Development and Application of a High- Throughput Rnai Screen to Reveal Novel Components of the DNA Sensing Pathway

Total Page:16

File Type:pdf, Size:1020Kb

Development and Application of a High- Throughput Rnai Screen to Reveal Novel Components of the DNA Sensing Pathway Development and Application of a High- Throughput RNAi Screen to Reveal Novel Components of the DNA Sensing Pathway The Harvard community has made this article openly available. Please share how this access benefits you. Your story matters Citation Roy, Matthew Stephen. 2013. Development and Application of a High-Throughput RNAi Screen to Reveal Novel Components of the DNA Sensing Pathway. Doctoral dissertation, Harvard University. Citable link http://nrs.harvard.edu/urn-3:HUL.InstRepos:11124826 Terms of Use This article was downloaded from Harvard University’s DASH repository, and is made available under the terms and conditions applicable to Other Posted Material, as set forth at http:// nrs.harvard.edu/urn-3:HUL.InstRepos:dash.current.terms-of- use#LAA 2013 – Matthew Stephen Roy All rights reserved. Dissertation Advisor: Nir Hacohen Matthew Stephen Roy Development and application of a high-throughput RNAi screen to reveal novel components of the DNA sensing pathway Abstract The mammalian immune system has evolved a complex and diverse set of mechanisms to detect and respond to pathogens by recognizing conserved molecular structures and inducing protective immune responses. While many of these mechanisms are capable of sensing diverse molecular structures, a large fraction of pathogen sensors recognize nucleic acids. Pathogen-derived nucleic acids trigger nucleic acid sensors that typically induce anti-viral or anti-microbial immunity, however host-derived nucleic acids may also activate these sensors and lead to increased risk of inflammatory or autoimmune disease. Animal models and humans lacking key DNA nucleases, such as Trex1/Dnase3, accumulate intracellular DNA and develop progressive autoimmunity marked by increased Type-I Interferon (IFN) expression and inflammatory signatures. Double-stranded DNA (dsDNA) is a potent inducer of the Type-I IFN response. Many of the sensors and signaling components that drive the IFN signature following simulation with transfected dsDNA (also called ʻInterferon Stimulatory DNAʼ or ʻISDʼ) remain unknown. We set out to identify novel components of the ISD pathway by developing a large-scale loss-of-function genetic perturbation screen of 1003 candidate genes. We interrogated multiple human and murine primary and immortalized cells, tested several Type-I IFN reporters, and considered multiple loss-of-function strategies before proceeding with an RNAi screen whereby mouse embryonic fibroblasts were stimulated with ISD and Type-IFN pathway activation was assessed by measuring Cxcl10 protein by ELISA. iii Candidate genes for testing in the RNAi screen were curated from quantitative proteomic screens, IFN-beta and ISD stimulated mRNA expression profiles, and a selection of domain-based proteins including helicases, cytoplasmically located DNA- binding proteins and a set of potential negative regulators including phosphatases, deubiquitinases and known signaling proteins. We identified a number of novel ISD pathway components including Abcf1, Ptpn1 and Hells. We validated hits through siRNA-resistant cDNA rescue, chemical inhibition or targeted knockout. Additionally, we evaluated protein-protein interactions of our strongest validated hits to develop a network model of the ISD pathway. In addition to the identification of novel ISD pathway components, our enriched screening data set may provide a useful resource of candidate genes involved in the response to cytosolic DNA. iv Table of Contents Abstract ............................................................................................................................. iii List of Figures and Tables ................................................................................................ vii List of Abbreviations ......................................................................................................... xi Acknowledgements ......................................................................................................... xiii Attributions ...................................................................................................................... xv Chapter 1: Introduction: The Role of Nucleic Acids In Eliciting an Immune Response 1.1 – Introduction ................................................................................................. 2 1.2 – Nucleic acid recognition by Toll-like receptors ............................................ 3 1.3 – Detection of RNA by cytosolic sensors ....................................................... 6 1.4 – Detection of DNA by cytosolic sensors ....................................................... 8 1.5 – Inflammasome activation by cytosolic DNA ................................................ 9 1.6 – Interferon activation by cytosolic DNA sensors ......................................... 10 1.7 – Endogenous DNA ligands and autoimmunity ............................................ 17 1.8 – Conclusion ................................................................................................ 21 Chapter 2: Development of a High-Throughput Screening Method to Detect Nucleic Acid Responses 2.1 – Introduction: Identification of a cellular based system to detect nucleic acid responses ........................................................................................................... 24 2.2 – Ligands and transfection reagents ............................................................ 