THE ANATOMY of SLEEP E Ebb and flow of Neurotransmitters Switches Our Brains Between Sleep and Wakefulness in Carefully Regulated Cycles

Total Page:16

File Type:pdf, Size:1020Kb

THE ANATOMY of SLEEP E Ebb and flow of Neurotransmitters Switches Our Brains Between Sleep and Wakefulness in Carefully Regulated Cycles OUTLOOK SLEEP THE ANATOMY OF SLEEP e ebb and flow of neurotransmitters switches our brains between sleep and wakefulness in carefully regulated cycles. By Mark Peplow. Orexins Wake signals (branch 1): These peptides, THE BRAIN Neurons in the upper pons (1) produced in produce acetylcholine, which the lateral AWAKES activates areas of the thalamus (2)2 hypothalamus (5)5 , responsible for channelling signals reinforce the to the cerebral cortex arousal system. (3)3 — the site of consciousness. THE ASCENDING A OUSAL SYSTEM Wake signals (branch 2): Neurotransmitters including noradrenaline, serotonin, histamine and dopamine are produced in the pons, hypothalamus (4)4 and other nearby regions. They prime the cerebral cortex to receive signals from the “Quote thalamus. black italic 10.5pt x 11pt over 5 or 6 lines 3 with 2 clear line spaces aboveWAKE SIGNALS and below”(B ANCH ) 6 2 THE BRAIN WAKE SIGNALS 5 8 (B ANCH 2) 4 TIRES 7 SLEEP SIGNALS Homeostatic control As the energy carrier adenosine triphosphate (ATP) breaks down, adenosine builds up and triggers neuron activity in the ventrolateral preoptic Shut down nucleus (VLPO) (6)6 . When VLPO neurons are activated, they release γ-aminobutyric acid (GABA) and galanin. These bind to receptors Circadian control in the hypothalamus and pons to inhibit the ascending The suprachiasmatic nucleus arousal system. (SCN) (7)7 is the brain’s master clock, containing neurons that re in a 24-hour cycle to inuence the VLPO. It is controlled by signals THE BRAIN from the retina during the day, and by melatonin from the SLEEPS pineal gland (8)8 at night. UPPE PONS 2 THALAMUS 3 CEEBAL COTEX 4 HYPOTHALAMUS 5 LATEAL HYPOTHALAMUS KEY 6 VENTOLATEAL PEOPTIC NUCLEUS (VLPO) 7 SUPACHIASMATIC NUCLEUS (SCN) 8 PINEAL GLAND S2 | NATURE | VOL 497 | 23 MAY 2013 © 2013 Macmillan Publishers Limited. All rights reserved SLEEP OUTLOOK THE PHASES OF SLEEP THE DECLINE OF SLEEP In a typical eight-hour sleep, the brain moves through dierent stages of electrical activity After a childhood lled with blissful slumber, in repeating cycles that last about 90 minutes. Rapid eye movement (REM) sleep is linked adulthood brings a decline in the quality and to distinctive electrical activity in the brain, and is often associated with dreaming. quantity of sleep. 20–25% of Schizophrenics lack Sleep abnormalities associated Awake Slow wave sleep REM total sleep short bursts of electrical with post-traumatic stress disorder time is REM activity during sleep include insucient REM sleep High level of REM 24 sleep may help brain Awake Newborn HOURS development REM Children spend more time in slow-wave sleep than adults, Stage 1 and the intensity of Child 24 this electrical activity Light HOURS is linked to how well Stage 2 they learn Stages of sleep Stage 3 Lack of slow-wave sleep can hamper Deep 24 learning ability Stage 4 Teenager HOURS Slow-wave sleep 23.00 00.00 01.00 02.00 03.00 04.00 05.00 06.00 07.00 declines as the Time ageing brain loses grey matter from the People with bipolar Slow-wave sleep Periods of REM medial prefrontal disorder wake more is crucial for memory lengthen at the Adult 24 cortex, with adults often and spend less consolidation and end of a sleep HOURS less able to lay down time in deep sleep learning new memories THE D UGS OF SLEEP The most widely used insomnia drugs promote sleep by improving the binding of γ-aminobutyric acid (GABA) to chloride ions released by the ventrolateral preoptic nucleus (VLPO) to suppress the ascending arousal system. Neuron Axon Synaptic vesicle The most widely used sleep drugs Synaptic are non-benzodia- terminal zepines (Z-drugs) GABA such as zolpidem Chloride Older drugs, such GABAA receptor as barbiturates and benzodiaze- pines, have worse Synaptic side-eects than terminal Z-drugs Other insomnia drugs Antihistamines Orexinergics Binding increases suppress the ascending flow of chloride arousal system directly. Antidepressants A new class of drugs including suvorexant, which has had ions, reducing successful clinical trials neuron activity 23 MAY 2013 | VOL 497 | NATURE | S3 © 2013 Macmillan Publishers Limited. All rights reserved.
