1/12

Euler’s Theorem

(For B.Sc./B.A. Part-I, Hons. And Subsidiary Courses of )

Poonam Kumari Department of Mathematics, Magadh Mahila College Patna University

2/12

Contents 1. Homogeneous 2. Euler’s Theorem on Homogeneous Function of Two Variables 3. Euler’s Theorem on Homogeneous Function of Three Variables

1. Homogeneous Function A function f of two independent variables x, y is said to be a homogeneous function of degree n if it can be put in either of the following two forms :  y  y f (x, y) = x n    , where  denotes a function of  x  x or f (t x, t y) = t n f (x, y) , where t is any positive .

Similarly, a function of three independent variables x, y, z is said to be a homogeneous function of degree if it can be put in either of the following two forms :  y z  z f (x, y, z) = x n   ,  , where denotes a function of and  x x  x or f (t x, t y,t z) = t n f (x, y, z) , where is any positive real number. The above definition can be extended to a function of any number of variables. Example : The function x 4 + y 4 f (x, y) = x − y is a homogeneous function of degree 3, since 4 4   y     y   x 4 1+    1+    4 4 x x x + y     3     3  y  f (x, y) = = = x = x    x − y   y    y   x  x 1−   1−     x    x  or alternatively, 4 4 4 4 4 4 4 (t x) + (t y ) t (x + y ) 3 (x + y ) 3 f (t x,t y) = = = t = t f (x, y) . t x − t y t (x − y) (x − y)

Similarly, the function x 3 + y 3 + z 3 f (x, y, z) = x + y + z is a homogeneous function of degree 2, since 3 3 3 3   y   z     y   z   x3 1+   +    1+   +    3 3 3 x x x x x + y + z       2       2  y z  f (x, y, z) = = = x = x   ,  x + y + z   y   z    y   z   x x  x 1+   +   1+   +     x   x    x   x  or alternatively,

3/12

3 3 3 3 3 3 3 3 3 3 (t x) + (t y ) + (t z) t (x + y + z ) 2 (x + y + z ) 2 f (t x,t y,t z) = = = t = t f (x, y, z) . t x + t y + t z t (x + y + z) (x + y + z)

Note: A function is a homogeneous function of degree n if all of its terms are of the same degree n.

Proof : Let f be a polynomial function in two independent variables x, y, i.e.,

n n−1 n−2 2 n−1 n f (x, y) = a0 x + a1x y + a2 x y + ...... + an−1xy + an y .

 y y 2 y n−1 y n  Then n f (x, y) = x a0 + a1 + a2 2 + ...... + an−1 n−1 + an n   x x x x 

 2 n−1 n  n  y   y   y   y  = x a0 + a1   + a2   + ...... + an−1   + an      x   x   x   x  

 y  y = x n   , where  is a function of .  x  x Example : The function

f (x, y) = x5 + 6x 4 y + 7x3 y 2 + 2y 5 is a homogeneous function of degree 5, since

f (x, y) = x5 + 6x 4 y + 7x3 y 2 + 2y 5

2 5   y   y   y   = x5 1+ 6   + 7   + 2      x   x   x  

 y  y = x5   ,where is a function of .  x  x

Similarly, the function

f (x, y, z) = x 4 + 3x 2 y 2 + 4xyz 2 + 5yz 3 + 6y 4 + 7z 4 is a homogeneous function of degree 4, since

f (x, y, z) = x 4 + 3x 2 y 2 + 4xyz 2 + 5yz 3 + 6y 4 + 7z 4

2 2 3 4 4   y   y   z   y  z   y   z   = x 4 1+ 3   + 4     + 5     + 6   + 7      x   x   x   x  x   x   x  

 y z  y z = x 4  ,  , where is a function of and .  x x  x x

4/12

2. Euler’s Theorem on Homogeneous Function of Two Variables Statement : If u be a homogeneous function of degree n in two independent variables x, y, then  u  u x + y = n u.  x  y Proof : Let

1 1 2 2 3 3 n n u = A1x y + A2 x y + A3 x y + ...... + An x y ...... (1)

where 1 + 1 =  2 + 2 = 3 + 3 = ...... =  n + n = n

Differentiating both sides of equation (1) partially w. r. t. x, we get

 u 1−1 1 2 −1 2 3−1 3 n −1 n = A1 (1 x ) y + A2 (2 x ) y + A3 (3 x ) y + ...... + An ( n x ) y  x

 u 1 1 2 2 3 3 n n This x = A  x y + A  x y + A  x y +...... + A  x y ...... (2)  x 1 1 2 2 3 3 n n