25 2.3 – Identification of cells for use in genetic and biochemical screen ............... 33 2.4 – Development of a quantitative assay to detect type-I interferon responses of nucleic acids ....................................................................................................... 46 2.5 – Genetic perturbation using RNA interference ............................................ 64 2.6 – Screening strategy .................................................................................... 69 2.7 – Conclusion ................................................................................................ 82 Chapter 3: Generation of a candidate gene set by curation and quantitative proteomics 3.1 – Introduction: candidate gene selection ...................................................... 84 3.2 – Candidate gene selection: interferon-regulated, DNA-stimulated gene from published arrays ................................................................................................. 84 3.3 – Candidate gene selection: DNA SILAC ..................................................... 90 3.4 – Candidate gene selection: helicases ......................................................... 93 3.5 – Candidate gene selection: cytoplasmic DNA-binding proteins .................. 98 3.6 – Candidate gene selection: putative negative regulators and signaling molecules ........................................................................................................... 99 3.7 – Conclusion .............................................................................................. 104 v Chapter 4: A High-throughput Loss-of-Function RNAi Screen for of the ISD-Sending Pathway Reveals Identifies Known Components and Novel Regulators 4.1 – Introduction ............................................................................................. 110 4.2 – Pilot screen: phosphatases and deubiquitinases .................................... 110 4.3 – High-throughput loss-of-function RNAi screen ........................................ 115 4.4 – Database development ........................................................................... 119 4.5 – Secondary screening .............................................................................. 133 4.6 – Conclusion .............................................................................................. 143 Chapter 5: Validation and Characterization of Novel Regulators of the DNA Sensing Pathway 5.1 – Introduction ............................................................................................. 145 5.2 – Validation of putative DNA-sensors ........................................................ 145 5.3 – Abcf1 ........................................................................................................ 149 5.4 – Ifit1 ........................................................................................................... 157 5.5 – Reep4 ....................................................................................................... 167 5.6 – Putative ISD-sensing pathway signaling molecules ................................ 170 5.7 – Putative ISD-sending pathway candidates with no known ISD-interaction partners ............................................................................................................ 171 5.8 – Conclusion .............................................................................................. 179 Chapter 6: Concluding Remarks and Network Analysis 6.1 – Overview: Screening development, analysis and outcome .................... 182 6.2 – Protein-protein interaction network analysis ........................................... 184 6.3 – Predictions and concluding remarks ....................................................... 191 Chapter 7: Material and Methods ....................................................................................... 198 References ................................................................................................................... 204 vi List of Figures and Tables Figure 1.1 Nucleic acid sensors
Recommended publications
  • Wo 2010/075007 A2
    (12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT) (19) World Intellectual Property Organization International Bureau (10) International Publication Number (43) International Publication Date 1 July 2010 (01.07.2010) WO 2010/075007 A2 (51) International Patent Classification: (81) Designated States (unless otherwise indicated, for every C12Q 1/68 (2006.01) G06F 19/00 (2006.01) kind of national protection available): AE, AG, AL, AM, C12N 15/12 (2006.01) AO, AT, AU, AZ, BA, BB, BG, BH, BR, BW, BY, BZ, CA, CH, CL, CN, CO, CR, CU, CZ, DE, DK, DM, DO, (21) International Application Number: DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, GT, PCT/US2009/067757 HN, HR, HU, ID, IL, IN, IS, JP, KE, KG, KM, KN, KP, (22) International Filing Date: KR, KZ, LA, LC, LK, LR, LS, LT, LU, LY, MA, MD, 11 December 2009 ( 11.12.2009) ME, MG, MK, MN, MW, MX, MY, MZ, NA, NG, NI, NO, NZ, OM, PE, PG, PH, PL, PT, RO, RS, RU, SC, SD, (25) Filing Language: English SE, SG, SK, SL, SM, ST, SV, SY, TJ, TM, TN, TR, TT, (26) Publication Language: English TZ, UA, UG, US, UZ, VC, VN, ZA, ZM, ZW. (30) Priority Data: (84) Designated States (unless otherwise indicated, for every 12/3 16,877 16 December 2008 (16.12.2008) US kind of regional protection available): ARIPO (BW, GH, GM, KE, LS, MW, MZ, NA, SD, SL, SZ, TZ, UG, ZM, (71) Applicant (for all designated States except US): DODDS, ZW), Eurasian (AM, AZ, BY, KG, KZ, MD, RU, TJ, W., Jean [US/US]; 938 Stanford Street, Santa Monica, TM), European (AT, BE, BG, CH, CY, CZ, DE, DK, EE, CA 90403 (US).
