Hayward Fault Tour
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
20-4 Seismic Retrofit Guidelines for Bridges in California (PDF)
MEMO TO DESIGNERS 20-4 • JUNE 2016 LRFD 20-4 SEISMIC RETROFIT GUIDELINES FOR BRIDGES IN CALIFORNIA Introduction Caltrans Memo to Designers (MTD) 20-4 describes policies and procedures for the seismic retroft of California’s bridges.1 Caltrans, Bridge Design Aids (BDA) 14-5 and Bridge Standard XS Detail Sheets Section 7 include common retrofts that can be used by designers. The Federal Highway Administration has published a bridge retroftting manual (Buckle, 2006), with examples of common retrofts. This manual is a useful reference, however the specifcations and details are not approved by Caltrans. While MTD 20-4 is intended to provide guidelines for retroftting existing structures, it is not possible to anticipate every situation that may be encountered. It is the designer’s responsibility to accurately assess the performance of the existing structure, to show a collapse mechanism if it exists, and to develop retroft strategies that ensure the structure meets the no collapse performance standard. Expected Performance The primary performance standard for retroftting bridges is to prevent the structure from reaching the collapse limit state2 for the Design Earthquake3 . The goal of this “No Collapse” performance standard is to protect human life and there are no serviceability expectations for retroftted bridges. An acceptable determination of collapse is captured through an analysis of the bridge model subject to the Design Earthquake. However, determining collapse is different than simply determining that demand exceeds capacity. First of all, capacity is more conservatively 1. This memo is intended to apply to Ordinary Standard state and local bridges. In cases where this memo does not apply, the designer is referred to MTD 20-1 and 20-11. -
Fremont Earthquake Exhibit WALKING TOUR of the HAYWARD FAULT (Tule Ponds at Tyson Lagoon to Stivers Lagoon)
Fremont Earthquake Exhibit WALKING TOUR of the HAYWARD FAULT (Tule Ponds at Tyson Lagoon to Stivers Lagoon) BACKGROUND INFORMATION The Hayward Fault is part of the San Andreas Fault system that dominates the landforms of coastal California. The motion between the North American Plate (southeastern) and the Pacific Plate (northwestern) create stress that releases energy along the San Andreas Fault system. Although the Hayward Fault is not on the boundary of plate motion, the motion is still relative and follows the general relative motion as the San Andreas. The Hayward Fault is 40 miles long and about 8 miles deep and trends along the east side of San Francisco Bay. North to south, it runs from just west of Pinole Point on the south shore of San Pablo Bay and through Berkeley (just under the western rim of the University of California’s football stadium). The Berkeley Hills were probably formed by an upward movement along the fault. In Oakland the Hayward Fault follows Highway 580 and includes Lake Temescal. North of Fremont’s Niles District, the fault runs along the base of the hills that rise abruptly from the valley floor. In Fremont the fault runs within a wide fault zone. Around Tule Ponds at Tyson Lagoon the fault splits into two traces and continues in a downwarped area and turns back into one trace south of Stivers Lagoon. When a fault takes a “side step” it creates pull-apart depressions and compression ridges which can be seen in this area. Southward, the fault lies between the 1 lowest, most westerly ridge of the Diablo Range and the main mountain ridge to the east. -
Geo-Information for Snow Avalanche Hazard
Volume 5, Number 1, June 2007 This issue of Panel Update Volume 3 Number 1 marks the beginning of our fifth year of circulating our bimonthly eNewsletter to share Panel activities with its members. Our June issues highlight the Panel’s recently conducted technical site visits. These site visits followed the Panel’s three day Technical Meetings of 14-16 May 2007 in Tsukuba. Proceedings of the Panel on Wind and Seismic Effects will be published in the fall and circulated to all Panel members and manuscript authors. HIGHLIGHTS - TECHNICAL SITE VISITS 39TH MEETING OF THE US-JAPAN PANEL ON WIND AND SEISMIC EFFECTS 17-19 MAY 2007 1. Tokyo Metropolitan Expressway Route The Metropolitan Expressway Company Limited, a privatized organization in 2005, is responsible for design, construction and management of Tokyo’s Metropolitan Expressway. The delegation was briefed on investigation and techniques used to repair fatigue cracks in expressway steel bridge piers