Solving Big Data Challenges for Enterprise Application Performance Management
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Introduction to Hbase Schema Design
Introduction to HBase Schema Design AmANDeeP KHURANA Amandeep Khurana is The number of applications that are being developed to work with large amounts a Solutions Architect at of data has been growing rapidly in the recent past . To support this new breed of Cloudera and works on applications, as well as scaling up old applications, several new data management building solutions using the systems have been developed . Some call this the big data revolution . A lot of these Hadoop stack. He is also a co-author of HBase new systems that are being developed are open source and community driven, in Action. Prior to Cloudera, Amandeep worked deployed at several large companies . Apache HBase [2] is one such system . It is at Amazon Web Services, where he was part an open source distributed database, modeled around Google Bigtable [5] and is of the Elastic MapReduce team and built the becoming an increasingly popular database choice for applications that need fast initial versions of their hosted HBase product. random access to large amounts of data . It is built atop Apache Hadoop [1] and is [email protected] tightly integrated with it . HBase is very different from traditional relational databases like MySQL, Post- greSQL, Oracle, etc . in how it’s architected and the features that it provides to the applications using it . HBase trades off some of these features for scalability and a flexible schema . This also translates into HBase having a very different data model . Designing HBase tables is a different ballgame as compared to relational database systems . I will introduce you to the basics of HBase table design by explaining the data model and build on that by going into the various concepts at play in designing HBase tables through an example . -
Mysql Replication Tutorial
MySQL Replication Tutorial Lars Thalmann Technical lead Replication, Backup, and Engine Technology Mats Kindahl Lead Developer Replication Technology MySQL Conference and Expo 2008 Concepts 3 MySQL Replication Why? How? 1. High Availability Snapshots (Backup) Possibility of fail-over 1. Client program mysqldump 2. Load-balancing/Scale- With log coordinates out 2. Using backup Query multiple servers InnoDB, NDB 3. Off-site processing Don’t disturb master Binary log 1. Replication Asynchronous pushing to slave 2. Point-in-time recovery Roll-forward Terminology Master MySQL Server • Changes data • Has binlog turned on Master • Pushes binlog events to slave after slave has requested them MySQL Server Slave MySQL Server • Main control point of replication • Asks master for replication log Replication • Gets binlog event from master MySQL Binary log Server • Log of everything executed Slave • Divided into transactional components • Used for replication and point-in-time recovery Terminology Synchronous replication Master • A transaction is not committed until the data MySQL has been replicated (and applied) Server • Safer, but slower • This is available in MySQL Cluster Replication Asynchronous replication • A transaction is replicated after it has been committed MySQL Server • Faster, but you can in some cases loose transactions if master fails Slave • Easy to set up between MySQL servers Configuring Replication Required configuration – my.cnf Replication Master log-bin server_id Replication Slave server_id Optional items in my.cnf – What -
Beyond Relational Databases
