Lord Howe Island Permanent Park Preserve
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
AMS112 1978-1979 Lowres Web
--~--------~--------------------------------------------~~~~----------~-------------- - ~------------------------------ COVER: Paul Webber, technical officer in the Herpetology department searchers for reptiles and amphibians on a field trip for the Colo River Survey. Photo: John Fields!The Australian Museum. REPORT of THE AUSTRALIAN MUSEUM TRUST for the YEAR ENDED 30 JUNE , 1979 ST GOVERNMENT PRINTER, NEW SOUTH WALES-1980 D. WE ' G 70708K-1 CONTENTS Page Page Acknowledgements 4 Department of Palaeontology 36 The Australian Museum Trust 5 Department of Terrestrial Invertebrate Ecology 38 Lizard Island Research Station 5 Department of Vertebrate Ecology 38 Research Associates 6 Camden Haven Wildlife Refuge Study 39 Associates 6 Functional Anatomy Unit.. 40 National Photographic Index of Australian Director's Research Laboratory 40 Wildlife . 7 Materials Conservation Section 41 The Australian Museum Society 7 Education Section .. 47 Letter to the Premier 9 Exhibitions Department 52 Library 54 SCIENTIFIC DEPARTMENTS Photographic and Visual Aid Section 54 Department of Anthropology 13 PublicityJ Pu bl ications 55 Department of Arachnology 18 National Photographic Index of Australian Colo River Survey .. 19 Wildlife . 57 Lizard Island Research Station 59 Department of Entomology 20 The Australian Museum Society 61 Department of Herpetology 23 Appendix 1- Staff .. 62 Department of Ichthyology 24 Appendix 2-Donations 65 Department of Malacology 25 Appendix 3-Acknowledgements of Co- Department of Mammalogy 27 operation. 67 Department of Marine -
Breeding Biology of the Brown Noddy on Tern Island, Hawaii
Wilson Bull., 108(2), 1996, pp. 317-334 BREEDING BIOLOGY OF THE BROWN NODDY ON TERN ISLAND, HAWAII JENNIFER L. MEGYESI’ AND CURTICE R. GRIFFINS ABSTRACT.-we observed Brown Noddy (Anous stolidus pileatus) breeding phenology and population trends on Tern Island, French Frigate Shoals, Hawaii, from 1982 to 1992. Peaks of laying ranged from the first week in January to the first week in November; however, most laying occurred between March and September each year. Incubation length was 34.8 days (N = 19, SD = 0.6, range = 29-37 days). There were no differences in breeding pairs between the measurements of the first egg laid and successive eggs laid within a season. The proportion of light- and dark-colored chicks was 26% and 74%, respectively (N = 221) and differed from other Brown Noddy colonies studied in Atlantic and Pacific oceans. The length of time between clutches depended on whether the previous outcome was a failed clutch or a successfully fledged chick. Hatching, fledging, and reproductive success were significantly different between years. The subspecies (A. s. pihtus) differs in many aspects of its breeding biology from other colonies in the Atlantic and Pacific oceans, in regard to year-round occurrence at the colony, frequent renesting attempts, large egg size, proportion of light and dark colored chicks, and low reproductive success caused by in- clement weather and predation by Great Frigatebirds (Fregata minor). Received 31 Mar., 1995, accepted 5 Dec. 1995. The Brown Noddy (Anous stolidus) is the largest and most widely distributed of the tropical and subtropical tern species (Cramp 1985). -
Literature Cited in Lizards Natural History Database
Literature Cited in Lizards Natural History database Abdala, C. S., A. S. Quinteros, and R. E. Espinoza. 2008. Two new species of Liolaemus (Iguania: Liolaemidae) from the puna of northwestern Argentina. Herpetologica 64:458-471. Abdala, C. S., D. Baldo, R. A. Juárez, and R. E. Espinoza. 2016. The first parthenogenetic pleurodont Iguanian: a new all-female Liolaemus (Squamata: Liolaemidae) from western Argentina. Copeia 104:487-497. Abdala, C. S., J. C. Acosta, M. R. Cabrera, H. J. Villaviciencio, and J. Marinero. 2009. A new Andean Liolaemus of the L. montanus series (Squamata: Iguania: Liolaemidae) from western Argentina. South American Journal of Herpetology 4:91-102. Abdala, C. S., J. L. Acosta, J. C. Acosta, B. B. Alvarez, F. Arias, L. J. Avila, . S. M. Zalba. 