Now, differentiating both sides of equation (1) partially w. r. t. y, we get

 u 1 1−1 2 2−1 3 3−1 n n −1 = A1x ( 1 y )+ A2 x ( 2 y )+ A3 x ( 3 y ) +...... + An x ( n y )  y

 u 1 1 2 2 3 3 n n This y = A  x y + A  x y + A  x y +...... + A  x y ...... (3)  y 1 1 2 2 3 3 n n

Adding equations (2) and (3), we get

 u  u 1 1 2 2 3 3 x + y = (1 + 1 )A1x y + ( 2 + 2 )A2 x y + (3 + 3 )A3 x y  x  y n n + ...... + ( n + n )An x y

1 1 2 2 3 3 n n = n A1x y + n A2 x y + n A3 x y +...... + n An x y

( 1 + 1 =  2 + 2 = 3 + 3 = ...... =  n + n = n )

1 1 2 2 3 3 n n = n (A1x y + A2 x y + A3 x y +...... + An x y )

= n u (using equation (1))

i.e.,  u  u x + y = n u  x  y

5/12

Corollary : If u be a homogeneous function of degree n in two independent variables x, y, then

 2u  2u  u (i) x + y = (n −1)  x2  x  y  x  2u  2u  u (ii) x + y = (n −1)  x  y  y 2  y  2u  2u  2u (iii) x 2 + 2xy + y 2 = n(n −1) u.  x 2  x  y  y 2 Proof : (i) Since is a homogeneous function of degree n in two independent variables x, y, therefore, by Euler’s Theorem  u  u x + y = n u ...... (1)  x  y Differentiating both sides of equation (1) partially w. r. t. x, we get

 2 u  u  2 u  u x + (1) + y = n  x 2  x  x  y  x

 2 u  2 u  u This  x + y = (n −1) ...... (2)  x 2  x  y  x Hence (i) is proved. (ii) Differentiating both sides of equation (1) partially w. r. t. y, we get

 2 u  2 u  u  u x + y + (1) = n  y  x  y 2  y  y

 2 u  2 u  u  u   2 u  2 u  This  x + y + = n  =  2    x  y  y  y  y   y  x  x  y 

 2 u  2 u  u  x + y = (n −1) ...... (3)  x  y  y 2  y

Hence (ii) is proved. (iii) Multiplying equations (2) and (3) by x and y respectively and adding, we get

 2u  2u  2u   u  u  x 2 + 2xy + y 2 = (n −1) x + y  2 2    x  x  y  y   x  y  = (n −1) (nu) (using equation (1))  2u  2u  2u i.e., x 2 + 2xy + y 2 = n (n −1) u.  x 2  x  y  y 2 This proves (iii).

3. Euler’s Theorem on Homogeneous Function of Three Variables Statement : If be a homogeneous function of degree n in three independent variables x, y, z, then  u  u  u x + y + z = n u.  x  y  z

6/12

Proof : Let 1 1 1 2 2 2 3 3 3 n n n u = A1x y z + A2 x y z + A3 x y z + ...... + An x y z ...... (1) where 1 + 1 + 1 =  2 + 2 +  2 =  3 + 3 +  3 = ...... =  n + n +  n = n Differentiating both sides of equation (1) partially w. r. t. x, we get

 u 1− 1 1 1 2 − 1 2 2 3− 1 3 3 = A1 (1 x ) y z + A2 (2 x ) y z + A3 (3 x ) y z  x

n − 1 n n + ...... + An ( n x ) y z

 u 1 1 1 2 2 2 3 3 3  This  x = A11x y z + A2 2 x y z + A33 x y z   x  ...... (2) n n n  +...... + An n x y z  Now, differentiating both sides of equation (1) partially w. r. t. y, we get

 u 1 1−1 1 2 2 −1 2 3 3−1 3 = A1x ( 1 y ) z + A2 x ( 2 y ) z + A3 x ( 3 y ) z  y n n −1 n + ...... + An x ( n y ) z

 u           This  y = A  x 1 y 1 z 1 + A  x 2 y 2 z 2 + A  x 3 y 3 z 3  y 1 1 2 2 3 3   ...... (3)

n n n  +...... + An n x y z  Similarly, differentiating both sides of equation (1) partially w. r. t. z, we get

 u 1 1 1−1 2 2 2 −1 3 3 3−1 = A1x y ( 1 z )+ A2 x y ( 2 z )+ A3 x y (  3 z )  z

n n n −1 + ...... + An x y (  n z )

 u           This  z = A  x 1 y 1 z 1 + A  x 2 y 2 z 2 + A  x 3 y 3 z 3  z 1 1 2 2 3 3   ...... (4)

n n n  +...... + An  n x y z  Adding equations (2), (3) and (4), we get

   u  u  u 1 1 1 2 2 2 x + y + z = (1 + 1 + 1 )A1x y z + ( 2 + 2 +  2 )A2 x y z +  x  y  z 3 3 3 n n n (3 + 3 +  3 )A3 x y z + ...... + ( n + n +  n )An x y z