    [Show full text]
  • Androgen Receptor Binding Sites Identified by a GREF GATA Model
    doi:10.1016/j.jmb.2005.09.009 J. Mol. Biol. (2005) 353, 763–771 COMMUNICATION Androgen Receptor Binding Sites Identified by a GREF_GATA Model Katsuaki Masuda1, Thomas Werner2, Shilpi Maheshwari1 Matthias Frisch2, Soyon Oh1, Gyorgy Petrovics1, Klaus May2 Vasantha Srikantan1, Shiv Srivastava1 and Albert Dobi1* 1Center for Prostate Disease Changes in transcriptional regulation can be permissive for tumor Research, Department of progression by allowing for selective growth advantage of tumor cells. Surgery, Uniformed Services Tumor suppressors can effectively inhibit this process. The PMEPA1 gene, a University, Rockville, MD potent inhibitor of prostate cancer cell growth is an androgen-regulated 20852, USA gene. We addressed the question of whether or not androgen receptor can directly bind to specific PMEPA1 promoter upstream sequences. To test this 2Genomatix Software GmbH hypothesis we extended in silico prediction of androgen receptor binding D-80339 Munich, Germany sites by a modeling approach and verified the actual binding by in vivo chromatin immunoprecipitation assay. Promoter upstream sequences of highly androgen-inducible genes were examined from microarray data of prostate cancer cells for transcription factor binding sites (TFBSs). Results were analyzed to formulate a model for the description of specific androgen receptor binding site context in these sequences. In silico analysis and subsequent experimental verification of the selected sequences suggested that a model that combined a GREF and a GATA TFBS was sufficient for predicting a class of functional androgen receptor binding sites. The GREF matrix family represents androgen receptor, glucocorticoid receptor and progesterone receptor binding sites and the GATA matrix family represents GATA binding protein 1–6 binding sites.
    [Show full text]
  • Literature Mining Sustains and Enhances Knowledge Discovery from Omic Studies
    LITERATURE MINING SUSTAINS AND ENHANCES KNOWLEDGE DISCOVERY FROM OMIC STUDIES by Rick Matthew Jordan B.S. Biology, University of Pittsburgh, 1996 M.S. Molecular Biology/Biotechnology, East Carolina University, 2001 M.S. Biomedical Informatics, University of Pittsburgh, 2005 Submitted to the Graduate Faculty of School of Medicine in partial fulfillment of the requirements for the degree of Doctor of Philosophy University of Pittsburgh 2016 UNIVERSITY OF PITTSBURGH SCHOOL OF MEDICINE This dissertation was presented by Rick Matthew Jordan It was defended on December 2, 2015 and approved by Shyam Visweswaran, M.D., Ph.D., Associate Professor Rebecca Jacobson, M.D., M.S., Professor Songjian Lu, Ph.D., Assistant Professor Dissertation Advisor: Vanathi Gopalakrishnan, Ph.D., Associate Professor ii Copyright © by Rick Matthew Jordan 2016 iii LITERATURE MINING SUSTAINS AND ENHANCES KNOWLEDGE DISCOVERY FROM OMIC STUDIES Rick Matthew Jordan, M.S. University of Pittsburgh, 2016 Genomic, proteomic and other experimentally generated data from studies of biological systems aiming to discover disease biomarkers are currently analyzed without sufficient supporting evidence from the literature due to complexities associated with automated processing. Extracting prior knowledge about markers associated with biological sample types and disease states from the literature is tedious, and little research has been performed to understand how to use this knowledge to inform the generation of classification models from ‘omic’ data. Using pathway analysis methods to better understand the underlying biology of complex diseases such as breast and lung cancers is state-of-the-art. However, the problem of how to combine literature- mining evidence with pathway analysis evidence is an open problem in biomedical informatics research.
