Illustrated Atlas on the Zoobenthos of Kuwait
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Anchialine Cave Biology in the Era of Speleogenomics Jorge L
International Journal of Speleology 45 (2) 149-170 Tampa, FL (USA) May 2016 Available online at scholarcommons.usf.edu/ijs International Journal of Speleology Off icial Journal of Union Internationale de Spéléologie Life in the Underworld: Anchialine cave biology in the era of speleogenomics Jorge L. Pérez-Moreno1*, Thomas M. Iliffe2, and Heather D. Bracken-Grissom1 1Department of Biological Sciences, Florida International University, Biscayne Bay Campus, North Miami FL 33181, USA 2Department of Marine Biology, Texas A&M University at Galveston, Galveston, TX 77553, USA Abstract: Anchialine caves contain haline bodies of water with underground connections to the ocean and limited exposure to open air. Despite being found on islands and peninsular coastlines around the world, the isolation of anchialine systems has facilitated the evolution of high levels of endemism among their inhabitants. The unique characteristics of anchialine caves and of their predominantly crustacean biodiversity nominate them as particularly interesting study subjects for evolutionary biology. However, there is presently a distinct scarcity of modern molecular methods being employed in the study of anchialine cave ecosystems. The use of current and emerging molecular techniques, e.g., next-generation sequencing (NGS), bestows an exceptional opportunity to answer a variety of long-standing questions pertaining to the realms of speciation, biogeography, population genetics, and evolution, as well as the emergence of extraordinary morphological and physiological adaptations to these unique environments. The integration of NGS methodologies with traditional taxonomic and ecological methods will help elucidate the unique characteristics and evolutionary history of anchialine cave fauna, and thus the significance of their conservation in face of current and future anthropogenic threats. -
INFORMATION to USERS the Most Advanced Technology Has Been
INFORMATION TO USERS The most advanced technology has been used to photograph and reproduce this manuscript from the microfilm master. UMI films the text directly from the original or copy submitted. Thus, some thesis and dissertation copies are in typewriter face, while others may be from any type of computer printer. The quality of this reproduction is dependent upon the quality of the copy submitted. Broken or indistinct print, colored or poor quality illustrations and photographs, print bleedthrough, substandard margins, and improper alignment can adversely affect reproduction. In the unlikely event that the author did not send UMI a complete manuscript and there are missing pages, these will be noted. Also, if unauthorized copyright material had to be removed, a note will indicate the deletion. Oversize materials (e.g., maps, drawings, charts) are reproduced by sectioning the original, beginning at the upper left-hand corner and continuing from left to right in equal sections with small overlaps. Each original is also photographed in one exposure and is included in reduced form at the back of the book. Photographs included in the original manuscript have been reproduced xerographically in this copy. Higher quality 6" x 9" black and white photographic prints are available for any photographs or illustrations appearing in this copy for an additional charge. Contact UMI directly to order. University M'ProCms International A Ben & Howe'' Information Company 300 North Zeeb Road Ann Arbor Ml 40106-1346 USA 3-3 761-4 700 800 501 0600 Order Numb e r 9022566 S o m e aspects of the functional morphology of the shell of infaunal bivalves (Mollusca) Watters, George Thomas, Ph.D. -
