerts when new articles cite this article. Sign up at: http://jimmunol.org/alerts The Journal of Immunology is published twice each month by The American Association of Immunologists, Inc., 1451 Rockville Pike, Suite 650, Rockville, MD 20852 All rights reserved. Print ISSN: 0022-1767 Online ISSN: 1550-6606. Published May 14, 2010, doi:10.4049/jimmunol.0904033 The Journal of Immunology Structural and Functional Insights of RANKL–RANK Interaction and Signaling Changzhen Liu,*,†,1 Thomas S. Walter,‡,1 Peng Huang,x Shiqian Zhang,{ Xuekai Zhu,*,† Ying Wu,*,† Lucy R. Wedderburn,‖ Peifu Tang,x Raymond J. Owens,‡ David I. Stuart,‡ Jingshan Ren,‡ and Bin Gao*,†,‖ Bone remodeling involves bone resorption by osteoclasts and synthesis by osteoblasts and is tightly regulated by the receptor activator of the NF-kB ligand (RANKL)/receptor activator of the NF-kB (RANK)/osteoprotegerin molecular triad.
    [Show full text]
  • Gene Expression and Signal Transduction
    Chapter14 Gene Expression and Signal Transduction PLANT BIOLOGISTS MAY BE FORGIVEN for taking abiding satisfac- tion in the fact that Mendel’s classic studies on the role of heritable fac- tors in development were carried out on a flowering plant: the garden pea. The heritable factors that Mendel discovered, which control such characteristics as flower color, flower position, pod shape, stem length, seed color, and seed shape, came to be called genes. Genes are the DNA sequences that encode the RNA molecules directly involved in making the enzymes and structural proteins of the cell. Genes are arranged lin- early on chromosomes, which form linkage groups—that is, genes that are inherited together. The total amount of DNA or genetic information contained in a cell, nucleus, or organelle is termed its genome. Since Mendel’s pioneering discoveries in his garden, the principle has become firmly established that the growth, development, and environ- mental responses of even the simplest microorganism are determined by the programmed expression of its genes. Among multicellular organ- isms, turning genes on (gene expression) or off alters a cell’s comple- ment of enzymes and structural proteins, allowing cells to differentiate. In the chapters that follow, we will discuss various aspects of plant development in relation to the regulation of gene expression. Various internal signals are required for coordinating the expression of genes during development and for enabling the plant to respond to environmental signals. Such internal (as well as external) signaling agents typically bring about their effects by means of sequences of bio- chemical reactions, called signal transduction pathways, that greatly amplify the original signal and ultimately result in the activation or repression of genes.
    [Show full text]
  • Drosophila Pax6 Promotes Development of the Entire Eye-Antennal Disc, Thereby Ensuring Proper Adult Head Formation
    PAPER Drosophila Pax6 promotes development of the entire COLLOQUIUM eye-antennal disc, thereby ensuring proper adult head formation Jinjin Zhua, Sneha Palliyila, Chen Ranb, and Justin P. Kumara,1 aDepartment of Biology, Indiana University, Bloomington, IN 47405; and bDepartment of Biology, Stanford University, Stanford, CA 94305 Edited by Ellen V. Rothenberg, California Institute of Technology, Pasadena, CA, and accepted by Editorial Board Member Neil H. Shubin February 17, 2017 (received for review July 26, 2016) Paired box 6 (Pax6) is considered to be the master control gene for molecular battle among GRNs allows for the subdivision of the eye development in all seeing animals studied so far. In vertebrates, eye-antennal disc to be maintained within a single continuous it is required not only for lens/retina formation but also for the cellular field (13–16). Of the GRNs that are known to operate development of the CNS, olfactory system, and pancreas. Although within the eye-antennal disc, the retinal determination (RD) Pax6 plays important roles in cell differentiation, proliferation, and network, which controls eye development, is the best studied (17). patterning during the development of these systems, the underlying At the core of the RD network lie the Paired box 6 (Pax6) genes mechanism remains poorly understood. In the fruit fly, Drosophila eyeless (ey)andtwin of eyeless (toy), the SIX family member sine melanogaster, Pax6 also functions in a range of tissues, including oculis (so), the transcriptional coactivator eyes absent (eya), and the the eye and brain. In this report, we describe the function of Pax6 in Ski/Sno family member dachshund (dac)(17).