Recommended publications
  • The Role of the Hypothalamic Dorsomedial Nucleus in the Central Regulation of Food Intake
    The role of the hypothalamic dorsomedial nucleus in the central regulation of food intake Ph.D. thesis Éva Dobolyiné Renner Semmelweis University Szentágothai János Neuroscience Doctoral School Ph.D. Supervisor: Prof. Miklós Palkovits, member of the HAS Opponents: Prof. Dr. Halasy Katalin, Ph.D., D.Sci. Dr. Oláh Márk, M.D., Ph.D. Examination board: Prof. Dr. Vígh Béla, M.D., Ph.D., D.Sci Dr. Kovács Krisztina Judit, Ph.D., D.Sci. Dr. Lovas Gábor, M.D., Ph.D. Budapest 2013 1. Introduction The central role of the hypothalamus in the regulation of food intake and energy expenditure has long been established. The hypothalamus receives hormonal input such as insulin, leptin, and ghrelin from the periphery. The gate for the most important adiposity signals is the arcuate nucleus, which contains neurons expressing orexigenic and anorexigenic peptides, respectively. These neurons convey peripheral input to the paraventricular and ventromedial nuclei, and the lateral hypothalamic area, which all play critical roles in body weight regulations. The hypothalamic dorsomedial nucleus (DMH) has also been implicated in the regulation of body weight homeostasis along with other hypothalamic nuclei including the arcuate, ventromedial, and paraventricular nuclei as well as the lateral hypothalamus. Lesions of the DMH affected ingestive behavior. Electrophysiological data suggested that neurons in this nucleus integrate hormonal input and ascending brainstem information and, in turn, modulate food intake and energy balance. In response to refeeding of fasted rats, Fos-activated neurons were reported in the DMH. Major projections relay vagus-mediated signals from the gastrointestinal tract, and humoral signals to the hypothalamus from the nucleus of the solitary tract (NTS), a viscerosensory cell group in the dorsomedial medulla.
    [Show full text]
  • Scale-Free Dynamics of the Mouse Wakefulness and Sleep Electroencephalogram Quantified Using Wavelet-Leaders
    Article Scale-Free Dynamics of the Mouse Wakefulness and Sleep Electroencephalogram Quantified Using Wavelet-Leaders Jean-Marc Lina 1,2,3, Emma Kate O’Callaghan 1,4 and Valérie Mongrain 1,4,* 1 Research Centre and Center for Advanced Research in Sleep Medicine, Hôpital du Sacré-Coeur de Montréal (CIUSSS-NIM), 5400 Gouin West blvd., Montreal, QC H4J 1C5, Canada 2 Centre de Recherches Mathématiques, Université de Montréal, C.P. 6128, succ. Centre-Ville, Montreal, QC H3C 3J7, Canada; [email protected] 3 École de Technologie Supérieure, 1100 rue Notre-Dame Ouest, Montreal, QC H3C 1K3, Canada 4 Department of Neuroscience, Université de Montréal, C.P. 6128, succ. Centre-Ville, Montreal, QC H3C 3J7, Canada; [email protected] * Correspondence: [email protected]; Tel.: +1-514-338-2222 (ext. 3323) Received: 14 August 2018; Accepted: 11 October 2018; Published: 20 October 2018 Abstract: Scale-free analysis of brain activity reveals a complexity of synchronous neuronal firing which is different from that assessed using classic rhythmic quantifications such as spectral analysis of the electroencephalogram (EEG). In humans, scale-free activity of the EEG depends on the behavioral state and reflects cognitive processes. We aimed to verify if fractal patterns of the mouse EEG also show variations with behavioral states and topography, and to identify molecular determinants of brain scale-free activity using the ‘multifractal formalism’ (Wavelet-Leaders). We found that scale-free activity was more anti-persistent (i.e., more different between time scales) during wakefulness, less anti-persistent (i.e., less different between time scales) during non-rapid eye movement sleep, and generally intermediate during rapid eye movement sleep.