DEEP SEA LEBANON RESULTS of the 2016 EXPEDITION EXPLORING SUBMARINE CANYONS Towards Deep-Sea Conservation in Lebanon Project
DEEP SEA LEBANON RESULTS OF THE 2016 EXPEDITION EXPLORING SUBMARINE CANYONS Towards Deep-Sea Conservation in Lebanon Project March 2018 DEEP SEA LEBANON RESULTS OF THE 2016 EXPEDITION EXPLORING SUBMARINE CANYONS Towards Deep-Sea Conservation in Lebanon Project Citation: Aguilar, R., García, S., Perry, A.L., Alvarez, H., Blanco, J., Bitar, G. 2018. 2016 Deep-sea Lebanon Expedition: Exploring Submarine Canyons. Oceana, Madrid. 94 p. DOI: 10.31230/osf.io/34cb9 Based on an official request from Lebanon’s Ministry of Environment back in 2013, Oceana has planned and carried out an expedition to survey Lebanese deep-sea canyons and escarpments. Cover: Cerianthus membranaceus © OCEANA All photos are © OCEANA Index 06 Introduction 11 Methods 16 Results 44 Areas 12 Rov surveys 16 Habitat types 44 Tarablus/Batroun 14 Infaunal surveys 16 Coralligenous habitat 44 Jounieh 14 Oceanographic and rhodolith/maërl 45 St. George beds measurements 46 Beirut 19 Sandy bottoms 15 Data analyses 46 Sayniq 15 Collaborations 20 Sandy-muddy bottoms 20 Rocky bottoms 22 Canyon heads 22 Bathyal muds 24 Species 27 Fishes 29 Crustaceans 30 Echinoderms 31 Cnidarians 36 Sponges 38 Molluscs 40 Bryozoans 40 Brachiopods 42 Tunicates 42 Annelids 42 Foraminifera 42 Algae | Deep sea Lebanon OCEANA 47 Human 50 Discussion and 68 Annex 1 85 Annex 2 impacts conclusions 68 Table A1. List of 85 Methodology for 47 Marine litter 51 Main expedition species identified assesing relative 49 Fisheries findings 84 Table A2. List conservation interest of 49 Other observations 52 Key community of threatened types and their species identified survey areas ecological importanc 84 Figure A1. -
Title CUMACEAN CRUSTACEA from AKKESHI BAY, HOKKAIDO Author(S) Gamo, Sigeo Citation PUBLICATIONS of the SETO MARINE BIOLOGICAL LA
View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Kyoto University Research Information Repository CUMACEAN CRUSTACEA FROM AKKESHI BAY, Title HOKKAIDO Author(s) Gamo, Sigeo PUBLICATIONS OF THE SETO MARINE BIOLOGICAL Citation LABORATORY (1965), 13(3): 187-219 Issue Date 1965-10-30 URL http://hdl.handle.net/2433/175407 Right Type Departmental Bulletin Paper Textversion publisher Kyoto University 1 CUMACEAN CRUSTACEA FROM AKKESHI BAY, HOKKAID0 ) SIGEO GAMO Faculty of Liberal Arts and Education, Yokohama National University, Kamakura, Kanagawa-Ken With 12 Text-figures Our knowledge of the Cumacea of Hokkaido and its adjacent waters is due to the contributions of DERZHA VIN (1923, 1926), U:ENo (1933, 1936), ZIMMER (1929, 1939, 1940, 1943) and LOMAKINA (1955 a-b; 1958 a-b). + Tomata Sempoji krn Fig. 1. Map of Akkeshi Bay. Solid circles with numbers indicate the stations where the cumaceans were collected by the Ekman-Berge bottom-sampling grab, 19-21 show the places where the subsurface towing of plankton-net was made at night. "~---------- ---- ---"---~- 1) Contributions from the Akkeshi Marine Biological Station, No. 126. Publ. Seto Mar. Biol. Lab., XIII (3), 187-219, 1965. (Article 10) f-l ~ Table 1. Occurrence of cumaceans in Akkeshi Bay. Station number 1_1_ _:__3___ 4 ___ 5 ___ 6 ___7 ___8_1_9_ 10 11-12~_::_~~~~ 18 19120121 Depth (m) 2 1 3 8 2 0.3 9 11 11 14 8-12 6 13 14 15 0.3 0.3 night ______B_o_t_t-om_c_h-aracter ~~~~~sis~~~~ sM s andMI s ~s~ss ~~~~~~ Srecies of cumaceans Bodotriidae I I I I I I I I I I I I I I I I . -
ABSTRACT Title of Dissertation: PATTERNS IN