    [Show full text]
  • Biochem II Signaling Intro and Enz Receptors
    Signal Transduction What is signal transduction? Binding of ligands to a macromolecule (receptor) “The secret life is molecular recognition; the ability of one molecule to “recognize” another through weak bonding interactions.” Linus Pauling Pleasure or Pain – it is the receptor ligand recognition So why do cells need to communicate? -Coordination of movement bacterial movement towards a chemical gradient green algae - colonies swimming through the water - Coordination of metabolism - insulin glucagon effects on metabolism -Coordination of growth - wound healing, skin. blood and gut cells Hormones are chemical signals. 1) Every different hormone binds to a specific receptor and in binding a significant alteration in receptor conformation results in a biochemical response inside the cell 2) This can be thought of as an allosteric modification with two distinct conformations; bound and free. Log Dose Response • Log dose response (Fractional Bound) • Measures potency/efficacy of hormone, agonist or antagonist • If measuring response, potency (efficacy) is shown differently Scatchard Plot Derived like kinetics R + L ó RL Used to measure receptor binding affinity KD (KL – 50% occupancy) in presence or absence of inhibitor/antagonist (B = Receptor bound to ligand) 3) The binding of the hormone leads to a transduction of the hormone signal into a biochemical response. 4) Hormone receptors are proteins and are typically classified as a cell surface receptor or an intracellular receptor. Each have different roles and very different means of regulating biochemical / cellular function. Intracellular Hormone Receptors The steroid/thyroid hormone receptor superfamily (e.g. glucocorticoid, vitamin D, retinoic acid and thyroid hormone receptors) • Protein receptors that reside in the cytoplasm and bind the lipophilic steroid/thyroid hormones.
    [Show full text]
  • The Receptor Interacting Protein 1 Inhibits P53 Induction Through NF-KB Activation and Confers a Worse Prognosis in Glioblastoma
    Research Article The Receptor Interacting Protein 1 Inhibits p53 Induction through NF-KB Activation and Confers a Worse Prognosis in Glioblastoma Seongmi Park,1 Kimmo J. Hatanpaa,2,7 Yang Xie,3,8 Bruce E. Mickey,4,7 Christopher J. Madden,4,7 Jack M. Raisanen,2,7 Deepti B. Ramnarain,1 Guanghua Xiao,3 Debabrata Saha,5 David A. Boothman,8 Dawen Zhao,6 Robert M. Bachoo,1,7,8 Russell O. Pieper,9 and Amyn A. Habib1,7,8 Departments of 1Neurology, 2Pathology, 3Clinical Sciences, 4Neurosurgery, 5Radiation Oncology, and 6Radiology, 7Annette G. Strauss Center of Neurooncology, and 8Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center, Dallas, Texas and 9Department of Neurological Surgery, University of California-San Francisco, San Francisco, California Abstract studies have linked components of the NF-nB signaling pathway to Nuclear factor-KB (NF-KB) activation may play an important cell cycle progression and tumorigenesis (11–16). role in the pathogenesis of cancer and also in resistance to An intriguing mechanism underlying the pathogenesis of treatment. Inactivation of the p53 tumor suppressor is a key inflammation-induced cancer is the negative regulation of tumor component of the multistep evolution of most cancers. Links suppressor pathways by inflammatory and stress-induced signals. between the NF-KB and p53 pathways are under intense p53 is a key tumor suppressor altered in a broad range of human investigation. In this study, we show that the receptor cancers, including glioma, and an important outcome of p53 interacting protein 1 (RIP1), a central component of the activation is cell cycle arrest or apoptosis after DNA damage K (17, 18).
    [Show full text]
  • Role of Estrogen Receptor in Breast Cancer Cell Gene Expression
    4046 MOLECULAR MEDICINE REPORTS 13: 4046-4050, 2016 Role of estrogen receptor in breast cancer cell gene expression YABING ZHENG1, XIYING SHAO1, YUAN HUANG1, LEI SHI1, BO CHEN2, XIAOJIA WANG1, HONGJIAN YANG3, ZHANHONG CHEN1 and XIPING ZHANG3 Departments of 1Medical Oncology (Breast), 2Pathology and 3Breast Surgery, Zhejiang Cancer Hospital, Hangzhou, Zhejiang 310022, P.R. China Received April 28, 2015; Accepted February 23, 2016 DOI: 10.3892/mmr.2016.5018 Abstract. The aim of the present study was to establish the Europe in 2012, and the number of breast cancer-associated underlying regulatory mechanism of estrogen receptor (ER) mortalities is 131,000 (6). Furthermore, breast cancer is in breast cancer cell gene expression. A gene expression the most common cause of cancer-associated mortality in profile accession( no. GSE11324) was downloaded from the females. Therefore, it is essential to understand its molecular Gene Expression Omnibus (GEO) database. Differentially mechanism and develop more effective therapeutic methods expressed genes (DEGs) from an estrogen treatment group and for breast cancer treatment. a control group were identified. Chromatin immunoprecipita- The estrogen receptor (ER) is critical in determining the tion with high-throughput sequencing data (series GSE25710) phenotype of human breast cancers and is one of the most was obtained from the GEO for the ER binding sites, and important therapeutic targets (7). Furthermore, certain studies binding and expression target analysis was performed. A total have suggested that activation of ER is responsible for various of 3,122 DEGs were obtained and ER was demonstrated to biological processes, including cell growth and differentia- exhibit inhibition and activation roles during the regulation tion, and programmed cell death (8,9).