and orthotropic steel decks. Fatigue cracks are detected by magnetic particle testing procedure. Of 2011 piers tested, 566 had fatigue cracks. As temporary measure, holes are drilled at each end of the crack to prevent propagation of cracks that allowed traffic flow until permanent repairs. Monitoring is performed following a five year inspection plan. When visual inspection identifies serious cracks, annual inspections are performed for those selected fatigue cracks. Modern Tokyo transportation relies on multiple highways that overlay the extinct canals and waterway systems of near the end of the Edo period (1603 – 1868). The delegation visited the Ohashi Junction of the Central Circular Shinjuku Route under construction designed to allow vehicles to pass through the central part of Tokyo by avoiding surface traffic congestion. -
Scale and Complexity in the Seismic Retrofit of California Bridges Benjamin Sims Introduction Infr
Seismic Shifts and Retrofits: Scale and Complexity in the Seismic Retrofit of California Bridges Benjamin Sims Introduction Infrastructure systems play a crucial role in the relationship between humans and the natural world, in part because they are the only human technological systems built on a large enough scale to have geophysical relevance (Edwards 2003). Many of the chapters in this book focus on infrastructure retrofit as a means to reduce human impact on the environment. This chapter instead focuses on retrofit to protect human beings from their environment: specifically, seismic retrofit of bridges to prevent them from collapsing in earthquakes. Although the impetus for retrofit may differ, the program discussed here raises many issues that are likely to be relevant for any kind of large-scale retrofit program that impacts urban settings. In particular, it provides examples of the complexities that arise in implementing a systemic retrofit program (May et al. 2013). This kind of systemic effort can be particularly complex because of the tension between global and local aspects of retrofit. At a global level, such a program must attend to the factors that sustain a systemic effort, such as engineering standards, funding sources, and political support. At a local level, each individual retrofit project has the potential to become entangled in localized contingencies of communities and the built environment. This paper examines the characteristics of infrastructure that play into this global-local tension, the processes by which changes in sociotechnical systems become mobilized as worrisome problems, and the resulting practices of infrastructure repair, of which retrofit is one variety. -
Seismic Retrofit of Soft-Story Woodframe Buildings Using Cross Laminated Timber John W
New Developments in Structural Engineering and Construction Yazdani, S. and Singh, A. (Eds.) ISEC-7, Honolulu, June 18 –23, 2013 SEISMIC RETROFIT OF SOFT-STORY WOODFRAME BUILDINGS USING CROSS LAMINATED TIMBER JOHN W. VAN DE LINDT1, POURIA BAHMANI1, MIKHAIL GERSHFELD2, GIRAJ KUMAR KANDUKURI3, DOUG RAMMER4, and SHILING PEI5 1Civil and Env. Engineering, Colorado State University, Fort Collins, Colorado, USA 2Civil and Env. Engineering, Cal Poly-Pomona, Pomona, California, USA 3Civil, Construct., and Env. Eng., University of Alabama, Tuscaloosa, Alabama, USA 4U.S. Forest Products Laboratory, Madison, Wisconsin, USA 5Civil and Env. Engineering, South Dakota State University, Brookings, South Dakota, USA As early as 1970, the structural engineering and building safety community recognized that a large number of two-, three- and four-story woodframe buildings designed with the first floor used either for parking or commercial space were built with readily identifiable structural system deficiencies, referred to as a “soft story”. Thus, many multi-story woodframe buildings are susceptible to collapse at the first story during earthquakes. The majority of these older multi-story woodframe buildings have large openings and few partition walls at the ground level. This open space condition results in the earthquake resistance of the first story being significantly lower than the upper stories. As part of the five-university multi-industry, U.S. National Science Foundation – funded NEES-Soft project, a performance-based retrofit method has been developed for these types of buildings. This paper presents the first generation of this method and resulting retrofit design using an engineered wood technology that is just being introduced in the United States. -
Final NOP with Attachments PDF 2030 K