ABSTRACT Title of Dissertation: PATTERNS IN DIVERSITY AND DISTRIBUTION OF BENTHIC MOLLUSCS ALONG A DEPTH GRADIENT IN THE BAHAMAS Michael Joseph Dowgiallo, Doctor of Philosophy, 2004 Dissertation directed by: Professor Marjorie L. Reaka-Kudla Department of Biology, UMCP Species richness and abundance of benthic bivalve and gastropod molluscs was determined over a depth gradient of 5 - 244 m at Lee Stocking Island, Bahamas by deploying replicate benthic collectors at five sites at 5 m, 14 m, 46 m, 153 m, and 244 m for six months beginning in December 1993. A total of 773 individual molluscs comprising at least 72 taxa were retrieved from the collectors. Analysis of the molluscan fauna that colonized the collectors showed overwhelmingly higher abundance and diversity at the 5 m, 14 m, and 46 m sites as compared to the deeper sites at 153 m and 244 m. Irradiance, temperature, and habitat heterogeneity all declined with depth, coincident with declines in the abundance and diversity of the molluscs. Herbivorous modes of feeding predominated (52%) and carnivorous modes of feeding were common (44%) over the range of depths studied at Lee Stocking Island, but mode of feeding did not change significantly over depth. One bivalve and one gastropod species showed a significant decline in body size with increasing depth. Analysis of data for 960 species of gastropod molluscs from the Western Atlantic Gastropod Database of the Academy of Natural Sciences (ANS) that have ranges including the Bahamas showed a positive correlation between body size of species of gastropods and their geographic ranges. There was also a positive correlation between depth range and the size of the geographic range. -
THE LISTING of PHILIPPINE MARINE MOLLUSKS Guido T
August 2017 Guido T. Poppe A LISTING OF PHILIPPINE MARINE MOLLUSKS - V1.00 THE LISTING OF PHILIPPINE MARINE MOLLUSKS Guido T. Poppe INTRODUCTION The publication of Philippine Marine Mollusks, Volumes 1 to 4 has been a revelation to the conchological community. Apart from being the delight of collectors, the PMM started a new way of layout and publishing - followed today by many authors. Internet technology has allowed more than 50 experts worldwide to work on the collection that forms the base of the 4 PMM books. This expertise, together with modern means of identification has allowed a quality in determinations which is unique in books covering a geographical area. Our Volume 1 was published only 9 years ago: in 2008. Since that time “a lot” has changed. Finally, after almost two decades, the digital world has been embraced by the scientific community, and a new generation of young scientists appeared, well acquainted with text processors, internet communication and digital photographic skills. Museums all over the planet start putting the holotypes online – a still ongoing process – which saves taxonomists from huge confusion and “guessing” about how animals look like. Initiatives as Biodiversity Heritage Library made accessible huge libraries to many thousands of biologists who, without that, were not able to publish properly. The process of all these technological revolutions is ongoing and improves taxonomy and nomenclature in a way which is unprecedented. All this caused an acceleration in the nomenclatural field: both in quantity and in quality of expertise and fieldwork. The above changes are not without huge problematics. Many studies are carried out on the wide diversity of these problems and even books are written on the subject. -
First Record of the Colonial Ascidian Didemnum Vexillum Kott, 2002 in the Mediterranean: Lagoon of Venice (Italy)