     1 1 1 2 2 2 3 3 3 = n A1x y z + n A2 x y z + n A3 x y z + ...... +

n n n n An x y z

(1 + 1 + 1 =  2 + 2 +  2 = ...... =  n + n +  n = n) 1 1 1 2 2 2 3 3 3 n n n = n (A1x y z + A2 x y z + A3 x y z +.....+ An x y z ) = n u (using equation (1))

 u  u  u i.e., x + y + z = n u  x  y  z

7/12

x (x3 − y3 ) Example 1 : Verify Euler’s Theorem when u = . x3 + y3 Solution : According to Euler’s Theorem, if u be a homogeneous function of degree n in two independent variables x, y, then  u  u x + y = n u.  x  y Given that x (x3 − y3 ) u = .....(1) x3 + y3 3 3   y     y   x 4 1−    1−      x     x    y  y u = = x = x  , i.e., 3 3   where  is a function of .   y     y    x  x x3 1+    1+      x     x   This The given function u is a homogeneous function of degree 1 in two independent variables x, y.Therefore Euler’s Theorem will be verified if we can prove that  u  u x + y = u.  x  y Taking logarithm of both sides of equation (1), we get

logu = log x +log (x3 − y3 ) −log (x3 + y3 ) ...... (2) Now, differentiating both sides of equation (2) partially w. r. t. x, we get 1  u 1 = + 1 (3x 2 ) − 1 (3x 2 ) u  x x x3 − y 3 x3 + y 3

1   u  3x 3 3x 3 This   x  = 1+ − ...... (3) u   x  x 3 − y 3 x 3 + y 3 Similarly, differentiating both sides of equation (2) partially w. r. t. y, we get 1  u = 0 + 1 (−3y 2 ) − 1 (3y 2 ) u  y x3 − y 3 x3 + y 3

1   u  3y 3 3y 3 This   y  = − −   3 3 3 3 ...... (4) u   y  x − y x + y Adding equations (3) and (4), we get 1   u  u  3 (x3 − y 3 ) 3 (x3 + y 3 )  x + y  =1+ −   3 3 3 3 u   x  y  x − y x + y =1+ 3−3 = 1  u  u This  x + y = u  x  y

 Euler’s Theorem is verified for the given function.

8/12

1 1 x 4 + y 4 Example 2 : Verify Euler’s Theorem when u = 1 1 . x 5 + y 5 Solution : According to Euler’s Theorem, if u be a homogeneous function of degree n in two independent variables x, y, then  u  u x + y = n u.  x  y Given that 1 1 x 4 + y 4 u = 1 1 .....(1) x 5 + y 5 1 1 1      y  4  y  4 x 4 1+    1+      x   1   x   1      y  y u = = x 20 = x 20  , i.e., 1 1   where  is a function of . 1      x  x  y  5  y  5 x 5 1+    1+      x     x       1 This The given function u is a homogeneous function of degree in two independent variables 20 x, y.Therefore Euler’s Theorem will be verified if we can prove that  u  u 1 x + y = u.  x  y 20 Taking logarithm of both sides of equation (1), we get  1 1   1 1   4 4   5 5  logu = log  x + y  −log  x + y  ...... (2)     Now, differentiating both sides of equation (2) partially w. r. t. x, we get

3 4 1  u  1 −   1 −  = 1  x 4  − 1  x 5  u  x 1 1  4  1 1  5  x 4 + y 4   x 5 + y 5   1 1 1   u  x 4 x 5 This   x  = − ...... (3) u   x   1 1   1 1   4 4   5 5  4  x + y  5  x + y      Similarly, differentiating both sides of equation (2) partially w. r. t. y, we get

3 4 1  u  1 −   1 −  = 1  y 4  − 1  y 5  u  y 1 1  4  1 1  5  x 4 + y 4   x 5 + y 5   1 1 1   u  y 4 y 5 This   y  = − ...... (4)   1 1 1 1 u   y       4 4   5 5  4  x + y  5  x + y      Adding equations (3) and (4), we get

9/12

1 1 1 1 1   u  u  x 4 + y 4 x 5 + y 5  x + y  = −   1 1 1 1 u   x  y       4 4   5 5  4  x + y  5  x + y      1 1 = − 4 5 1 = 20  u  u 1 This  x + y = u  x  y 20  Euler’s Theorem is verified for the given function.

x 2 + y 2  u  u 1 Example 3 : If u = tan −1 , prove that x + y = sin 2u. x + y  x  y 2 Solution : Given that x 2 + y 2 u = tan −1 . x + y 2 2   y     y   x 2 1+ +   1+ +   x 2 + y 2   x     x    y  y This  tan u = = = x = x   , where  is a function of . x + y  y   y   x  x x 1+ + 1+ +  x   x   tan u is a homogeneous function of degree 1 in two independent variables x, y.