    [Show full text]
  • Cortex and Thalamus Lecture.Pptx
    Cerebral Cortex and Thalamus Hyperbrain Ch 2 Monica Vetter, PhD January 24, 2013 Learning Objectives: • Anatomy of the lobes of the cortex • Relationship of thalamus to cortex • Layers and connectivity of the cortex • Vascular supply to cortex • Understand the location and function of hypothalamus and pituitary • Anatomy of the basal ganglia • Primary functions of the different lobes/ cortical regions – neurological findings 1 Types of Cortex • Sensory (Primary) • Motor (Primary) • Unimodal association • Multimodal association - necessary for language, reason, plan, imagine, create Note: • Gyri • Sulci • Fissures • Lobes 2 The Thalamus is highly interconnected with the cerebral cortex, and handles most information traveling to or from the cortex. “Specific thalamic Ignore nuclei” – have well- names of defined sensory or thalamic nuclei for motor functions now - A few Other nuclei have will more distributed reappear later function 3 Thalamus Midbrain Pons Limbic lobe = cingulate gyrus Structure of Neocortex (6 layers) white matter gray matter Pyramidal cells 4 Connectivity of neurons in different cortical layers Afferents = inputs Efferents = outputs (reciprocal) brainstem etc Eg. Motor – Eg. Sensory – more efferent more afferent output input Cortico- cortical From Thalamus To spinal cord, brainstem etc. To Thalamus Afferent and efferent connections to different ….Depending on whether they have more layers of cortex afferent or efferent connections 5 Different areas of cortex were defined by differences in layer thickness, and size and
    [Show full text]
  • The Superior Colliculus–Pretectum Mediates the Direct Effects of Light on Sleep
    Proc. Natl. Acad. Sci. USA Vol. 95, pp. 8957–8962, July 1998 Neurobiology The superior colliculus–pretectum mediates the direct effects of light on sleep ANN M. MILLER*, WILLIAM H. OBERMEYER†,MARY BEHAN‡, AND RUTH M. BENCA†§ *Neuroscience Training Program and †Department of Psychiatry, University of Wisconsin–Madison, 6001 Research Park Boulevard, Madison, WI 53719; and ‡Department of Comparative Biosciences, University of Wisconsin–Madison, Room 3466, Veterinary Medicine Building, 2015 Linden Drive West, Madison, WI 53706 Communicated by James M. Sprague, The University of Pennsylvania School of Medicine, Philadelphia, PA, May 27, 1998 (received for review August 26, 1997) ABSTRACT Light and dark have immediate effects on greater REM sleep expression occurring in light rather than sleep and wakefulness in mammals, but the neural mecha- dark periods (8, 9). nisms underlying these effects are poorly understood. Lesions Another behavioral response of nocturnal rodents to of the visual cortex or the superior colliculus–pretectal area changes in lighting conditions consists of increased amounts of were performed in albino rats to determine retinorecipient non-REM (NREM) sleep and total sleep after lights-on and areas that mediate the effects of light on behavior, including increased wakefulness following lights-off (4). None of the rapid eye movement sleep triggering by lights-off and redis- light-induced behaviors (i.e., REM sleep, NREM sleep, or tribution of non-rapid eye movement sleep in short light–dark waking responses to lighting changes) appears to be under cycles. Acute responses to changes in light conditions were primary circadian control: the behaviors are not eliminated by virtually eliminated by superior colliculus-pretectal area le- destruction of the suprachiasmatic nucleus (24) and can be sions but not by visual cortex lesions.