BioInvasions Records (2012) Volume 1, Issue 4: 247–254 Open Access doi: http://dx.doi.org/10.3391/bir.2012.1.4.02 © 2012 The Author(s). Journal compilation © 2012 REABIC Research Article First record of the colonial ascidian Didemnum vexillum Kott, 2002 in the Mediterranean: Lagoon of Venice (Italy) Davide Tagliapietra1*, Erica Keppel1, Marco Sigovini1 and Gretchen Lambert2 1 CNR - National Research Council of Italy, ISMAR - Marine Sciences Institute, Arsenale - Tesa 104, Castello 2737/F, I-30122 Venice, Italy 2 University of Washington Friday Harbor Laboratories, Friday Harbor, WA 98250. Mailing address: 12001 11th Ave. NW, Seattle, WA 98177, USA E-mail: [email protected] (DT), [email protected] (EK), [email protected] (MS), [email protected] (GL) *Corresponding author Received: 30 July 2012 / Accepted: 16 October 2012 / Published online: 23 October 2012 Abstract Numerous colonies of the invasive colonial ascidian Didemnum vexillum Kott, 2002 have been found in the Lagoon of Venice (Italy) in 2012, overgrowing fouling organisms on maritime structures such as docks, pilings, and pontoons. This is the first record for the Mediterranean Sea. A survey conducted in July 2012 revealed that D. vexillum is present in the euhaline and tidally well flushed zones of the lagoon, whereas it was absent at the examined estuarine tracts and at the zones surrounding the saltmarshes. Suitable climatic, physiographic and saline features together with a high volume of international maritime traffic make the Lagoon of Venice a perfect hub for the successful introduction of temperate non-native species. Key words: Didemnum vexillum, Mediterranean, Lagoon of Venice, ascidian, fouling, marinas, invasive species Introduction cold coasts of North America and Europe as well as from Japan where it is probably native Didemnum vexillum Kott, 2002 (Ascidiacea: (Bullard et al. -
ATOLL RESEARCH Bulletln
ATOLL RESEARCH BULLETlN NO. 235 Issued by E SMTPISONIAIV INSTITUTION Washington, D.C., U.S.A. November 1979 CONTENTS Abstract Introduction Environment and Natural History Situation and Climate People Soils and Vegetation Invertebrate Animals Vertebrate Animals Material and Methods Systematics of the Land Crabs Coenobitidae Coenobi ta Coenobi ta brevimana Coenobi ta per1 a ta Coenobi ta rugosa Birgus Birgus latro Grapsidae Geogxapsus Geograpsus crinipes Geograpsus grayi Metopograpsus Metopograpsus thukuhar Sesarma Sesarma (Labuaniurn) ?gardineri ii Gecarcinidae page 23 Cardisoma 2 4 Cardisoma carnif ex 2 5 Cardisoma rotundum 2 7 Tokelau Names for Land Crabs 30 Notes on the Ecology of the Land Crabs 37 Summary 4 3 Acknowledgements 44 Literature Cited 4 5 iii LIST OF FIGURES (following page 53) 1. Map of Atafu Atoll, based on N.Z. Lands and Survey Department Aerial Plan No. 1036/7~(1974) . 2. Map of Nukunonu Atoll, based on N.Z. Lands and Survey Department Aerial Plan No. 1036/7~sheets 1 and 2 (1974). 3. Map of Fakaofo Atoll, based on N.Z. Lands and Survey Department Aerial Plan No. 1036/7C (1974). 4. Sesarma (Labuanium) ?gardineri. Dorsal view of male, carapace length 28 rnm from Nautua, Atafu. (Photo T.R. Ulyatt, National Museum of N. Z.) 5. Cardisoma carnifex. Dorsal view of female, carapace length 64 mm from Atafu. (Photo T.R. Ulyatt) 6. Cardisoma rotundurn. Dorsal view of male, carapace length 41.5 mm from Village Motu, Nukunonu. (Photo T.R. Ulyatt) LIST OF TABLES 0 I. Surface temperature in the Tokelau Islands ( C) Page 5 11. Mean rainfall in the Tokelau Islands (mm) 6 111, Comparative list of crab names from the Tokelau Islands, Samoa, Niue and the Cook islands, 3 5 IV. -
Filogranula Cincta (Goldfuss, 1831), a Serpulid Worm (Polychaeta, Sedentaria, Serpulidae) from the Bohemian Cretaceous Basin