    [Show full text]
  • Genome-Wide Association Study of Multiplex Schizophrenia Pedigrees
    Article Genome-Wide Association Study of Multiplex Schizophrenia Pedigrees Douglas F. Levinson, M.D. Anthony O’Neill, M.D. in the primary European-ancestry analyses). Association was tested for single SNPs and Jianxin Shi, Ph.D. George N. Papadimitriou, M.D. genetic pathways. Polygenic scores based Kai Wang, Ph.D. Dimitris Dikeos, M.D. on family study results were used to predict case-control status in the Schizophrenia Sang Oh, M.Sc. Wolfgang Maier, M.D. Psychiatric GWAS Consortium (PGC) data set, and consistency of direction of effect Brien Riley, Ph.D. Bernard Lerer, M.D. with the family study was determined for Ann E. Pulver, Ph.D. Dominique Campion, M.D., top SNPs in the PGC GWAS analysis. Within- family segregation was examined for Dieter B. Wildenauer, Ph.D. Ph.D. schizophrenia-associated rare CNVs. Claudine Laurent, M.D., Ph.D. David Cohen, M.D., Ph.D. Results: No genome-wide significant asso- Maurice Jay, M.D. ciations were observed for single SNPs or for Bryan J. Mowry, M.D., pathways. PGC case and control subjects F.R.A.N.Z.C.P. Ayman Fanous, M.D. had significantly different genome-wide Pablo V. Gejman, M.D. Peter Eichhammer, M.D. polygenic scores (computed by weighting their genotypes by log-odds ratios from the 2 Michael J. Owen, Ph.D., Jeremy M. Silverman, Ph.D. family study) (best p=10 17, explaining F.R.C.Psych. 0.4% of the variance). Family study and Nadine Norton, Ph.D. PGC analyses had consistent directions for Kenneth S. Kendler, M.D.
    [Show full text]
  • Detailed Characterization of Human Induced Pluripotent Stem Cells Manufactured for Therapeutic Applications
    Stem Cell Rev and Rep DOI 10.1007/s12015-016-9662-8 Detailed Characterization of Human Induced Pluripotent Stem Cells Manufactured for Therapeutic Applications Behnam Ahmadian Baghbaderani 1 & Adhikarla Syama2 & Renuka Sivapatham3 & Ying Pei4 & Odity Mukherjee2 & Thomas Fellner1 & Xianmin Zeng3,4 & Mahendra S. Rao5,6 # The Author(s) 2016. This article is published with open access at Springerlink.com Abstract We have recently described manufacturing of hu- help determine which set of tests will be most useful in mon- man induced pluripotent stem cells (iPSC) master cell banks itoring the cells and establishing criteria for discarding a line. (MCB) generated by a clinically compliant process using cord blood as a starting material (Baghbaderani et al. in Stem Cell Keywords Induced pluripotent stem cells . Embryonic stem Reports, 5(4), 647–659, 2015). In this manuscript, we de- cells . Manufacturing . cGMP . Consent . Markers scribe the detailed characterization of the two iPSC clones generated using this process, including whole genome se- quencing (WGS), microarray, and comparative genomic hy- Introduction bridization (aCGH) single nucleotide polymorphism (SNP) analysis. We compare their profiles with a proposed calibra- Induced pluripotent stem cells (iPSCs) are akin to embryonic tion material and with a reporter subclone and lines made by a stem cells (ESC) [2] in their developmental potential, but dif- similar process from different donors. We believe that iPSCs fer from ESC in the starting cell used and the requirement of a are likely to be used to make multiple clinical products. We set of proteins to induce pluripotency [3]. Although function- further believe that the lines used as input material will be used ally identical, iPSCs may differ from ESC in subtle ways, at different sites and, given their immortal status, will be used including in their epigenetic profile, exposure to the environ- for many years or even decades.
