9. Synchrotron Radiation

Total Page:16

File Type:pdf, Size:1020Kb

9. Synchrotron Radiation Radiative Processes in Astrophysics 9. Synchrotron Radiation Eline Tolstoy http://www.astro.rug.nl/~etolstoy/astroa07/ Useful reminders relativistic terms, and simplifications for very high velocities are used very commonly. when i.e., ultra-relativistic case binomial theorem taylor approx. Synchrotron Radiation (magneto-bremsstrahlung) Emission by ultra-relativistic electrons spiraling around magnetic field lines Space is full of magnetic fields typically very weak magnetic fields, but there is a plentiful supply of relativistic electrons in low density environments location Field strength (gauss) interstellar medium 10-6 stellar atmosphere 1 Supermassive Black Hole 104 White Dwarf 108 Neutron star 1012 this room 0.3 Crab Nebula 10-3 1 gauss (G) = 10-4 tesla (T) 1 tesla (T) = 1 Wb m-2 Equations of Motion A charged particle moving in a magnetic field radiates energy. At non- relativistic velocities, this is cyclotron radiation and at relativistic velocities synchrotron radiation. The relativistic form of the equation of motion of a particle in a magnetic field is given by the Lorentz four-force: As the force on the particle is perpendicular to the motion, the magnetic field does no work on the particle, and so it’s speed is constant, i.e. |v| = constant. The particle has constant speed v, but it’s direction may change. Thus: Helical motion r is the radius of orbit around the field lines, the ``radius of gyration'', and ! is the ``pitch angle'' or the inclination of the velocity vector to the magnetic field lines. For motion perpendicular to the fields, ! = "/2. The combination of circular motion and uniform motion along the field is a helical motion of the particle For an electron: In ISM typical B~3 x 10-6 gauss, # = 1 3 Cosmic ray electrons, # = 10 , $B<< 1Hz let’s remember beaming... Beaming means that the emitted radiation appears to be concentrated in a narrow cone, and an observer will see radiation from the particle only for a small fraction ~1/# of it’s orbit, which is when the particle is moving almost directly towards the observer and consequently there is a big doppler effect the observer will see a pulse of radiation confined to a time interval much smaller than the gyration period. The spectrum will be spread over a much broader region than $B/2" Since the velocity and acceleration are perpendicular this is an essential feature of synchrotron radiation Radiation pulse The leading edge of the pulse is emitted as the particle enters the active zone (pt 1), and the trailing edge is emitted time ~1/(#$B) later as the particle leaves the active zone (pt 2). 1 2 the leading edge has meanwhile propagated a distance c%t’ whereas the particle has moved v%t’ so it has almost kept up with the leading edge. the interval between the reception of pulses is the radiation emerges at frequency Frequency of Gyrating Electrons in the rest frame At high energies, v~c, Doppler shifts (1-n·'), combined with the fact that the vector potential A and the scalar potential ( have different retarded times at different parts of the electron’s orbit makes the effective charge distribution different from a simple rotating dipole, it becomes a superposition of dipole ($B), quadrapole (2$B), sextapole (3$B), etc... Synchrotron Spectrum If the orbit were purely circular (&="/2) then the observer would detect a series of pulses with P=2"/$B. However since the electron’s guiding centre is moving with velocity vcos& along the field line, and since the motion has a component projected toward the observer v2cos2& there is a doppler compression of the pulse period. The pulses are spaced apart by a distance %s: The observed period: Pulse width The width of the pulse %t’ is determined by the fraction of the gyromagnetic period P that the electron is radiating toward the observer. This pulse is subject to a Doppler compression since the particle is instantaneously moving directly toward the observer with velocity v. Putting it together Spectrum to get the spectrum we just take the Fourier transform of the pulse train bandwidth high harmonic of gyro-frequency i.e. 1012 th harmonic for #~104 observable radio spectrum of cosmic ray electrons relativistic motion has boosted the frequency by factor 108 Total Power Radiated acceleration is perpendicular to the velocity (a|| = 0) for an isotropic distribution of velocities it is necessary to average over all angles for a given speed ', given ! is the pitch-angle between field & velocity: Synchrotron Loss Time (cooling): Electrons in a plasma emitting synchrotron radiation cool down. The time scale for this to occur is given by the energy of the electrons divided by the rate at which they are radiating away their energy. The energy E = #mc2 so this sets an upper limit to the electron energy as a function of time since the electrons were injected. Even if the electrons were infinitely energetic they will have cooled to after time t, and electrons of lower initial energy will have E < Emax the half-life of a synchrotron emitting electron typical cooling times Typical location B tcool (gauss) interstellar 10-6 1010yrs medium stellar 1 5days atmosphere Super-massive 104 10-3sec black hole white dwarf 108 10-11sec neutron star 1012 10-19sec Power Law Energy Distribution In a wide range of astrophysical applications, the energy spectrum of relativistic electrons is a power-law as might be produced by a stochastic acceleration mechanism. A good example is the Fermi mechanism which operates in supernovae remnants: electrons