UNIVERSITY OF CALIFORNIA, BERKELEY BERKELEY • DAVIS • IRVINE • LOS ANGELES • MERCED • RIVERSIDE • SAN DIEGO • SAN FRANCISCO SANTA BARBARA • SANTA CRUZ PHYSICAL & ENVIRONMENTAL PLANNING BERKELEY, CALIFORNIA 94720-1382 A & E BUILDING, # 1382 November 20, 2019 State of California Office of Planning and Research 1400 Tenth Street Sacramento, CA 95814 NOTICE OF PREPARATION OF A ENVIRONMENTAL IMPACT REPORT Project Title: Hill Campus Wildland Vegetative Fuel Management Plan Lead Agency: The Regents of the University of California Project Location: University of California, Berkeley Hill Campus, all or portions of the following Assessor’s Parcel Numbers: Alameda County: 048H-7750-001-03, 048H-7753-039-01, 048H-7755-029-01, 048H-7800-002-01, 048H-7900-002-04, 048H-7900-002-06, 048H- 7900-004-01 and 057 -2042-004-10; Contra Costa County: 265-160-005-4 and 265-160- 006-2 Counties: Alameda and Contra Costa Counties Description of the Project The University of California, Berkeley (UC Berkeley) proposes to implement its Wildland Vegetative Fuel Management Plan (Plan) for the UC Berkeley Hill Campus to treat vegetation that could become fire fuel within the 800-acre Plan Area (see Attachment A for location map). The proposed Plan includes implementation of three vegetation treatment types within the Plan Area, including evacuation support treatments, fuel break treatments, and fire hazard reduction treatments. Five types of vegetation treatment activities are proposed to implement the three vegetation treatment types: manual treatment, mechanical treatment, prescribed burning, managed herbivory (livestock grazing), and targeted ground application of herbicides. Additionally, UC Berkeley proposes specific fuel break and fire hazard reduction treatment projects. -
Structural Superposition in Fault Systems Bounding Santa Clara Valley, California
A New Three-Dimensional Look at the Geology, Geophysics, and Hydrology of the Santa Clara (“Silicon”) Valley themed issue Structural superposition bounding Santa Clara Valley Structural superposition in fault systems bounding Santa Clara Valley, California R.W. Graymer, R.G. Stanley, D.A. Ponce, R.C. Jachens, R.W. Simpson, and C.M. Wentworth U.S. Geological Survey, 345 Middlefi eld Road, MS 973, Menlo Park, California 94025, USA ABSTRACT We use the term “structural superposition” to and/or reverse-oblique faults, including the emphasize that younger structural features are Silver Creek Thrust1 (Fig. 3). The reverse and/or Santa Clara Valley is bounded on the on top of older structural features as a result of reverse-oblique faults are generated by a com- southwest and northeast by active strike-slip later tectonic deformation, such that they now bination of regional fault-normal compression and reverse-oblique faults of the San Andreas conceal or obscure the older features. We use the (Page, 1982; Page and Engebretson, 1984) fault system. On both sides of the valley, these term in contrast to structural reactivation, where combined with the restraining left-step transfer faults are superposed on older normal and/or pre existing structures accommodate additional of slip between the central Calaveras fault and right-lateral normal oblique faults. The older deformation, commonly in a different sense the southern Hayward fault (Aydin and Page, faults comprised early components of the San from the original deformation (e.g., a normal 1984; Andrews et al., 1993; Kelson et al., 1993). Andreas fault system as it formed in the wake fault reactivated as a reverse fault), and in con- Approximately two-thirds of present-day right- of the northward passage of the Mendocino trast to structural overprinting, where preexisting lateral slip on the southern part of the Calaveras Triple Junction. -
FINAL TECHNICAL REPORT Project Title: Assessment of Late Quaternary
FINAL TECHNICAL REPORT Project Title: Assessment of late Quaternary deformation, eastern Santa Clara Valley, San Francisco Bay region Recipient: William Lettis & Associates, Inc. 1777 Botelho Drive, Suite 262 Walnut Creek, California 94596 (925) 256-6070 Principal Investigators: Christopher S. Hitchcock William Lettis & Associates, Inc., 1777 Botelho Dr., Suite 262, Walnut Creek, CA 94596 (phone: 925-256-6070; email: [email protected]) Charles M. Brankman William Lettis & Associates, Inc., 1777 Botelho Dr., Suite 262, Walnut Creek, CA 94596 (phone: 925-256-6070; email: [email protected]) Program Elements: I and II U. S. Geological Survey National Earthquake Hazards Reduction Program Award Number 01HQGR0034 July 2002 Research supported by the U.S. Geological Survey (USGS), Department of the Interior, under USGS award number 01HQGR0034. The views