    [Show full text]
  • Strand Breaks for P53 Exon 6 and 8 Among Different Time Course of Folate Depletion Or Repletion in the Rectosigmoid Mucosa
    SUPPLEMENTAL FIGURE COLON p53 EXONIC STRAND BREAKS DURING FOLATE DEPLETION-REPLETION INTERVENTION Supplemental Figure Legend Strand breaks for p53 exon 6 and 8 among different time course of folate depletion or repletion in the rectosigmoid mucosa. The input of DNA was controlled by GAPDH. The data is shown as ΔCt after normalized to GAPDH. The higher ΔCt the more strand breaks. The P value is shown in the figure. SUPPLEMENT S1 Genes that were significantly UPREGULATED after folate intervention (by unadjusted paired t-test), list is sorted by P value Gene Symbol Nucleotide P VALUE Description OLFM4 NM_006418 0.0000 Homo sapiens differentially expressed in hematopoietic lineages (GW112) mRNA. FMR1NB NM_152578 0.0000 Homo sapiens hypothetical protein FLJ25736 (FLJ25736) mRNA. IFI6 NM_002038 0.0001 Homo sapiens interferon alpha-inducible protein (clone IFI-6-16) (G1P3) transcript variant 1 mRNA. Homo sapiens UDP-N-acetyl-alpha-D-galactosamine:polypeptide N-acetylgalactosaminyltransferase 15 GALNTL5 NM_145292 0.0001 (GALNT15) mRNA. STIM2 NM_020860 0.0001 Homo sapiens stromal interaction molecule 2 (STIM2) mRNA. ZNF645 NM_152577 0.0002 Homo sapiens hypothetical protein FLJ25735 (FLJ25735) mRNA. ATP12A NM_001676 0.0002 Homo sapiens ATPase H+/K+ transporting nongastric alpha polypeptide (ATP12A) mRNA. U1SNRNPBP NM_007020 0.0003 Homo sapiens U1-snRNP binding protein homolog (U1SNRNPBP) transcript variant 1 mRNA. RNF125 NM_017831 0.0004 Homo sapiens ring finger protein 125 (RNF125) mRNA. FMNL1 NM_005892 0.0004 Homo sapiens formin-like (FMNL) mRNA. ISG15 NM_005101 0.0005 Homo sapiens interferon alpha-inducible protein (clone IFI-15K) (G1P2) mRNA. SLC6A14 NM_007231 0.0005 Homo sapiens solute carrier family 6 (neurotransmitter transporter) member 14 (SLC6A14) mRNA.
    [Show full text]
  • Molecular Cytogenetics Biomed Central
    Molecular Cytogenetics BioMed Central Research Open Access MODY-like diabetes associated with an apparently balanced translocation: possible involvement of MPP7 gene and cell polarity in the pathogenesis of diabetes Elizabeth J Bhoj1, Stefano Romeo1,2, Marco G Baroni2, Guy Bartov3, Roger A Schultz3,5 and Andrew R Zinn*1,4 Address: 1McDermott Center for Human Growth and Development, The University of Texas Southwestern Medical Center, Dallas, Texas 75390, USA, 2Department of Medical Sciences, Endocrinology, University of Cagliari, Cagliari, Italy, 3Department of Pathology, The University of Texas Southwestern Medical Center, Dallas, Texas 75390, USA , 4Department of Internal Medicine, The University of Texas Southwestern Medical Center, Dallas, Texas 75390, USA and 5Signature Genomic Laboratories, LLC, Spokane, WA, USA Email: Elizabeth J Bhoj - [email protected]; Stefano Romeo - [email protected]; Marco G Baroni - [email protected]; Guy Bartov - [email protected]; Roger A Schultz - [email protected]; Andrew R Zinn* - [email protected] * Corresponding author Published: 13 February 2009 Received: 26 September 2008 Accepted: 13 February 2009 Molecular Cytogenetics 2009, 2:5 doi:10.1186/1755-8166-2-5 This article is available from: http://www.molecularcytogenetics.org/content/2/1/5 © 2009 Bhoj et al; licensee BioMed Central Ltd. This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Abstract Background: Characterization of disease-associated balanced translocations has led to the discovery of genes responsible for many disorders, including syndromes that include various forms of diabetes mellitus.