2012. Categorización del estado de conservación de las lagartijas y anfisbenas de la República Argentina. Cuadernos de Herpetologia 26 (Suppl. 1):215-248. Abell, A. J. 1999. Male-female spacing patterns in the lizard, Sceloporus virgatus. Amphibia-Reptilia 20:185-194. Abts, M. L. 1987. Environment and variation in life history traits of the Chuckwalla, Sauromalus obesus. Ecological Monographs 57:215-232. Achaval, F., and A. Olmos. 2003. Anfibios y reptiles del Uruguay. Montevideo, Uruguay: Facultad de Ciencias. Achaval, F., and A. Olmos. 2007. Anfibio y reptiles del Uruguay, 3rd edn. Montevideo, Uruguay: Serie Fauna 1. Ackermann, T. 2006. Schreibers Glatkopfleguan Leiocephalus schreibersii. Munich, Germany: Natur und Tier. Ackley, J. W., P. J. Muelleman, R. E. Carter, R. W. Henderson, and R. Powell. 2009. A rapid assessment of herpetofaunal diversity in variously altered habitats on Dominica. -
ASH Newsletter 45.Pub
THE AUSTRALIAN SOCIETY OF HERPETOLOGISTS INCORPORATED NEWSLETTER 45 2 3 History of Office Bearers Formation Committee (April 1964):- MJ Littlejohn (Convenor); State Reps IR Straughan (Qld), FJ Mitchell (SA), HG Cogger (NSW), G Storr (WA), RE Barwick (ACT), JW Warren (Vic), AK Lee (Editor). First AGM (23 August 1965):- President MJ Littlejohn, Vice-President NG Stephenson, Secretary-Treasurer AA Martin, Asst Secretary-Treasurer KJ Wilson, Ordinary Members FJ Mitchell and IR Straughan, Editor AK Lee. PRESIDENT:- MJ Littlejohn (1965-69); AK Lee (1969-70); HG Cogger (1971-73); J de Bavay (1974); H Heat- wole (1975-76); GC Grigg (1976-77); MJ Tyler (1978-79); GF Watson (1979-81); AA Martin (1981-82); RS Seymour (1982-83); R Shine (1983-84); GC Grigg (1984-86); J Coventry (1986-87); RE Barwick (1987-88); J Covacevich (1988-91); M Davies (1991-92); R Shine (1992-94); A Georges (1994-6); D Roberts (1996-98); M Bull (1998-9); R Swain (1999-2001); S Downes (2001-03); J Melville (2004-2005); J-M Hero (2005-2007); P Doherty (2007-2008); M Thompson (2008-2009); M Hutchinson (2009-) VICE-PRESIDENT:- NG Stephenson (1965-67); RE Barwick (1967-69); HG Cogger (1969-70); MJ Littlejohn (1971-72); MJ Tyler (1973); HG Cogger (1974); J de Bavay (1975-76); H Heatwole (1976-77); GC Grigg (1977 -79); MJ Tyler (1979-80); GF Watson (1981-82); AA Martin (1982-83); RS Seymour (1983-84); R Shine (1984- 86); GC Grigg (1986-87); J Coventry (1987-88); RE Barwick (1988-91); J Covacevich (1991-92); M Davies (1992-94); R Shine (1994-6); A Georges (1996-98); D Roberts (1998-99); M Bull(1999-2001); R Swain (2001- 2003); S Downes (2004-5); J Melville (2005-2007); J-M Hero (2007-2008); P Doherty (2008-2009); M Thomp- son (2009-) SECRETARY/TREASURER:- AA Martin (1965-67); GF Watson (1967-72); LA Moffatt (1973-75); J Caughley (1975-76); RWG Jenkins (1976-77); M Davies (1978-83); G Courtice (1983-87); J Wombey (1987-99); S Ke- ogh (1999-2003); N Mitchell (2004-5). -
Insect Conservation and Islands Insect Conservation and Islands
INSECT CONSERVATION AND ISLANDS INSECT CONSERVATION AND ISLANDS Editor T. R. New La Trobe University, Melbourne, Australia Reprinted from Journal of Insect Conservation Volume 12, Numbers 3–4 (2008) 123 A C.I.P. Catalogue record for this book is available from the library of Congress. ISBN-13 978-1-4020-8781-3 (HB) ISBN-13 978-1-4020-8782-0 (e-book) Published by Springer P.O. Box 17, 3300 AA Dordrecht, The Netherlands www.springer.com Cover illustration: The cover illustration shows several examples of spectacular weta (Orthoptera) from New Zealand, where their conservation has depended largely on offshore islands as refuges and introduction sites, as discussed in papers in this publication. The insects can be fitted with harmonic radar transponders or micro- transmitters for individual tracking. Shown are a Cook Strait Giant Weta, and two Mercury Island Tusked Weta (photograph courtesy of Danny Thornburrow, Corinne Watts and Ian Stringer). Printed on acid-free paper All Rights Reserved Ó 2008 Springer No part of the material protected by this copyright notice may be reproduced or utilized in any form or by any means, electronic or mechanical, including photocopying, recording or by any information storage and retrieval system, without written permission from the copyright owner. Table of Contents EDITORIAL A special issue on insect conservation and islands T.R. New 1 PAPERS Insect conservation on islands: setting the scene and defining the needs T.R. New 3–10 Butterflies of European islands: the implications of the geography and ecology of rarity and endemicity for conservation R.L.H. Dennis · L. -