scatter off turbulent magnetic ``bubbles’’ and are pushed towards equipartition but before they can achieve statistical equilibrium they escape the remnant around energies of 1015 eV. The resulting energy distribution: Where p is the spectral index (~2.5 for cosmic rays). To compute the emissivity or the emission coefficient we assume (1) uniform magnetic field (2) power law energy distribution (3) isotropic velocities Given the frequency spectrum for electrons of a given energy: Tricky integral Get a good approximation by assuming that all the electrons radiate at their critical frequency, )c. Then, per unit solid angle: Now substitute for E and dE in terms of ) an d). After some reduction, one finds This formula is approximate, but it differs from the exact expression by a numerical factor, of order unity. In particular it has the correct spectral index ! = (1*p)/2. For cosmic ray electrons p~2.5, thus !=*0.75. Radiation losses by the high energy particles will lead to an abrupt cutoff in the spectrum no matter how high the upper limit E2 is the spectrum we can derive a lot about a spectrum simply using the fact that the electric field is a function of & only through #& (beaming & ~ 1/#) where & is the polar angle about the direction of motion (beam) where t is the time measured in the observers frame, and the relation between & and t is: thus the time dependence of the E-field is: we don’t yet know the constant of proportionality, which may depend on any physical parameters (except t) - but we can still derive the general dependence of the spectrum on $. the fourier transform of the E-field is: using definition (from part I) definition - energy/unit freq/ unit solid angle can show that: integrating over solid angle and dividing by orbital period (both independent of frequency) where F is a dimensionless function, and C a constant of proportionality, and T is the pulse duration. can now evaluate C by comparing the total power evaluated by the integral over $ to the previous result for P we do not know what is until we specify F(x), but we can assume it is a non-dimensional arbitrary value, and still determine C. from and thus, for high relativistic case the power per unit freq emitted by each electron is Spectral Index power-law electron distribution no factor (except in ) often spectrum can be assumed to be a power law (for a frequency range). in this case, define the spectral index as the constant, s: e.g., Rayleigh-Jeans part of black-body has s = -2 can hold for the particle distribution law of relativistic electrons often the number density of particles with energies between E and E+dE (or and ) can be expressed: the total power radiated by per unit volume per unit freq by such a distribution is given by the integral over times the single particle radiation formula over all energies change variables and note the limits on the integral correspond to the limits and depend on . However if the limits are sufficiently wide and and the integral is approx. constant, and so this means that the spectral index s is related to the particle distribution index p, by when electrons are moving at velocities close to the speed of light two effects alter the nature of the radiation 1. the radiation is beamed an electron moving with Lorentz factor towards an observer emits radiation into a cone, of opening angle which means an observer will only see radiation from a small portion of the orbit when the cone is pointed towards us - a pulse of radiation which becomes shorter for more energetic electrons. 2. the pulse is foreshortened for an electron moving at v~c a photon emitted at the end of the pulse almost catches up with the photon from the start..
Recommended publications
  • Chapter 3 the Mechanisms of Electromagnetic Emissions
    BASICS OF RADIO ASTRONOMY Chapter 3 The Mechanisms of Electromagnetic Emissions Objectives: Upon completion of this chapter, you will be able to describe the difference between thermal and non-thermal radiation and give some examples of each. You will be able to distinguish between thermal and non-thermal radiation curves. You will be able to describe the significance of the 21-cm hydrogen line in radio astronomy. If the material in this chapter is unfamiliar to you, do not be discouraged if you don’t understand everything the first time through. Some of these concepts are a little complicated and few non- scientists have much awareness of them. However, having some familiarity with them will make your radio astronomy activities much more interesting and meaningful. What causes electromagnetic radiation to be emitted at different frequencies? Fortunately for us, these frequency differences, along with a few other properties we can observe, give us a lot of information about the source of the radiation, as well as the media through which it has traveled. Electromagnetic radiation is produced by either thermal mechanisms or non-thermal mechanisms. Examples of thermal radiation include • Continuous spectrum emissions related to the temperature of the object or material. • Specific frequency emissions from neutral hydrogen and other atoms and mol- ecules. Examples of non-thermal mechanisms include • Emissions due to synchrotron radiation. • Amplified emissions due to astrophysical masers. Thermal Radiation Did you know that any object that contains any heat energy at all emits radiation? When you’re camping, if you put a large rock in your campfire for a while, then pull it out, the rock will emit the energy it has absorbed as radiation, which you can feel as heat if you hold your hand a few inches away.