    [Show full text]
  • Critical Role of Dorsomedial Hypothalamic Nucleus in a Wide Range of Behavioral Circadian Rhythms
    The Journal of Neuroscience, November 19, 2003 • 23(33):10691–10702 • 10691 Behavioral/Systems/Cognitive Critical Role of Dorsomedial Hypothalamic Nucleus in a Wide Range of Behavioral Circadian Rhythms Thomas C. Chou,1,2 Thomas E. Scammell,2 Joshua J. Gooley,1,2 Stephanie E. Gaus,1,2 Clifford B. Saper,2 and Jun Lu2 1Department of Neurobiology and Program in Neuroscience, Harvard Medical School, Boston, Massachusetts 02115, and 2Department of Neurology, Harvard Medical School and Beth Israel Deaconess Medical Center, Boston, Massachusetts 02215 The suprachiasmatic nucleus (SCN) contains the brain’s circadian pacemaker, but mechanisms by which it controls circadian rhythms of sleep and related behaviors are poorly understood. Previous anatomic evidence has implicated the dorsomedial hypothalamic nucleus (DMH) in circadian control of sleep, but this hypothesis remains untested. We now show that excitotoxic lesions of the DMH reduce circadian rhythms of wakefulness, feeding, locomotor activity, and serum corticosteroid levels by 78–89% while also reducing their overall daily levels. We also show that the DMH receives both direct and indirect SCN inputs and sends a mainly GABAergic projection to the sleep-promoting ventrolateral preoptic nucleus, and a mainly glutamate–thyrotropin-releasing hormone projection to the wake- promoting lateral hypothalamic area, including orexin (hypocretin) neurons. Through these pathways, the DMH may influence a wide range of behavioral circadian rhythms. Key words: suprachiasmatic nucleus; sleep; feeding; corticosteroid; locomotor activity; melatonin Introduction sponses, in feeding, and in the circadian release of corticosteroids In many animals, the suprachiasmatic nucleus (SCN) strongly (for review, see Bellinger et al., 1976; Kalsbeek et al., 1996; Ber- influences circadian rhythms of sleep–wake behaviors, but the nardis and Bellinger, 1998; DiMicco et al., 2002), although many pathways mediating these influences are poorly understood.
    [Show full text]
  • An Electrophysiological Marker of Arousal Level in Humans
    RESEARCH ARTICLE An electrophysiological marker of arousal level in humans Janna D Lendner1,2*, Randolph F Helfrich3,4, Bryce A Mander5, Luis Romundstad6, Jack J Lin7, Matthew P Walker1,8, Pal G Larsson9, Robert T Knight1,8 1Helen Wills Neuroscience Institute, University of California, Berkeley, Berkeley, United States; 2Department of Anesthesiology and Intensive Care Medicine, University Medical Center Tuebingen, Tuebingen, Germany; 3Hertie-Institute for Clinical Brain Research, Tuebingen, Germany; 4Department of Neurology and Epileptology, University Medical Center Tuebingen, Tuebingen, Germany; 5Department of Psychiatry and Human Behavior, University of California, Irvine, Irvine, United States; 6Department of Anesthesiology, University of Oslo Medical Center, Oslo, Norway; 7Department of Neurology, University of California, Irvine, Irvine, United States; 8Department of Psychology, University of California, Berkeley, Berkeley, United States; 9Department of Neurosurgery, University of Oslo Medical Center, Oslo, Norway Abstract Deep non-rapid eye movement sleep (NREM) and general anesthesia with propofol are prominent states of reduced arousal linked to the occurrence of synchronized oscillations in the electroencephalogram (EEG). Although rapid eye movement (REM) sleep is also associated with diminished arousal levels, it is characterized by a desynchronized, ‘wake-like’ EEG. This observation implies that reduced arousal states are not necessarily only defined by synchronous oscillatory activity. Using intracranial and surface EEG recordings in four independent data sets, we demonstrate that the 1/f spectral slope of the electrophysiological power spectrum, which reflects the non-oscillatory, scale-free component of neural activity, delineates wakefulness from propofol *For correspondence: anesthesia, NREM and REM sleep. Critically, the spectral slope discriminates wakefulness from [email protected] REM sleep solely based on the neurophysiological brain state.