MELBOURNE Bushwalkers Inc
THE NEWS OFTiffi MELBOURNE BUSHWALKERS MELBOURNE BusHWALKERS INc. EDmoN 633 NOVEMBER 2003 60 CENTS Lavender Fest Weekend: 22 & 23 November Warratina Lavender Farm Quayle Road, Wandin Yallock (Me/way: 121 El.) Featuring: musical and dancing entertainment, alpacas, market stalls, animal farm, craft demonstrations and Club Barbeque wine and food of the Yarra Valley. Entry is $5 Wednesday 26 November ($3 cone.) and children under 12 years are free. Spit roast dinner on Saturday night (b.y.o.): 7- 11 pm. 7- 9 pm, Clubrooms There will be late night jazz and rock. Tickets are $35 per person. Summer is just around the comer.. Come along to this Bushies barbeque in late November. The club will Anyone interested in going on the Saturday please provide all the food and drinks for just $10 per head. speak to Lynda Larkin in advance so we can organize a car pool. Please phone +Letter Writing Night If you'd rather eat a cow than walk with one .. We will also have a letter writing campaign on this barbeque night regarding: 1) cows in the Alpine National Park and 2) the ACF campaign for the River Murray asking for a national management plan. MBWChristmas Party It's easy: pre-written letters will be available which can be signed and sent and there will also be paper if you Wednesday 17 December wish to use your own words. Come and have your say on these issues that affect both the enjoyment of club walks and the health of Australian wildlife. See William Cone, Secretary in the clubrooms if you would like to take part. -
Lepidorrhachis Mooreana (H
Palm Conservation – Palm Specialist Group Lepidorrhachis mooreana (H. Wendl. & Drude) O. F. Cook Status: Not Evaluated in IUCN Red List. Vulnerable according to Dowe in Johnson (1996). Preliminary evaluation based on IUCN 2001 criteria: Endangered (EN B1a,bv) Common name Little Mountain Palm. Natural range Lepidorrhachis mooreana is restricted to the summits of Mt. Gower (875 m) and Mt. Lidgbird (777 m) on the remote Lord Howe Island. It occurs only above 750 m in dwarf mossy forest that dominates the summit plateau of Mt. Gower and the narrow summit ridge of Mt. Lidgbird. This forest is home to numerous remarkable endemic species including the pumpkin tree (Negria rhabdothamnoides), an arborescent member of the Gesneriaceae, and Dracophyllum fitzgeraldii (Ericaceae). It is also the primary nesting locality of the providence petrel (Pterodroma solandri) and is a stronghold for the woodhen (Tricholimnas sylvestris), an endemic member of the rail family that was recently rescued from the brink of extinction. However, less that 0.5 km2 of Lord Howe’s total surface area of 12 km2 is found above 750 m. The total area of suitable habitat available to Lepidorrhachis is thus extremely limited. Recognition characteristics Lepidorrhachis is very easily distinguished from the two other endemic palm genera on Lord Howe Island, Howea and Hedyscepe. It is a short solitary palm with a stem that rarely exceeds 2 m in height. It has stiff, arching leaves with short, deeply split leaf sheaths that do not form a distinct crownshaft. The sheaths are also covered with buff indumentum. Its bushy inflorescences are born below the leaves and are unisexual, both male and female inflorescences occurring on the same plant. -
Synopsis of the Hymenopteran Fauna of Lord Howe Island with a Preliminary Checklist of Species