EXPERT ANALYSIS BY MARCOS ALBE, SUPPORT ENGINEER, PERCONA Beyond Relational Databases: A Focus on Redis, MongoDB, and ClickHouse Many of us use and love relational databases… until we try and use them for purposes which aren’t their strong point. Queues, caches, catalogs, unstructured data, counters, and many other use cases, can be solved with relational databases, but are better served by alternative options. In this expert analysis, we examine the goals, pros and cons, and the good and bad use cases of the most popular alternatives on the market, and look into some modern open source implementations. Beyond Relational Databases Developers frequently choose the backend store for the applications they produce. Amidst dozens of options, buzzwords, industry preferences, and vendor offers, it’s not always easy to make the right choice… Even with a map! !# O# d# "# a# `# @R*7-# @94FA6)6 =F(*I-76#A4+)74/*2(:# ( JA$:+49>)# &-)6+16F-# (M#@E61>-#W6e6# &6EH#;)7-6<+# &6EH# J(7)(:X(78+# !"#$%&'( S-76I6)6#'4+)-:-7# A((E-N# ##@E61>-#;E678# ;)762(# .01.%2%+'.('.$%,3( @E61>-#;(F7# D((9F-#=F(*I## =(:c*-:)U@E61>-#W6e6# @F2+16F-# G*/(F-# @Q;# $%&## @R*7-## A6)6S(77-:)U@E61>-#@E-N# K4E-F4:-A%# A6)6E7(1# %49$:+49>)+# @E61>-#'*1-:-# @E61>-#;6<R6# L&H# A6)6#'68-# $%&#@:6F521+#M(7#@E61>-#;E678# .761F-#;)7-6<#LNEF(7-7# S-76I6)6#=F(*I# A6)6/7418+# @ !"#$%&'( ;H=JO# ;(\X67-#@D# M(7#J6I((E# .761F-#%49#A6)6#=F(*I# @ )*&+',"-.%/( S$%=.#;)7-6<%6+-# =F(*I-76# LF6+21+-671># ;G';)7-6<# LF6+21#[(*:I# @E61>-#;"# @E61>-#;)(7<# H618+E61-# *&'+,"#$%&'$#( .761F-#%49#A6)6#@EEF46:1-# -
Two Node Mysql Cluster
Two Node MySQL Cluster 1.0 EXECUTIVE SUMMARY This white paper describes the challenges CONTENTS involved in deploying the 2 node High Available MySQL-Cluster with a proposed solution. For the SECTION PAGE sake of users reading this document it also describes in brief the main components of the MySQL Cluster which are necessary to 1.0 EXECUTIVE SUMMARY………………………1 understand the paper overall. 2.0 BUSINESS CHALLENGES……………………1 The solution relies on the Linux HA framework 3.0 MYSQL CLUSTER……………………………..1 (Heartbeat/Pacemaker) so the white paper can 3.1 CLIENTS/APIS………………………………….2 be best understood with the knowledge of Linux 3.2 SQL NODE………………………………………2 HA framework. 3.3 DATA NODE…………………………………….2 3.4 NDB MANAGEMENT NODE………………….3 3.5 CHALLENGES………………………………….3 3.6 SOLUTION………………………………………4 4.0 REFERENCES………………………………….7 2.0 BUSINESS CHALLENGES The MySQL cluster demands at least 4 nodes to be present for deploying a High Available MySQL database cluster. The typical configuration of any enterprise application is a 2 Node solution (Active-Standby mode or Active-Active Mode). The challenge lies in fitting the MySQL Clsuter Nodes in the 2 Nodes offering the application services and to make it work in that configuration with no single point of failure. 3.0 MYSQL CLUSTER The intent of this section is to briefly mention the important actors and their roles in the overall MySQL Cluster. For more information the reader can refer to the MYSQL reference documents from its official site (http://dev.mysql.com/doc/index.html). MySQL Cluster is a technology that enables clustering of in-memory databases in a “shared-nothing system”. -
Data Platforms Map from 451 Research
1 2 3 4 5 6 Azure AgilData Cloudera Distribu2on HDInsight Metascale of Apache Kaa MapR Streams MapR Hortonworks Towards Teradata Listener Doopex Apache Spark Strao enterprise search Apache Solr Google Cloud Confluent/Apache Kaa Al2scale Qubole AWS IBM Azure DataTorrent/Apache Apex PipelineDB Dataproc BigInsights Apache Lucene Apache Samza EMR Data Lake IBM Analy2cs for Apache Spark Oracle Stream Explorer Teradata Cloud Databricks A Towards SRCH2 So\ware AG for Hadoop Oracle Big Data Cloud A E-discovery TIBCO StreamBase Cloudera Elas2csearch SQLStream Data Elas2c Found Apache S4 Apache Storm Rackspace Non-relaonal Oracle Big Data Appliance ObjectRocket for IBM InfoSphere Streams xPlenty Apache Hadoop HP IDOL Elas2csearch Google Azure Stream Analy2cs Data Ar2sans Apache Flink Azure Cloud EsgnDB/ zone Platforms Oracle Dataflow Endeca Server Search AWS Apache Apache IBM Ac2an Treasure Avio Kinesis LeanXcale Trafodion Splice Machine MammothDB Drill Presto Big SQL Vortex Data SciDB HPCC AsterixDB IBM InfoSphere Towards LucidWorks Starcounter SQLite Apache Teradata Map Data Explorer Firebird Apache Apache JethroData Pivotal HD/ Apache Cazena CitusDB SIEM Big Data Tajo Hive Impala Apache HAWQ Kudu Aster Loggly Ac2an Ingres Sumo Cloudera SAP Sybase ASE IBM PureData January 2016 Logic Search for Analy2cs/dashDB Logentries SAP Sybase SQL Anywhere Key: B TIBCO Splunk Maana Rela%onal zone B LogLogic EnterpriseDB SQream General purpose Postgres-XL Microso\ Ry\ X15 So\ware Oracle IBM SAP SQL Server Oracle Teradata Specialist analy2c PostgreSQL Exadata -