    [Show full text]
  • Interaction of the Human Androgen Receptor Transactivation Function with the General Transcription Factor TFIIF
    Proc. Natl. Acad. Sci. USA Vol. 94, pp. 8485–8490, August 1997 Biochemistry Interaction of the human androgen receptor transactivation function with the general transcription factor TFIIF IAIN J. MCEWAN* AND JAN-ÅKE GUSTAFSSON Department of Biosciences, Novum, Karolinska Institute, S-141 57 Huddinge, Sweden Communicated by Elwood V. Jensen, University of Hamburg, Hamburg, Germany, May 27, 1997 (received for review January 28, 1997) ABSTRACT The human androgen receptor (AR) is a tion factors, and thus the polymerase, to the promoter (re- ligand-activated transcription factor that regulates genes im- viewed in refs. 17–19). This can be achieved by direct contact portant for male sexual differentiation and development. To between the activator and the general transcription factors better understand the role of the receptor as a transcription andyor interactions by means of coactivator proteins (refs. 17 factor we have studied the mechanism of action of the N- and 19–21 and references therein). terminal transactivation function. In a protein–protein inter- In recent years a number of interactions have been described action assay the AR N terminus (amino acids 142–485) between members of the steroid–thyroid hormone receptor selectively bound to the basal transcription factors TFIIF and superfamily and basal transcription factors and co–activator the TATA-box-binding protein (TBP). Reconstitution of the proteins (see ref. 22 and references therein). However, very transactivation activity in vitro revealed that AR142–485 fused to little is known concerning the identity of interacting proteins the LexA protein DNA-binding domain was competent to with the human AR. To better understand the mechanism of activate a reporter gene in the presence of a competing DNA gene regulation by the human AR we have screened a panel of template lacking LexA binding sites.
    [Show full text]
  • DLX Genes: Roles in Development and Cancer
    cancers Review DLX Genes: Roles in Development and Cancer Yinfei Tan 1,* and Joseph R. Testa 1,2,* 1 Genomics Facility, Fox Chase Cancer Center, Philadelphia, PA 19111, USA 2 Cancer Signaling and Epigenetics Program, Fox Chase Cancer Center, Philadelphia, PA 19111, USA * Correspondence: [email protected] (Y.T.); [email protected] (J.R.T.) Simple Summary: DLX homeobox family genes encode transcription factors that have indispensable roles in embryonic and postnatal development. These genes are critically linked to the morphogene- sis of craniofacial structures, branchial arches, forebrain, and sensory organs. DLX genes are also involved in postnatal homeostasis, particularly hematopoiesis and, when dysregulated, oncogen- esis. DLX1/2, DLX3/4, and DLX5/6 exist as bigenes on different chromosomes, sharing intergenic enhancers between gene pairs, which allows orchestrated spatiotemporal expression. Genomic alterations of human DLX gene enhancers or coding sequences result in congenital disorders such as split-hand/foot malformation. Aberrant postnatal expression of DLX genes is associated with hematological malignancies, including leukemias and lymphomas. In several mouse models of T-cell lymphoma, Dlx5 has been shown to act as an oncogene by cooperating with activated Akt, Notch1/3, and/or Wnt to drive tumor formation. In humans, DLX5 is aberrantly expressed in lung and ovarian carcinomas and holds promise as a therapeutic target. Abstract: Homeobox genes control body patterning and cell-fate decisions during development. The homeobox genes consist of many families, only some of which have been investigated regarding a possible role in tumorigenesis. Dysregulation of HOX family genes have been widely implicated in cancer etiology.
    [Show full text]
  • (RACK1) Protein
    ANTICANCER RESEARCH 26: 4539-4548 (2006) The Prion-like Protein Doppel (Dpl) Interacts with the Human Receptor for Activated C-Kinase 1 (RACK1) Protein ALBERTO AZZALIN, IGOR DEL VECCHIO, LUCA FERRETTI and SERGIO COMINCINI Dipartimento di Genetica e Microbiologia, Università di Pavia, via Ferrata 1, 27100 Pavia, Italy Abstract. Background: Doppel (Dpl) is a homologue of the expressed in the testis, especially in Sertoli cells and in prion protein (PrPC). In contrast to PrPC, Dpl is dispensable for spermatozoa, and its involvement in male fertility has been prion disease, but appears to have an essential function in male recently proposed (4, 5). NMR studies of Dpl have revealed a spermatogenesis. Recently, Dpl has been found to be aberrantly high structural similarity with the prion protein (PrPC) (6, 7), expressed in astrocytic and leukaemic tumor specimens, showing which supported the possibility that the two proteins share a peculiar cytosolic cellular localization. The aim of this study similar functions in vivo. Despite a multitude of studies, the was to clarify some of the putative Dpl interacting proteins. cellular functions of Dpl and PrPC are still unknown. However, Materials and Methods: A yeast two hybrid system was employed current data suggested that Dpl, unlike PrPC, is probably not and the results were verified by co-immunoprecipitation using required for the pathogenesis of prion diseases (8, 9) and is not transfected cells. Results: Several potential Dpl-binding converted into a PrPSc-like isoform (10, 11). Importantly, Dpl candidates were identified and, among them, the receptor for can cause Purkinje cell death and ataxia when over-expressed activated C-kinase (RACK1) protein was further investigated.
    [Show full text]