Zootaxa 3931 (3): 423–432 ISSN 1175-5326 (print edition) www.mapress.com/zootaxa/ Article ZOOTAXA Copyright © 2015 Magnolia Press ISSN 1175-5334 (online edition) http://dx.doi.org/10.11646/zootaxa.3931.3.6 http://zoobank.org/urn:lsid:zoobank.org:pub:4FA7FEAD-1622-413C-8251-B7470405D7B7 Synopsis of the hymenopteran fauna of Lord Howe Island with a preliminary checklist of species JOHN T. JENNINGS & ANDREW D. AUSTIN Australian Centre for Evolutionary Biology and Biodiversity, and School of Biological Sciences, The University of Adelaide, SA 5005, Australia. E-mail: [email protected] or [email protected] Abstract Lord Howe Island is an eroded remnant of a shield volcano approximately 600 km northeast of Sydney, New South Wales, Australia. It has fascinated biologists for more than a century because of its unique and iconic fauna and flora, and was declared a World Heritage Site in 1982. Although the terrestrial invertebrate fauna is reasonably well known for many groups, most Hymenoptera, apart from ants, have received scant attention. Here we use material collected from a recent intensive invertebrate survey, in conjunction with the published literature, to provide an overview of the Hymenoptera known from the island that can act as a basis for future taxonomic and biodiversity research. In doing so, we record 318 species from 31 hymenopteran families from the Island, and assess the proportion that are flightless and likely to be en- demic to the island. Key words: oceanic island, endemic species, apterous, brachypterous Introduction Lord Howe Island, a World Heritage Site of global significance since 1982, is located approximately 600 km northeast of Sydney, New South Wales (Fig. -
Reproductionreview
REPRODUCTIONREVIEW The evolution of viviparity: molecular and genomic data from squamate reptiles advance understanding of live birth in amniotes James U Van Dyke, Matthew C Brandley and Michael B Thompson School of Biological Sciences, University of Sydney, A08 Heydon-Laurence Building, Sydney, New South Wales 2006, Australia Correspondence should be addressed to J U Van Dyke; Email: [email protected] Abstract Squamate reptiles (lizards and snakes) are an ideal model system for testing hypotheses regarding the evolution of viviparity (live birth) in amniote vertebrates. Viviparity has evolved over 100 times in squamates, resulting in major changes in reproductive physiology. At a minimum, all viviparous squamates exhibit placentae formed by the appositions of maternal and embryonic tissues, which are homologous in origin with the tissues that form the placenta in therian mammals. These placentae facilitate adhesion of the conceptus to the uterus as well as exchange of oxygen, carbon dioxide, water, sodium, and calcium. However, most viviparous squamates continue to rely on yolk for nearly all of their organic nutrition. In contrast, some species, which rely on the placenta for at least a portion of organic nutrition, exhibit complex placental specializations associated with the transport of amino acids and fatty acids. Some viviparous squamates also exhibit reduced immunocompetence during pregnancy, which could be the result of immunosuppression to protect developing embryos. Recent molecular studies using both candidate-gene and next-generation sequencing approaches have suggested that at least some of the genes and gene families underlying these phenomena play similar roles in the uterus and placenta of viviparous mammals and squamates. -
Spineless Spineless Rachael Kemp and Jonathan E
Spineless Status and trends of the world’s invertebrates Edited by Ben Collen, Monika Böhm, Rachael Kemp and Jonathan E. M. Baillie Spineless Spineless Status and trends of the world’s invertebrates of the world’s Status and trends Spineless Status and trends of the world’s invertebrates Edited by Ben Collen, Monika Böhm, Rachael Kemp and Jonathan E. M. Baillie Disclaimer The designation of the geographic entities in this report, and the presentation of the material, do not imply the expressions of any opinion on the part of ZSL, IUCN or Wildscreen concerning the legal status of any country, territory, area, or its authorities, or concerning the delimitation of its frontiers or boundaries. Citation Collen B, Böhm M, Kemp R & Baillie JEM (2012) Spineless: status and trends of the world’s invertebrates. Zoological Society of London, United Kingdom ISBN 978-0-900881-68-8 Spineless: status and trends of the world’s invertebrates (paperback) 978-0-900881-70-1 Spineless: status and trends of the world’s invertebrates (online version) Editors Ben Collen, Monika Böhm, Rachael Kemp and Jonathan E. M. Baillie Zoological Society of London Founded in 1826, the Zoological Society of London (ZSL) is an international scientifi c, conservation and educational charity: our key role is the conservation of animals and their habitats. www.zsl.org International Union for Conservation of Nature International Union for Conservation of Nature (IUCN) helps the world fi nd pragmatic solutions to our most pressing environment and development challenges. www.iucn.org Wildscreen Wildscreen is a UK-based charity, whose mission is to use the power of wildlife imagery to inspire the global community to discover, value and protect the natural world. -