Mariadb Presentation
THE VALUE OF OPEN SOURCE MICHAEL ”MONTY” WIDENIUS Entrepreneur, MariaDB Hacker, MariaDB CTO MariaDB Corporation AB 2019-09-25 Seoul 11 Reasons Open Source is Better than Closed Source ● Using open standards (no lock in into proprietary standards) ● Resource friendly; OSS software tend to work on old hardware ● Lower cost; Usually 1/10 of closed source software ● No cost for testing the full software ● Better documentation and more troubleshooting resources ● Better support, in many cases directly from the developers ● Better security, auditability (no trap doors and more eye balls) ● Better quality; Developed together with users ● Better customizability; You can also participate in development ● No vendor lock in; More than one vendor can give support ● When using open source, you take charge of your own future Note that using open source does not mean that you have to become a software producer! OPEN SOURCE, THE GOOD AND THE BAD ● Open source is a better way to develop software ● More developers ● More spread ● Better code (in many cases) ● Works good for projects that can freely used by a lot of companies in their production or products. ● It's very hard to create a profitable company developing an open source project. ● Not enough money to pay developers. ● Hard to get money and investors for most projects (except for infrastructure projects like libraries or daemon services). OPEN SOURCE IS NATURAL OR WHY OPEN SOURCE WORKS ● You use open source because it's less expensive (and re-usable) ● You solve your own problems and get free help and development efforts from others while doing it. -
GIS Features in Mariadb and Mysql What Has Happened in Recent Years?
GIS features in MariaDB and MySQL What has happened in recent years? Hartmut Holzgraefe Principal Support Engineer at MariaDB Inc. [email protected] August 20, 2016 Hartmut Holzgraefe (MariaDB Inc.) GIS features in MariaDB and MySQL August 20, 2016 1 / 35 Overview 1 GIS Introduction 2 MySQL GIS History 3 Other Open Source GIS Databases 4 Performance 5 The End ... Hartmut Holzgraefe (MariaDB Inc.) GIS features in MariaDB and MySQL August 20, 2016 2 / 35 GIS Introduction 1 GIS Introduction Examples 2 MySQL GIS History 3 Other Open Source GIS Databases 4 Performance 5 The End ... Hartmut Holzgraefe (MariaDB Inc.) GIS features in MariaDB and MySQL August 20, 2016 3 / 35 GIS Data Types Geospatial Information System (GIS) data types describe geometries in a (usually) two-dimensional space. There are several different geometric subtypes: Simple types: POINT, LINESTRING, POLYGON, GEOMETRY Collection types: MULTIPOINT, MULTILINESTRING, MULTIPOLYGON, GEOMETRYCOLLECTION Hartmut Holzgraefe (MariaDB Inc.) GIS features in MariaDB and MySQL August 20, 2016 4 / 35 Spatial Properties Spatial properties of a geometry can be: Coordinates Length Area Is Closed Bounding Rectangle ... Hartmut Holzgraefe (MariaDB Inc.) GIS features in MariaDB and MySQL August 20, 2016 5 / 35 Spatial Relationships The most important spatial relationships between two geometries: Hartmut Holzgraefe (MariaDB Inc.) GIS features in MariaDB and MySQL August 20, 2016 6 / 35 Examples 1 GIS Introduction Examples 2 MySQL GIS History 3 Other Open Source GIS Databases 4 Performance 5 The -
Apache Cassandra on AWS Whitepaper