and conclusions contained in this document are those of the authors and should not be interpreted as necessarily representing the official policies, either expressed or implied, of the U.S. Government. ABSTRACT A series of northwest-trending reverse faults that bound the eastern margin of Santa Clara Valley are aligned with the southern termination of the Hayward fault, and have been interpreted as structures that may transfer slip from the San Andreas and Calaveras faults to the Hayward fault. Uplift of the East Bay structural domain east of Santa Clara Valley is accommodated by this thrust fault system, which includes the east-dipping Piercy, Coyote Creek, Evergreen, Quimby, Berryessa, Crosley, and Warm Springs faults. Our study provides an evaluation of the near-surface geometry and late Quaternary surficial deformation related to reverse faulting in the eastern Santa Clara Valley. -
05FB Guide P187-208.Pmd
CAL TRADITIONS erhaps nowhere else in America is the color and pageantry of college football better captured on autumn Saturdays than at the University of CALIFORNIA VICTORY CANNON California and Memorial Stadium, which was judged to have the best P The California Victory Cannon was presented to the Rally Committee in view of any college stadium in the country by Sports Illustrated. The rich time for the 1963 Big Game by the class of 1964. It is shot off at the history of the Golden Bears on the gridiron has borne some of the most beginning of each game, after each score and after each Cal victory. Only colorful and time-honored traditions in the sport today. once, against Pacific on Sept. 7, 1991, did the Bears score too many times, racking up 12 touchdowns before the cannon ran out of ammunition. The BLUE AND GOLD cannon, which was originally kept on the sidelines, has been mounted on Tightwad Hill above Memorial Stadium since 1971. Official colors of the University of California were established at Berkeley in 1868. The colors were chosen by the University’s founders, who were mostly Yale men who had come West. They selected gold as a color repre- TIGHTWAD HILL senting the “Golden State” of California. The blue was selected from Yale For decades, enterprising blue. Cal teams have donned the blue and gold since the beginning of intercol- Golden Bear fans have hiked legiate athletic competition in 1882. to Tightwad Hill high above the northeast corner of Me- GOLDEN BEARS morial Stadium. Not only does the perch provide a free In 1895, the University of California track & field team was the dominant look at the action on the power on the West Coast and decided to challenge several of the top teams in field, but it also offers a spec- the Midwest and East on an eight-meet tour that is now credited by many tacular view of San Francisco historians as putting Cal athletics onto the national scene. -
The 1911 M ∼6:6 Calaveras Earthquake
Bulletin of the Seismological Society of America, Vol. 99, No. 3, pp. 1746–1759, June 2009, doi: 10.1785/0120080305 The 1911 M ∼6:6 Calaveras Earthquake: Source Parameters and the Role of Static, Viscoelastic, and Dynamic Coulomb Stress Changes Imparted by the 1906 San Francisco Earthquake by Diane I. Doser, Kim B. Olsen, Fred F. Pollitz, Ross S. Stein, and Shinji Toda* Abstract The occurrence of a right-lateral strike-slip earthquake in 1911 is incon- sistent with the calculated 0:2–2:5 bar static stress decrease imparted by the 1906 rupture at that location on the Calaveras fault, and 5 yr of calculated post-1906 viscoelastic rebound does little to reload the fault. We have used all available first-motion, body-wave, and surface-wave data to explore possible focal mechanisms for the 1911 earthquake. We find that the event was most likely a right-lateral strike- slip event on the Calaveras fault, larger than, but otherwise resembling, the 1984 M 6:1 w Morgan Hill earthquake in roughly the same location. Unfortunately, we could recover no unambiguous surface fault offset or geodetic strain data to cor- roborate the seismic analysis despite an exhaustive archival search. We calculated the static and dynamic Coulomb stress changes for three 1906 source models to under- stand stress transfer to the 1911 site. In contrast to the static stress shadow, the peak dynamic Coulomb stress imparted by the 1906 rupture promoted failure at the site of the 1911 earthquake by 1.4–5.8 bar. Perhaps because the sample is small and the aftershocks are poorly located, we find no correlation of 1906 aftershock frequency or magnitude with the peak dynamic stress, although all aftershocks sustained a cal- culated dynamic stress of ≥3 bar. -