Let v = tan u ...... (1) Then v is a homogeneous function of degree 1 in two independent variables x, y. Therefore, by Euler’s Theorem,  v  v x + y = v.  x  y

2  u  2  u  This  x sec u  + y sec u  = tan u   x    y 

  v 2  u  v 2  u   = sec u , = sec u and v = tan u, by equation (1)   x  x  y  y  tan u  x  u + y  u =  x  y sec2 u sin u = (cos2 u) cosu = sinucosu 1 = (2sin u cosu) 2 1 = sin 2u. 2

10/12

−1 x + y  u  u 1 Example 4 : If u = cos , prove that x + y + cotu = 0. x + y  x  y 2 Solution : Given that

−1 x + y u = cos . x + y  y  y x 1+ + 1 1+ + 1 x + y  x   x   y  y This  cosu = = = x 2 = x 2   , where  is a function of . x + y  y   y   x  x x 1+ +  1+ +   x   x  1  cosu is a homogeneous function of degree in two independent variables x, y. 2 Let v = cosu ...... (1) Then v is a homogeneous function of degree in two independent variables x, y.Therefore, by

Euler’s Theorem,  v  v 1 x + y = v.  x  y 2

 u   u  1 This  x − sin u  + y − sin u  = cosu   x    y  2   v  u  v  u   = −sin u , = −sin u and v = cosu, by equation (1)   x  x  y  y  1 cosu  x  u + y  u = −  x  y 2 sin u 1 = − cotu 2 1  x  u + y  u + cotu = 0.  x  y 2

−1 x  −1 y   u  u Example 5 : If u = sin   + tan   , prove that x + y = 0.  y   x   x  y Solution : Given that

−1 x  −1 y  u = sin   + tan   ...... (1)  y   x 

−1 x  Let sin   = .  y  x Then sin  = . y x This  tan  = y 2 − x 2

11/12

x   = tan −1 y 2 − x 2

−1 x  −1 x  sin   = tan .....(2)  y  y 2 − x 2

−1  x  Substituting the value of sin   from equation (2) in equation (1), we get  y  x  y  u = tan −1 + tan−1  y 2 − x 2  x 

x y + y 2 − x 2 x = tan −1  x  y  1−      2 2  x  y − x  

x 2 + y y 2 − x 2 = tan −1 . x y 2 − x 2 − xy

2 2  y  y    y  y   x 2 1+   −1 1+   −1 2 2 2  x  x    x  x   x + y y − x     0  y  This  tan u = = = = x   , 2 2 2 2 x x y − x − xy   y  y    y  y    x 2    −1 −     −1 −   x x   x x          y where  is a function of . x  tan u is a homogeneous function of degree zero in two independent variables x, y.

Let v = tan u ...... (3)

Then v is a homogeneous function of degree zero in two independent variables x, y.Therefore, by Euler’s Theorem,

 v  v x + y = 0.  x  y

2  u  2  u  This  x sec u  + y sec u  = 0   x    y 

  v 2  u  v 2  u   = sec u , = sec u and v = tan u, by equation (3)   x  x  y  y 

0  x  u + y  u =  x  y sec2 u

= 0.

12/12

 u  u 1 Example 6 : If u = sin ( x + y ) , prove that x + y = ( x + y ) cos ( x + y ) .  x  y 2 Solution : Given that u = sin ( x + y ) ...... (1) 1 −1  y   y  y This  sin u = x + y = x 1+ +  = x 2   , where  is a function of .  x   x  x 1  sin −1 u is a homogeneous function of degree in two independent variables x, y. 2 Let v = sin −1 u ...... (2) Then v is a homogeneous function of degree in two independent variables x, y.Therefore, by

Euler’s Theorem,  v  v 1 x + y = v.  x  y 2

 1   1  1 This  x   u  + y   u  = sin −1 u  2   2   1 − u  x   1 − u  y  2  1 1    v =  u ,  v =  u and v = sin −1 u, by equation (2)  2 2    x 1 − u  x  y 1 − u  y  1  x  u + y  u = (sin −1 u) ( 1− u 2 )  x  y 2 1 = ( x + y )  1− sin 2 ( x + y ) (using equation (1) ) 2   1 = ( x + y ) cos ( x + y ) . 2

Exercises y 1. Verify Euler’s Theorem when u = x3 log . x

x − y  u  u 2. If u = sin , prove that Euler’s formula x + y = nu holds good. x + y  x  y

 x − y   u y  u 3. u = sin −1   , prove that = − . If    x + y   x x  y

x3 + y 3  u  u 4. If sin u = , prove that x + y = 2 tan u. x + y  x  y