    [Show full text]
  • Microrna Regulation and Human Protein Kinase Genes
    MICRORNA REGULATION AND HUMAN PROTEIN KINASE GENES REQUIRED FOR INFLUENZA VIRUS REPLICATION by LAUREN ELIZABETH ANDERSEN (Under the Direction of Ralph A. Tripp) ABSTRACT Human protein kinases (HPKs) have profound effects on cellular responses. To better understand the role of HPKs and the signaling networks that influence influenza replication, a siRNA screen of 720 HPKs was performed. From the screen, 17 “hit” HPKs (NPR2, MAP3K1, DYRK3, EPHA6, TPK1, PDK2, EXOSC10, NEK8, PLK4, SGK3, NEK3, PANK4, ITPKB, CDC2L5, CALM2, PKN3, and HK2) were validated as important for A/WSN/33 influenza virus replication, and 6 HPKs (CDC2L5, HK2, NEK3, PANK4, PLK4 and SGK3) identified as important for A/New Caledonia/20/99 influenza virus replication. Meta-analysis of the hit HPK genes identified important for influenza virus replication showed a level of overlap, most notably with the p53/DNA damage pathway. In addition, microRNAs (miRNAs) predicted to target the validated HPK genes were determined based on miRNA seed site predictions from computational analysis and then validated using a panel of miRNA agonists and antagonists. The results identify miRNA regulation of hit HPK genes identified, specifically miR-148a by targeting CDC2L5 and miR-181b by targeting SGK3, and suggest these miRNAs also have a role in regulating influenza virus replication. Together these data advance our understanding of miRNA regulation of genes critical for virus replication and are important for development novel influenza intervention strategies. INDEX WORDS: Influenza virus,
    [Show full text]
  • Comparative Analysis of the Ubiquitin-Proteasome System in Homo Sapiens and Saccharomyces Cerevisiae
    Comparative Analysis of the Ubiquitin-proteasome system in Homo sapiens and Saccharomyces cerevisiae Inaugural-Dissertation zur Erlangung des Doktorgrades der Mathematisch-Naturwissenschaftlichen Fakultät der Universität zu Köln vorgelegt von Hartmut Scheel aus Rheinbach Köln, 2005 Berichterstatter: Prof. Dr. R. Jürgen Dohmen Prof. Dr. Thomas Langer Dr. Kay Hofmann Tag der mündlichen Prüfung: 18.07.2005 Zusammenfassung I Zusammenfassung Das Ubiquitin-Proteasom System (UPS) stellt den wichtigsten Abbauweg für intrazelluläre Proteine in eukaryotischen Zellen dar. Das abzubauende Protein wird zunächst über eine Enzym-Kaskade mit einer kovalent gebundenen Ubiquitinkette markiert. Anschließend wird das konjugierte Substrat vom Proteasom erkannt und proteolytisch gespalten. Ubiquitin besitzt eine Reihe von Homologen, die ebenfalls posttranslational an Proteine gekoppelt werden können, wie z.B. SUMO und NEDD8. Die hierbei verwendeten Aktivierungs- und Konjugations-Kaskaden sind vollständig analog zu der des Ubiquitin- Systems. Es ist charakteristisch für das UPS, daß sich die Vielzahl der daran beteiligten Proteine aus nur wenigen Proteinfamilien rekrutiert, die durch gemeinsame, funktionale Homologiedomänen gekennzeichnet sind. Einige dieser funktionalen Domänen sind auch in den Modifikations-Systemen der Ubiquitin-Homologen zu finden, jedoch verfügen diese Systeme zusätzlich über spezifische Domänentypen. Homologiedomänen lassen sich als mathematische Modelle in Form von Domänen- deskriptoren (Profile) beschreiben. Diese Deskriptoren können wiederum dazu verwendet werden, mit Hilfe geeigneter Verfahren eine gegebene Proteinsequenz auf das Vorliegen von entsprechenden Homologiedomänen zu untersuchen. Da die im UPS involvierten Homologie- domänen fast ausschließlich auf dieses System und seine Analoga beschränkt sind, können domänen-spezifische Profile zur Katalogisierung der UPS-relevanten Proteine einer Spezies verwendet werden. Auf dieser Basis können dann die entsprechenden UPS-Repertoires verschiedener Spezies miteinander verglichen werden.