Apache Cassandra on AWS Guidelines and Best Practices January 2016 Amazon Web Services – Apache Cassandra on AWS January 2016 © 2016, Amazon Web Services, Inc. or its affiliates. All rights reserved. Notices This document is provided for informational purposes only. It represents AWS’s current product offerings and practices as of the date of issue of this document, which are subject to change without notice. Customers are responsible for making their own independent assessment of the information in this document and any use of AWS’s products or services, each of which is provided “as is” without warranty of any kind, whether express or implied. This document does not create any warranties, representations, contractual commitments, conditions or assurances from AWS, its affiliates, suppliers or licensors. The responsibilities and liabilities of AWS to its customers are controlled by AWS agreements, and this document is not part of, nor does it modify, any agreement between AWS and its customers. Page 2 of 52 Amazon Web Services – Apache Cassandra on AWS January 2016 Notices 2 Abstract 4 Introduction 4 NoSQL on AWS 5 Cassandra: A Brief Introduction 6 Cassandra: Key Terms and Concepts 6 Write Request Flow 8 Compaction 11 Read Request Flow 11 Cassandra: Resource Requirements 14 Storage and IO Requirements 14 Network Requirements 15 Memory Requirements 15 CPU Requirements 15 Planning Cassandra Clusters on AWS 16 Planning Regions and Availability Zones 16 Planning an Amazon Virtual Private Cloud 18 Planning Elastic Network Interfaces 19 Planning -
Apache Cassandra and Apache Spark Integration a Detailed Implementation
Apache Cassandra and Apache Spark Integration A detailed implementation Integrated Media Systems Center USC Spring 2015 Supervisor Dr. Cyrus Shahabi Student Name Stripelis Dimitrios 1 Contents 1. Introduction 2. Apache Cassandra Overview 3. Apache Cassandra Production Development 4. Apache Cassandra Running Requirements 5. Apache Cassandra Read/Write Requests using the Python API 6. Types of Cassandra Queries 7. Apache Spark Overview 8. Building the Spark Project 9. Spark Nodes Configuration 10. Building the Spark Cassandra Integration 11. Running the Spark-Cassandra Shell 12. Summary 2 1. Introduction This paper can be used as a reference guide for a detailed technical implementation of Apache Spark v. 1.2.1 and Apache Cassandra v. 2.0.13. The integration of both systems was deployed on Google Cloud servers using the RHEL operating system. The same guidelines can be easily applied to other operating systems (Linux based) as well with insignificant changes. Cluster Requirements: Software Java 1.7+ installed Python 2.7+ installed Ports A number of at least 7 ports in each node of the cluster must be constantly opened. For Apache Cassandra the following ports are the default ones and must be opened securely: 9042 - Cassandra native transport for clients 9160 - Cassandra Port for listening for clients 7000 - Cassandra TCP port for commands and data 7199 - JMX Port Cassandra For Apache Spark any 4 random ports should be also opened and secured, excluding ports 8080 and 4040 which are used by default from apache Spark for creating the Web UI of each application. It is highly advisable that one of the four random ports should be the port 7077, because it is the default port used by the Spark Master listening service. -
Mariadb Subscription Services Agreement
MARIADB CORPORATION MariaDB Subscription Services MariaDB Subscription customers have access to technical support services including Problem Resolution Support, Engineering Support, Consultative Support, Remote Login Support, and Telephone Support for the MariaDB platform (MariaDB server, MariaDB TX for transactions, MariaDB AX for analytics, MariaDB MaxScale, and related products like storage engines) via the Customer Support Portal. Each designated technical contact will receive a Customer Support Portal login (based on the associated email address) that can be used to report new support issues, monitor ongoing issues, or review historical issues. Information regarding making changes to technical contacts can be found in the "Welcome Letter" provided after signup, and is also available in the “Contact Us” section of the Customer Support Portal. If you have issues initially logging into the Customer Support Portal, you will be prompted to email [email protected] for further assistance. If Remote DBA services are purchased, an on-boarding call is scheduled to gather the necessary information for the MariaDB Remote DBA team to remotely access supported products. Information about the architecture, operating systems, database server versions, backup schedules, etc will