    [Show full text]
  • Aversive Stimuli Drive Hypothalamus-To-Habenula
    Aversive stimuli drive hypothalamus-to-habenula excitation to promote escape behavior Salvatore Lecca, Frank Meye, Massimo Trusel, Anna Tchenio, Julia Harris, Martin Karl Schwarz, Denis Burdakov, F Georges, Manuel Mameli To cite this version: Salvatore Lecca, Frank Meye, Massimo Trusel, Anna Tchenio, Julia Harris, et al.. Aversive stimuli drive hypothalamus-to-habenula excitation to promote escape behavior. eLife, eLife Sciences Publication, 2017, 6, pp.e30697. 10.7554/eLife.30697. hal-03129952 HAL Id: hal-03129952 https://hal.archives-ouvertes.fr/hal-03129952 Submitted on 3 Feb 2021 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. SHORT REPORT Aversive stimuli drive hypothalamus-to- habenula excitation to promote escape behavior Salvatore Lecca1,2, Frank Julius Meye1,3, Massimo Trusel1,2, Anna Tchenio1,2, Julia Harris4, Martin Karl Schwarz5, Denis Burdakov4, Francois Georges6,7, Manuel Mameli1,2* 1Institut du Fer a` Moulin, Inserm UMR-S 839, Paris, France; 2Department of Fundamental Neuroscience, The University of Lausanne, Lausanne, Switzerland;
    [Show full text]
  • Deconstructing Arousal Into Wakeful, Autonomic and Affective Varieties
    Neuroscience Letters xxx (xxxx) xxx–xxx Contents lists available at ScienceDirect Neuroscience Letters journal homepage: www.elsevier.com/locate/neulet Review article Deconstructing arousal into wakeful, autonomic and affective varieties ⁎ Ajay B. Satputea,b, , Philip A. Kragelc,d, Lisa Feldman Barrettb,e,f,g, Tor D. Wagerc,d, ⁎⁎ Marta Bianciardie,f, a Departments of Psychology and Neuroscience, Pomona College, Claremont, CA, USA b Department of Psychology, Northeastern University, Boston, MA, USA c Department of Psychology and Neuroscience, University of Colorado Boulder, Boulder, USA d The Institute of Cognitive Science, University of Colorado Boulder, Boulder, USA e Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Boston, MA, USA f Department of Radiology, Harvard Medical School, Boston, MA, USA g Department of Psychiatry, Massachusetts General Hospital, Boston, MA, USA ARTICLE INFO ABSTRACT Keywords: Arousal plays a central role in a wide variety of phenomena, including wakefulness, autonomic function, affect Brainstem and emotion. Despite its importance, it remains unclear as to how the neural mechanisms for arousal are or- Arousal ganized across them. In this article, we review neuroscience findings for three of the most common origins of Sleep arousal: wakeful arousal, autonomic arousal, and affective arousal. Our review makes two overarching points. Autonomic First, research conducted primarily in non-human animals underscores the importance of several subcortical Affect nuclei that contribute to various sources of arousal, motivating the need for an integrative framework. Thus, we Wakefulness outline an integrative neural reference space as a key first step in developing a more systematic understanding of central nervous system contributions to arousal.
    [Show full text]
  • MWT Review Paper.Qxp 12/30/2004 8:46 AM Page 123
    MWT review paper.qxp 12/30/2004 8:46 AM Page 123 REVIEW PAPER The Clinical Use of the MSLT and MWT Donna Arand, Ph.D1, Michael Bonnet, Ph.D2, Thomas Hurwitz, M.D3, Merrill Mitler, Ph.D4, Roger Rosa, Ph.D5 and R. Bart Sangal, M.D6 1 Kettering Medical Center, Dayton, OH, 2Dayton Veteran’s Affairs Medical Center and Wright State University, Dayton, OH, 3Minneapolis Veteran’s Affairs Medical Center and University of Minnesota, Minneapolis, MN, 4National Institute of Neurological Disorders & Stroke Neuroscience Center, Bethesda, MD, 5National Institute for Occupational Safety and Health, Washington, DC, 6Sleep Disorders Institute, Troy, MI Citation: Review by the MSLT and MWT Task Force of the Standards of Practice Committee of the American Academy of Sleep Medicine. SLEEP 2005;28(1):123-144. 1.0 INTRODUCTION ness and to assess the database of evidence for the clinical use of the MSLT and MWT. EXCESSIVE SLEEPINESS IS DEFINED AS SLEEPINESS OCCURRING IN A SITUATION WHEN AN INDIVIDUAL 2.0 BACKGROUND WOULD BE EXPECTED TO BE AWAKE AND ALERT. It is a chronic problem for about 5% of the general population,1, 2 and it 2.1 History of the Development of MSLT and MWT is the most common complaint evaluated by sleep disorder cen- Initially, definitions involving sleep onset were based on ters.1, 3 The most common causes of sleepiness include partial sleep deprivation, fragmented sleep and medication effects. behavioral observations that often depended on features such as Sleepiness is also associated with sleep disorders such as sleep lack of movement, unresponsiveness, snoring, etc.