SBORNÍK NÁRODNÍHO MUZEA V PRAZE ACTA MUSEI NATIONALIS PRAGAE Řada B – Přírodní vědy • sv. 71 • 2015 • čís. 3–4 • s. 293–300 Series B – Historia Naturalis • vol. 71 • 2015 • no. 3–4 • pp. 293–300 FILOGRANULA CINCTA (GOLDFUSS, 1831), A SERPULID WORM (POLYCHAETA, SEDENTARIA, SERPULIDAE) FROM THE BOHEMIAN CRETACEOUS BASIN TOMÁŠ KOČÍ Department of Palaeontology, Natural History Museum, National Museum, Václavské náměstí 68, 115 79 Praha 1, the Czech Republic; Ivančická 581, Praha 9 – Letňany 199 00, the Czech Republic; e-mail: [email protected] MANFRED JÄGER Lindenstrasse 53, D-72348 Rosenfeld, Germany; e-mail: [email protected] Kočí, T., Jäger, M. (2015): Filogranula cincta (GOLDFUSS, 1831), a serpulid worm (Polychaeta, Sedentaria, Serpulidae) from the Bohemian Cretaceous Basin. – Acta Mus. Nat. Pragae, Ser. B Hist. Nat., 71(3-4): 293–300, Praha. ISSN 1804-6479. Abstract. Tubes of the serpulid worm Filogranula cincta (GOLDFUSS, 1831) were found in several rocky coast facies and other nearshore / shallow water localities in the Bohemian Cretaceous Basin ranging in geological age from the Late Cenomanian to the Late Turonian. A mor - phological description, discussion regarding systematics and taxonomy and notes on palaeoecology and stratigraphy are presented. ■ Late Cretaceous, Polychaeta, Filogranula, Serpulidae, Palaeoecology Received April 24, 2015 Issued December, 2015 Introduction any Filogranula cincta specimen. It seems that, apart from the vague mention from Strehlen by Wegner (1913), for more Filogranula cincta (GOLDFUSS, 1831) is a small and than a hundred years no additional finds of Filogranula inconspicuous but nevertheless common serpulid species in cincta from the BCB had been published until the present the Bohemian Cretaceous Basin (BCB). -
The Family Carditidae (Bivalvia) in the Early Danian of Patagonia (Argentina)
Journal of Paleontology, 91(6), 2017, p. 1148–1165 Copyright © 2017, The Paleontological Society 0022-3360/17/0088-0906 doi: 10.1017/jpa.2017.69 The family Carditidae (Bivalvia) in the early Danian of Patagonia (Argentina) Damián E. Pérez and Claudia J. del Río Museo Argentino de Ciencias Naturales Bernardino Rivadavia, División Paleoinvertebrados, Av. Ángel Gallardo 470 (C1405DJR), Buenos Aires, Argentina. 〈[email protected]〉; 〈[email protected]〉 Abstract.—The first systematic analysis of the Danian carditids of Patagonia is presented, which includes four genera—one new genus and the first records of three other genera in South America. They consist of Claibornicardia paleopatagonica (Ihering, 1903), a widely distributed species occuring in the Jagüel, Roca and Salamanca formations (Neuquén, Río Negro and Chubut Provinces); Rotundicardia Heaslip, 1968, represented by the new species R. mariobrosorum n.sp.,whichisrestrictedtotheRocaFormation(RíoNegroProvince);Cardites feruglioi (Petersen, 1846) (Roca and Lefipán formations, Río Negro and Chubut Provinces); and by Kalelia new genus, which includes K. burmeisteri (Böhm, 1903) from the Salamanca and Roca formations (Río Negro and Chubut Provinces), which is rela- ted to the Paris Basin species K. multicostata (Lamarck, 1806) n. comb. and K. pectuncularis (Lamarck, 1806) n. comb. ‘Venericardia’ iheringi (Böhm, 1903), a species known only from internal molds, is described and regarded as a carditid with uncertain affinities. The presence of Claibornicardia, Rotundicardia,andCardites in Patagonia constitutes the most ancient record of these genera and confirms biogeographical connections previously established between the Danian Argentinian and North American/European fossil faunas. Introduction Although an abundant and greatly diversified group in Patagonia, Cenozoic carditids, and particularly those of Danian The family Carditidae Férussac, 1822 comprises a large group age, remain almost completely unstudied. -