also be documented during this call. Once the required information has been collected, monitoring software will be installed and setup to alert MariaDB Corporation. Certain alerts such as server availability, replication health, and others will be configured to open issues automatically in the Customer Support Portal. All services are delivered in English. MariaDB Corporation will use reasonable efforts to provide technical support in languages other than English using MariaDB Corporation’s available personnel via voice calls and in-person meetings, but may not have such resources available at all or at the time of the support request. -
Create Table with Double Datatype in Sql
Create Table With Double Datatype In Sql Multidigitate Dmitri depolymerized purely, he intertwining his saurels very flatteringly. Vapourish and veilless artfullyMartainn but never emblazed singsongs her apologist his agaves! hectically. Downrange Bob still sparged: insipient and military Barty outclass quite Python object represents the current value will run sql statement is set this product or subquery is true and table with in sql create datatype Dim cnn as double, in whatever you can add the value types used with oracle app or create table with double datatype in sql data within a scale numbers. The values for precise numerical data type when declaring a new record creation, create table with double datatype in sql standard access. Java types does not all shapes that the create table with double datatype in sql to timetz, double arrays cannot contain white space regardless of this example, enter a restricted. Types that vowel retain that can be able to collect, data types and sql create table in another consistent and arranged for defining the rows of dimensions is possible. Percentage data type Microsoft Power BI Cookbook Book O'Reilly. Each column for learning on the counters. You compare to table sql. Depending on the character strings are entered in sql will not necessary and video meetings and create table with double datatype in sql time data. Dates are extremely small info that are numbers that map to table with in sql create a primary key. Please leave good coverage of ways to place certain cookies to use the next, table with in sql create datatype, before updating the. -
Apache Hbase, the Scaling Machine Jean-Daniel Cryans Software Engineer at Cloudera @Jdcryans
Apache HBase, the Scaling Machine Jean-Daniel Cryans Software Engineer at Cloudera @jdcryans Tuesday, June 18, 13 Agenda • Introduction to Apache HBase • HBase at StumbleUpon • Overview of other use cases 2 Tuesday, June 18, 13 About le Moi • At Cloudera since October 2012. • At StumbleUpon for 3 years before that. • Committer and PMC member for Apache HBase since 2008. • Living in San Francisco. • From Québec, Canada. 3 Tuesday, June 18, 13 4 Tuesday, June 18, 13 What is Apache HBase Apache HBase is an open source distributed scalable consistent low latency random access non-relational database built on Apache Hadoop 5 Tuesday, June 18, 13 Inspiration: Google BigTable (2006) • Goal: Low latency, consistent, random read/ write access to massive amounts of structured data. • It was the data store for Google’s crawler web table, gmail, analytics, earth, blogger, … 6 Tuesday, June 18, 13 HBase is in Production • Inbox • Storage • Web • Search • Analytics • Monitoring 7 Tuesday, June 18, 13 HBase is in Production • Inbox • Storage • Web • Search • Analytics • Monitoring 7 Tuesday, June 18, 13 HBase is in Production • Inbox • Storage • Web • Search • Analytics • Monitoring 7 Tuesday, June 18, 13 HBase is in Production • Inbox • Storage • Web • Search • Analytics • Monitoring 7 Tuesday, June 18, 13 HBase is Open Source • Apache 2.0 License • A Community project with committers and contributors from diverse organizations: • Facebook, Cloudera, Salesforce.com, Huawei, eBay, HortonWorks, Intel, Twitter … • Code license means anyone can modify and use the code. 8 Tuesday, June 18, 13 So why use HBase? 9 Tuesday, June 18, 13 10 Tuesday, June 18, 13 Old School Scaling => • Find a scaling problem.