Proposal for Inclusion of the Black Noddy Subspecies Worcesteri
CMS Distribution: General CONVENTION ON MIGRATORY UNEP/CMS/COP12/Doc.25.1.12 15 June 2017 SPECIES Original: English 12th MEETING OF THE CONFERENCE OF THE PARTIES Manila, Philippines, 23 - 28 October 2017 Agenda Item 25.1 PROPOSAL FOR THE INCLUSION OF THE BLACK NODDY (Anous minutus) SUBSPECIES worcesteri ON APPENDIX II OF THE CONVENTION Summary: The Government of the Philippines has submitted the attached proposal* for the inclusion of the Black Noddy (Anous minutus) subspecies worcesteri on Appendix II of CMS. *The geographical designations employed in this document do not imply the expression of any opinion whatsoever on the part of the CMS Secretariat (or the United Nations Environment Programme) concerning the legal status of any country, territory, or area, or concerning the delimitation of its frontiers or boundaries. The responsibility for the contents of the document rests exclusively with its author. UNEP/CMS/COP12/Doc.25.1.12 PROPOSAL FOR THE INCLUSION OF THE BLACK NODDY (Anous minutus) SUBSPECIES worcesteri ON APPENDIX II OF THE CONVENTION ON THE CONSERVATION OF MIGRATORY SPECIES OFWILD ANIMALS A. PROPOSAL This proposal is for the inclusion of Black Noddy (Anous minutus) subspecies worcesteri in Appendix II. The species is classified as Endangered on account of a very small population which breeds within a tiny area of occupancy on just two islets, and is projected to decline by more than 70 per cent over the next 10 to 15 years. B. PROPONENT: Government of the Republic of the Philippines C. SUPPORTING STATEMENT 1. Taxonomy 1.1 Class: Aves 1.2 Order: Charadriiformes 1.3 Family: Laridae 1.4 Genus, species or subspecies, including author and year: Anous minutus worcesteri (McGregor, 1911) 1.5 Scientific synonyms: No known synonyms 1.6 Common name(s), in all applicable languages used by the Convention: English - Black Noddy French - Noddi noir Spanish - Tiñosa menuda 2. -
Once Declared Extinct, Lord Howe Island Stick Insects Really Do Live 5 October 2017
Once declared extinct, Lord Howe Island stick insects really do live 5 October 2017 introduction on Lord Howe Island could be done successfully, the researchers say. "We found what everyone hoped to find—that despite some significant morphological differences, these are indeed the same species," says Alexander Mikheyev at the Okinawa Institute of Science and Technology in Japan. Using DNA sequence data from the Ball's Pyramid population, the researchers assembled a draft genome of the captive bred insects along with their complete mitochondrial genome. The effort revealed a massive genome, which appears to have been duplicated more than once to contain six Dryococelus australis pair on ficus. Credit: Rohan copies of each chromosome. Cleave, Melbourne Zoo, Australia The researchers also re-sequenced mitochondrial genomes from historic museum specimens collected on Lord Howe Island before the extinction Lord Howe Island stick insects were once event. Comparisons between living and dead numerous on the tiny crescent-shaped island off insects found a divergence of less than one the coast of Australia for which they are named. percent—well within the range of differences The insects, which can measure up to 6 inches in expected within a species. The findings suggest length, don't resemble sticks so much as tree that the rediscovered populations are indeed Lord lobsters, as they are also known. After ships Howe Island stick insects. Dryococelus australis accidentally introduced rats to the island about a really has evaded extinction so far. century ago, the Lord Howe Island stick insects quickly disappeared. They were later declared extinct, only to be found again decades later living on Ball's Pyramid, a sheer volcanic stack about 12 miles away.