    [Show full text]
  • Homologs of Genes Expressed in Caenorhabditis Elegans Gabaergic
    Hammock et al. Neural Development 2010, 5:32 http://www.neuraldevelopment.com/content/5/1/32 RESEARCH ARTICLE Open Access Homologs of genes expressed in Caenorhabditis elegans GABAergic neurons are also found in the developing mouse forebrain Elizabeth AD Hammock1,2*, Kathie L Eagleson3, Susan Barlow4,6, Laurie R Earls4,7, David M Miller III2,4,5, Pat Levitt3* Abstract Background: In an effort to identify genes that specify the mammalian forebrain, we used a comparative approach to identify mouse homologs of transcription factors expressed in developing Caenorhabditis elegans GABAergic neurons. A cell-specific microarray profiling study revealed a set of transcription factors that are highly expressed in embryonic C. elegans GABAergic neurons. Results: Bioinformatic analyses identified mouse protein homologs of these selected transcripts and their expression pattern was mapped in the mouse embryonic forebrain by in situ hybridization. A review of human homologs indicates several of these genes are potential candidates in neurodevelopmental disorders. Conclusions: Our comparative approach has revealed several novel candidates that may serve as future targets for studies of mammalian forebrain development. Background As with other cell types, the diversity of GABAergic Proper forebrain patterning and cell-fate specification neurons has its basis in different developmental origins, lay the foundation for complex behaviors. These neuro- with timing and location of birth playing key roles in developmental events in large part depend on a series of cell fate [1,6-8]. gene expression refinements (reviewed in [1]) that com- Despite the phenotypic variety of GABAergic neurons, mit cells to express certain phenotypic features that all use GABA as a neurotransmitter.
    [Show full text]
  • Content Based Search in Gene Expression Databases and a Meta-Analysis of Host Responses to Infection
    Content Based Search in Gene Expression Databases and a Meta-analysis of Host Responses to Infection A Thesis Submitted to the Faculty of Drexel University by Francis X. Bell in partial fulfillment of the requirements for the degree of Doctor of Philosophy November 2015 c Copyright 2015 Francis X. Bell. All Rights Reserved. ii Acknowledgments I would like to acknowledge and thank my advisor, Dr. Ahmet Sacan. Without his advice, support, and patience I would not have been able to accomplish all that I have. I would also like to thank my committee members and the Biomed Faculty that have guided me. I would like to give a special thanks for the members of the bioinformatics lab, in particular the members of the Sacan lab: Rehman Qureshi, Daisy Heng Yang, April Chunyu Zhao, and Yiqian Zhou. Thank you for creating a pleasant and friendly environment in the lab. I give the members of my family my sincerest gratitude for all that they have done for me. I cannot begin to repay my parents for their sacrifices. I am eternally grateful for everything they have done. The support of my sisters and their encouragement gave me the strength to persevere to the end. iii Table of Contents LIST OF TABLES.......................................................................... vii LIST OF FIGURES ........................................................................ xiv ABSTRACT ................................................................................ xvii 1. A BRIEF INTRODUCTION TO GENE EXPRESSION............................. 1 1.1 Central Dogma of Molecular Biology........................................... 1 1.1.1 Basic Transfers .......................................................... 1 1.1.2 Uncommon Transfers ................................................... 3 1.2 Gene Expression ................................................................. 4 1.2.1 Estimating Gene Expression ............................................ 4 1.2.2 DNA Microarrays ......................................................
    [Show full text]
  • The Genetics of Physiological Dispersion in Signs of Diabetes Using Murine Models
    The Genetics of Physiological Dispersion in Signs of Diabetes Using Murine Models Dayna Brown Department of Biology University of Prince Edward Island Charlottetown, PEI, Canada A thesis submitted in partial fulfilment of the requirements of the Honours Programme in the Department of Biology This Thesis is ___________________________________ Accepted Dean of Science University of Prince Edward Island May 2018 ii ABSTRACT Diabetes is a collection of diseases that affects hundreds of millions of people, with type 2 (T2D) being the most prevalent. The heritability of T2D has yet to be explained, despite many studies. This study aims to determine a piece of the missing heritability by using the newly emerging phenomenon of ‘phenotypic dispersion’ (PD) which refers to genes affecting not only mean effects but also the residual variance within genotypes. The association of loci to residual variance of traits is the method used to determine genes that may contribute to T2D development. Eight in silico mouse data sets were analyzed to test for relationships between mapped microsatellite markers and the PD of diabetic plasma variables (cholesterol, high and low-density lipoprotein, and triglyceride). 29 loci were found to be significantly associated with PD of traits within the data sets. Single nucleotide polymorphisms (SNPs) in genes nearby the associated loci were identified, with Fto, Apoa2, Foxa2, Bpifb6, and Apt1a4 being the most notable genes involved. The association between genotype and PD at all associated loci showed that when the genotype was dominant that it was dominant for low dispersion, which is suggestive of a genetic mechanism controlling the dispersion of traits.
    [Show full text]