    [Show full text]
  • Analysis of the Cyclotron Radiation from Relativistic Electrons Interacting with a Radio-Frequency Electromagnetic Wave
    Progress In Electromagnetics Research B, Vol. 52, 117{137, 2013 ANALYSIS OF THE CYCLOTRON RADIATION FROM RELATIVISTIC ELECTRONS INTERACTING WITH A RADIO-FREQUENCY ELECTROMAGNETIC WAVE Christos Tsironis* Department of Physics, Aristotle University of Thessaloniki, Thessa- loniki 54 124, Greece Abstract|The emission of electromagnetic radiation from charged particles spiraling around magnetic ¯elds is an important e®ect in astrophysical and laboratory plasmas. In theoretical modeling, issues still not fully resolved are, among others, the inclusion of the recoil force on the relativistic electron motion and the detailed computation of the radiation power spectrum. In this paper, the cyclotron radiation emitted during the nonlinear interaction of relativistic electrons with a plane electromagnetic wave in a uniform magnetic ¯eld is examined, by analyzing the radiated power in both time and frequency domain. The dynamics of the instantaneous radiation and the emitted power spectrum from one particle, as well as from monoenergetic electron ensembles (towards a picture of the radiation properties independent of the initial conditions) is thoroughly studied. The analysis is performed for several values of the wave amplitude, focusing near the threshold for the onset of nonlinear chaos, in order to determine the alteration of the radiation in the transition from regular to chaotic motion. 1. INTRODUCTION An important factor in systems involving charged particle acceleration by electromagnetic waves, especially for diagnostic measurements, is the
    [Show full text]
  • The X-Ray Imaging Polarimetry Explorer
    Call for a Medium-size mission opportunity in ESA‟s Science Programme for a launch in 2025 (M4) XXIIPPEE The X-ray Imaging Polarimetry Explorer Lead Proposer: Paolo Soffitta (INAF-IAPS, Italy) Contents 1. Executive summary ................................................................................................................................................ 3 2. Science case ........................................................................................................................................................... 5 3. Scientific requirements ........................................................................................................................................ 15 4. Proposed scientific instruments............................................................................................................................ 20 5. Proposed mission configuration and profile ........................................................................................................ 35 6. Management scheme ............................................................................................................................................ 45 7. Costing ................................................................................................................................................................. 50 8. Annex ................................................................................................................................................................... 52 Page 1 XIPE is proposed
    [Show full text]
  • Eyes for Gamma Rays” Though the Major Peaks Suggest a Periodic- Whether These Are Truly Gamma-Ray Bursts for a Description of This System)
    sion of regularity and slow evolution in the They suggested that examination of the Vela exe-atmospheric nuclear detonation. Surpris- universe persisted into the 1960s. data might disclose evidence of bursts of ingly, however, the survey soon revealed that The feeling that transient cosmic events gamma rays at times close to the appearance the gamma-ray instruments on widely sepa- were rare was certainly prevalent in 1959 of supernovae. Such searches were con- rated satellites had sometimes responded when summit meetings were being held be- ducted; however, no distinctive signals were almost identically. Some of these events were tween England, the United States, and found. attributable to solar flare activity. However, Russia to discuss a nuclear test-ban treaty. On the other hand, there was evidence of one particularly distinctive event was dis- One key issue was the ability to detect treaty variability that had been ignored. For exam- covered for which a solar origin seemed violations unambiguously. A leading ple, the earliest x-ray data from small rocket inconsistent. Fortunately, the characteristics proposal for the detection of exo-at- probes and from satellites were often found of this event did not at all resemble those of a mospheric nuclear explosions was the use of to disagree significantly. The quality of the nuclear detonation, and thus the event did satellites with instruments that included de- data, rather than actual variations in the not create concern of a possible test-ban tectors sensitive to the gamma rays emitted sources, was suspected as the reason for treaty violation. by the explosion as well as those emitted these discrepancies.