Fauna of Australia 4A Phylum Sipuncula
FAUNA of AUSTRALIA Volume 4A POLYCHAETES & ALLIES The Southern Synthesis 5. PHYLUM SIPUNCULA STANLEY J. EDMONDS (Deceased 16 July 1995) © Commonwealth of Australia 2000. All material CC-BY unless otherwise stated. At night, Eunice Aphroditois emerges from its burrow to feed. Photo by Roger Steene DEFINITION AND GENERAL DESCRIPTION The Sipuncula is a group of soft-bodied, unsegmented, coelomate, worm-like marine invertebrates (Fig. 5.1; Pls 12.1–12.4). The body consists of a muscular trunk and an anteriorly placed, more slender introvert (Fig. 5.2), which bears the mouth at the anterior extremity of an introvert and a long, recurved, spirally wound alimentary canal lies within the spacious body cavity or coelom. The anus lies dorsally, usually on the anterior surface of the trunk near the base of the introvert. Tentacles either surround, or are associated with the mouth. Chaetae or bristles are absent. Two nephridia are present, occasionally only one. The nervous system, although unsegmented, is annelidan-like, consisting of a long ventral nerve cord and an anteriorly placed brain. The sexes are separate, fertilisation is external and cleavage of the zygote is spiral. The larva is a free-swimming trochophore. They are known commonly as peanut worms. AB D 40 mm 10 mm 5 mm C E 5 mm 5 mm Figure 5.1 External appearance of Australian sipunculans. A, SIPUNCULUS ROBUSTUS (Sipunculidae); B, GOLFINGIA VULGARIS HERDMANI (Golfingiidae); C, THEMISTE VARIOSPINOSA (Themistidae); D, PHASCOLOSOMA ANNULATUM (Phascolosomatidae); E, ASPIDOSIPHON LAEVIS (Aspidosiphonidae). (A, B, D, from Edmonds 1982; C, E, from Edmonds 1980) 2 Sipunculans live in burrows, tubes and protected places. -
Malacologia, 1993, 35(2); 261-313
^;^2_ MALACOLOGIA, 1993, 35(2); 261-313 PHYLOGENETIC RELATIONSHIPS AND GENERIC REVIEW OF THE BITTIINAE (PROSOBRANCHIA: GERITHIOIDEA) Richard S. Houbrick Department of Invertebrate Zoology, National Museum of Natural History, Smithsonian Institution, Washington, D.C. 20560, U.S.A. ABSTRACT The anatomy of seven members of the Bittium group is described, clarifying the status of the genus-level taxa comprising it. Bittium reticulatum, the type species of Bittium Gray, is described in depth, thereby establishing criteria for comparisons with other taxa of Bitliinae. The type species of Stylidium Dell and LirobiWum Bartsch, and representatives of Bittiolum Cossmann and Cacozeliana Strand are examined and compared with Bittium, s.s. Results of anatomical studies and a phylogenetic analysis using the Hennig86 and CLADOS programs, with Cehtt)ium as an outgroup, establish monophyly for Bitliinae Cossmann and reveal six different genus-level taxa. A new genus, ittibittium, from the Indo-Pacific, is proposed. Synonymies of each genus- level taxon and representative species examined are presented. Brief accounts of the ecology and zoogeography of each taxon are given. Two taxa formerly attributed to the 6/ff/um-group are herein excluded from it and referred to Cerithium Bruguière. These are Cerithium zebrum Kiener, 1841, and Cerithium boeticum Pease, 1861. The subfamily Bittiinae Cossmann, 1906, is thought to comprise nine genera (four of which were not included in phylogenetic analyses) : Bittium Gray, 1847; Bittiolum Cossmann, 1906; Ittibittium gen. n., Stylidium Dalí, 1907; Lirobit- tium Bartsch, 1911 ; Cacozeliana Strand, 1928; Argyropeza Melvill & Standen, 1901 ; Varicopeza Gründel, 1976; Zebittium Finlay, 1927. The genus Cassiella Gofas, 1987, of uncertain place- ment, is included as a possible member of the group.