    [Show full text]
  • Tonic Activity in Lateral Habenula Neurons Promotes Disengagement from Reward-Seeking Behavior
    bioRxiv preprint doi: https://doi.org/10.1101/2021.01.15.426914; this version posted January 16, 2021. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY 4.0 International license. Tonic activity in lateral habenula neurons promotes disengagement from reward-seeking behavior 5 Brianna J. Sleezer1,3, Ryan J. Post1,2,3, David A. Bulkin1,2,3, R. Becket Ebitz4, Vladlena Lee1, Kasey Han1, Melissa R. Warden1,2,5,* 1Department of Neurobiology and Behavior, Cornell University, Ithaca, NY 14853, USA 2Cornell Neurotech, Cornell University, Ithaca, NY 14853 USA 10 3These authors contributed equally 4Department oF Neuroscience, Université de Montréal, Montréal, QC H3T 1J4, Canada 5Lead Contact *Correspondence: [email protected] 15 Sleezer*, Post*, Bulkin* et al. 1 of 38 bioRxiv preprint doi: https://doi.org/10.1101/2021.01.15.426914; this version posted January 16, 2021. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY 4.0 International license. SUMMARY Survival requires both the ability to persistently pursue goals and the ability to determine when it is time to stop, an adaptive balance of perseverance and disengagement. Neural activity in the 5 lateral habenula (LHb) has been linked to aversion and negative valence, but its role in regulating the balance between reward-seeking and disengaged behavioral states remains unclear.
    [Show full text]
  • Hypothalamus and Pituitary Gland Development in the Common Snapping Turtle, Chelydra Serpentina, and Disruption with Atrazine Exposure
    University of North Dakota UND Scholarly Commons Theses and Dissertations Theses, Dissertations, and Senior Projects January 2016 Hypothalamus And Pituitary Gland Development In The ommonC Snapping Turtle, Chelydra Serpentina, And Disruption With Atrazine Exposure Kathryn Lee Gruchalla Russart Follow this and additional works at: https://commons.und.edu/theses Recommended Citation Russart, Kathryn Lee Gruchalla, "Hypothalamus And Pituitary Gland Development In The ommonC Snapping Turtle, Chelydra Serpentina, And Disruption With Atrazine Exposure" (2016). Theses and Dissertations. 2069. https://commons.und.edu/theses/2069 This Dissertation is brought to you for free and open access by the Theses, Dissertations, and Senior Projects at UND Scholarly Commons. It has been accepted for inclusion in Theses and Dissertations by an authorized administrator of UND Scholarly Commons. For more information, please contact [email protected]. HYPOTHALAMUS AND PITUITARY GLAND DEVELOPMENT IN THE COMMON SNAPPING TURTLE, CHELYDRA SERPENTINA, AND DISRUPTION WITH ATRAZINE EXPOSURE by Kathryn Lee Gruchalla Russart Bachelor of Science, Minnesota State University, Mankato, 2006 A Dissertation Submitted to the Graduate Faculty of the University of North Dakota in partial fulfillment of the requirements for the degree of Doctor of Philosophy Grand Forks, North Dakota August 2016 Copyright 2016 Kathryn Russart ii iii PERMISSION Title Hypothalamus and Pituitary Gland Development in the Common Snapping Turtle, Chelydra serpentina, and Disruption with Atrazine Exposure Department Biology Degree Doctor of Philosophy In presenting this dissertation in partial fulfillment of the requirements for a graduate degree from the University of North Dakota, I agree that the library of this University shall make it freely available for inspection.
    [Show full text]
  • Pharmacological Management of Disrupted Sleep Due to Methamphetamine Use: a Literature Review
    Journal of Psychology and Clinical Psychiatry Literature Review Open Access Pharmacological management of disrupted sleep due to Methamphetamine use: a literature review Abstract Volume 11 Issue 5 - 2020 Objective: To review the literature on pharmacological management of disrupted sleeping Jagdeep Kaur,1 Kawish Garg2 patterns due to Methamphetamine use. 1Clinical Director of MAT Services, Keystone Behavioral Health Data sources: A PubMed search of human studies published in English through July 2020 Services, USA 2 was conducted using the broad search terms “Methamphetamine” and “Sleep”. Medical Director of Sleep Medicine, Geisinger Holy Spirit, USA Study selection: 105 articles were identified and reviewed; 2 studies met the inclusion Correspondence: Kawish Garg, Medical Director of Sleep criteria. Medicine, Geisinger Holy Spirit, 550 North 12th St Lemoyne, PA 17043, USA, Tel 717-975-8585, Email Data extraction: Study design, sample size, medications dose and duration, and sleep related outcomes were reviewed. Received: September 10, 2020 | Published: September 23, 2020 Data synthesis: This is some evidence for Modafinil and Mirtazapine for disrupted sleep due to Methamphetamine use, however it is limited by small sample size of the studies. Conclusion: Treatment of disrupted sleep due to Methamphetamine use, remains challenging. Modafinil and mirtazapine appear to show promise, but further research is warranted before making any evidence-based recommendations. Keywords: methamphetamine, sleep Abbreviations: NSDUH, national survey on
    [Show full text]