    [Show full text]
  • Topical Review: Relativistic Laser-Plasma Interactions
    INSTITUTE OF PHYSICS PUBLISHING JOURNAL OF PHYSICS D: APPLIED PHYSICS J. Phys. D: Appl. Phys. 36 (2003) R151–R165 PII: S0022-3727(03)26928-X TOPICAL REVIEW Relativistic laser–plasma interactions Donald Umstadter Center for Ultrafast Optical Science, University of Michigan, Ann Arbor, MI 48109, USA E-mail: [email protected] Received 19 November 2002 Published 2 April 2003 Online at stacks.iop.org/JPhysD/36/R151 Abstract By focusing petawatt peak power laser light to intensities up to 1021 Wcm−2, highly relativistic plasmas can now be studied. The force exerted by light pulses with this extreme intensity has been used to accelerate beams of electrons and protons to energies of a million volts in distances of only microns. This acceleration gradient is a thousand times greater than in radio-frequency-based accelerators. Such novel compact laser-based radiation sources have been demonstrated to have parameters that are useful for research in medicine, physics and engineering. They might also someday be used to ignite controlled thermonuclear fusion. Ultrashort pulse duration particles and x-rays that are produced can resolve chemical, biological or physical reactions on ultrafast (femtosecond) timescales and on atomic spatial scales. These energetic beams have produced an array of nuclear reactions, resulting in neutrons, positrons and radioactive isotopes. As laser intensities increase further and laser-accelerated protons become relativistic, exotic plasmas, such as dense electron–positron plasmas, which are of astrophysical interest, can be created in the laboratory. This paper reviews many of the recent advances in relativistic laser–plasma interactions. 1. Introduction in this regime on the light intensity, resulting in nonlinear effects analogous to those studied with conventional nonlinear Ever since lasers were invented, their peak power and focus optics—self-focusing, self-modulation, harmonic generation, ability have steadily increased.
    [Show full text]
  • Electron Radiated Power in Cyclotron Radiation Emission Spectroscopy Experiments
    Electron Radiated Power in Cyclotron Radiation Emission Spectroscopy Experiments A. Ashtari Esfahani,1, ∗ V. Bansal,2 S. B¨oser,3 N. Buzinsky,4 R. Cervantes,1 C. Claessens,3 L. de Viveiros,5 P. J. Doe,1 M. Fertl,1 J. A. Formaggio,4 L. Gladstone,6 M. Guigue,2, y K. M. Heeger,7 J. Johnston,4 A. M. Jones,2 K. Kazkaz,8 B. H. LaRoque,2 M. Leber,9 A. Lindman,3 E. Machado,1 B. Monreal,6 E. C. Morrison,2 J. A. Nikkel,7 E. Novitski,1 N. S. Oblath,2 W. Pettus,1 R. G. H. Robertson,1 G. Rybka,1, z L. Salda~na,7 V. Sibille,4 M. Schram,2 P. L. Slocum,7 Y-H. Sun,6 J. R. Tedeschi,2 T. Th¨ummler,10 B. A. VanDevender,2 M. Wachtendonk,1 M. Walter,10 T. E. Weiss,4 T. Wendler,5 and E. Zayas4 (Project 8 Collaboration) 1Center for Experimental Nuclear Physics and Astrophysics and Department of Physics, University of Washington, Seattle, WA 98195, USA 2Pacific Northwest National Laboratory, Richland, WA 99354, USA 3Institut f¨urPhysik, Johannes-Gutenberg Universit¨atMainz, 55128 Mainz, Germany 4Laboratory for Nuclear Science, Massachusetts Institute of Technology, Cambridge, MA 02139, USA 5Department of Physics, Pennsylvania State University, State College, PA 16801, USA 6Department of Physics, Case Western Reserve University, Cleveland, OH 44106, USA 7Wright Laboratory, Department of Physics, Yale University, New Haven, CT 06520, USA 8Lawrence Livermore National Laboratory, Livermore, CA 94550, USA 9Department of Physics, University of California Santa Barbara, CA 93106, USA 10Institut f¨urKernphysik, Karlsruher Institut f¨urTechnologie, 76021 Karlsruhe, Germany (Dated: January 10, 2019) The recently developed technique of Cyclotron Radiation Emission Spectroscopy (CRES) uses frequency information from the cyclotron motion of an electron in a magnetic bottle to infer its kinetic energy.
    [Show full text]
  • Radiative Processes from Energetic Particles II: Gyromagnetic Radiation
    Hale COLLAGE 2017 Lecture 21 Radiative processes from energetic particles II: Gyromagnetic radiation Bin Chen (New Jersey Institute of Technology) Previous lectures 1) Magnetic reconnection and energy release 2) Particle acceleration and heating 3) Chromospheric evaporation, loop e- magnetic heating and cooling reconnection Following lectures: How to diagnose the e- accelerated particles and the environment? • What? • Where? How? Shibata et al. 1995 • When? Outline • Radiation from energetic particles • Bremsstrahlung à Previous lecture • Gyromagnetic radiation (“magnetobremsstrahlung”) à This lecture • Other radiative processes à Briefly in the next lecture • Coherent radiation, inverse Compton, nuclear processes • Suggested reading: • Synchrotron radiation: Chapter 5 of “Essential Radio Astronomy” by Condon & Ransom 2016 • Gyroresonance radiation: Chapter 5 of Gary & Keller 2004 • Gyrosynchrotron radiation: Dulk & Marsh 1982 • Next two lectures: Diagnosing flare energetic particles using radio and hard X-ray imaging spectroscopy 8/3/10 8/3/10 Radio'Emission' Radio'Emission' .'Thermal' bremsstrahlung'(eAp)' .' Gyrosynchrotron'radia5on'(eAB)' ..'Thermal' 'Plasma'radia5on'( bremsstrahlungwAw'(eAp)' )' .' Gyrosynchrotron'radia5on'(eAB)' .'Plasma'radia5on'( wAw)' Radiation from an accelerated charge LarmorLarmor'formulae:'radia5on'from'an'accelerated'charge'''formulae:'radia5on'from'an'accelerated'charge'' 2 2 2 2 dP q 2 2 2q 2 dP q 2 2 2q 2 Larmor formula: = 3 a sin θ P = 3 a d =4 c 3 a sin θ P3c= 3 a dΩΩ 4ππc 3c Rela5vis5c'Larmor'formulae''
    [Show full text]
  • Cyclotron Radiation from a Magnetized Plasma
    P/1330 Japan Cyclotron Radiation from a Magnetized Plasma By S. Hayakawa,* N. Hokkyo,| Y. Terashima* and T. Tsuneto* For the investigation of physical properties of a The radiation has a line spectrum, the emission plasma and for the interpretation of solar radio out- frequencies being the integral multiples of the cyclo- bursts, an important clue may be provided by the tron frequency, cyclotron radiation emitted by electrons gyrating 6 1 v = СО /2ТГ = еН /27ттс ^ 2.8 x 10 Я sec" (1.3) around a static magnetic field. With regard to this we c С 0 0 treat two particular problems concerning the effect of where #o is the magnetic field strength in gauss. In fluctuating electric fields; one is the purely random most practical cases, however, œc is smaller than the fluctuation which brings about the resonance width and 2 plasma frequency cop = (4тте пе/п1)*, so that the the other the organized plasma oscillation which may cyclotron radiation cannot occur, except for its higher give rise to induced emission. The resonance width is harmonics of weak intensity. shown to be related to the slowing-down time of an The relative importance of the above two modes may electron and the spectral distribution for the dipole be compared by observing that radiation is derived under the approximation in which both the higher moment of the resonance shape and dWb /dWc dt the coherence of radiations from a number of electrons / dt " 77 U/ Я 1*27 We/ ne are neglected. The angular distribution of the induced (1.4) emission is expressed in a closed form that can be and readily reduced to the formula neglecting the effect of (cop/o) )2 = 2 the plasma oscillation.
    [Show full text]
  • Synchrotron Radiation
    Synchrotron Radiation The synchrotron radiation, the emission of very relativistic and ultrarelativistic electrons gyrating in a magnetic field, is the process which dominates much of high energy astrophysics. It was originally observed in early betatron experiments in which electrons were first accelerated to ultrarelativistic energies. This process is responsible for the radio emission from the Galaxy, from supernova remnants and extragalactic radio sources. It is also responsible for the non-thermal optical and X-ray emission observed in the Crab Nebula and possibly for the optical and X-ray continuum emission of quasars. The word non-thermal is used frequently in high energy astrophysics to describe the emission of high energy particles. This an unfortunate terminology since all emission mechanisms are ‘thermal’ in some sense. The word is conventionally taken to mean ‘continuum radiation from particles, the energy spectrum of which is not Maxwellian’. In practice, continuum emission is often referred to as ‘non-thermal’ if it cannot be described by the spectrum of thermal bremsstrahlung or black-body radiation. 1 Motion of an Electron in a Uniform, Static Magnetic field We begin by writing down the equation of motion for a particle of rest mass m0, charge ze and Lorentz factor γ = (1 − v2/c2)−1/2 in a uniform static magnetic field B. d (γm0v) = ze(v × B) (1) dt We recall that the left-hand side of this equation can be expanded as follows: d dv 3 (v · a) m0 (γv) = m0γ + m0γ v (2) dt dt c2 because the Lorentz factor γ should be written γ = (1 − v · v/c2)−1/2.
    [Show full text]
  • Cyclotron & Synchrotron Radiation
    Cyclotron & Synchrotron Radiation Synchrotron Radiation is radiation emerging from a charge moving relativistically that is accelerated by a magnetic field. The relativistic motion induces a change in the radiation pattern which is very collimated (beaming, see Lecture 4). Cyclotron Radiation: power & radiation pattern To understand synchrotron radiation let’s first begin with the non-relativistic motion of a charge accelerated by a magnetic field. That the acceleration is given by an electric field, gravity or a magnetic field does not matter for the charge, which will radiate according to the Larmor’s formula (see Lecture 5) Direction of acceleration Remember that the radiation pattern is a Radiation pattern torus with a sin^2 dependence on the angle of emission: Cyclotron Radiation: gyroradius So let’s take a charge, say an electron, and let’s put it in a uniform B field. What will happen? The acceleration is given by the Lorentz force. If the B field is orthogonal to v then: F=qvB Equating this to the centripetal force gives the “larmor radius”: m v2 mv F= =qvB→r L= r L qB We can also find the cyclotron angular frequency: 2 m v 2 qB F= =m ω R→ω = R L L m Cyclotron Radiation: cyclotron frequency From the angular frequency we can find the period of rotation of the charge: 2 π 2 π m T= = ωL qB Note that the period of the particle does not depend on the size of the orbit and is constant if B is constant. The charge that is rotating will emit radiation at a single specific frequency: ω qB ν = L = L 2π 2π m Direction of acceleration Radiation pattern Cyclotron Radiation: power spectrum ωL qB Since the emission appears at a single frequency ν = = L 2π 2π m and the dipolar emission pattern is moving along the circle with constant velocity, the electric field measured will vary sinusoidally and the power spectrum will show a single frequency (the Larmor or cyclotron frequency).
    [Show full text]
  • 5. SYNCHROTRON RADIATION 5.1 Charge Motions in a Static Magnetic
    5. SYNCHROTRON RADIATION1 5.1 Charge motions in a static magnetic field Charged particles moving inside a static magnetic field continuously accelerate due to the Lorentz force and continuously emit radiation. In the case of non-relativistic motions, the emitted radiation is named cyclotron radiation and is due to the spiraling motion of particles and consequent acceleration. The radiation frequency is just that of the gyration qB/mc, where q and m are the electric charge and mass of the particle. This is a line emission, if we neglect broadening factors. The nature of the emission changes radically if the particle becomes relativistic, and the emission is then named synchrotron emission. The motion of a generic charge is ruled by the Lorentz dynamical equation of motion [5.0] and the energy conservation equation 1 This Section particularly benefited, in addition to the Rybicki & Lightman book, by lecture notes on High Energy Astrophysics by A. Cavaliere. 5.1 (the second term has been neglected because of the scalar product and because an assumption about the lack of significant large scale electric fields - that would be immediately erased by charge motions - was made). Then we use the second eq. into the former and get (see the figure below for an illustration of the relevant quantities) [5.1] The solution is then an helicoidal motion (see graph below), with the velocity along the direction of the B field keeping constant, and a uniform circular motion around that direction with rotational pulsation given by 5.2 qB ω = . [5.2] B γ mc 5.2 Total synchrotron emitted power The total emitted power by the particle is easily studied in the instantaneous reference frame of the electron (K').
    [Show full text]
  • Cyclotron Radiation
    Cyclotron and synchrotron radiation Electron moving perpendicular to a magnetic field feels a Lorentz force. Acceleration of the electron. Radiation (Larmor’s formula). 1 Define the Lorentz factor: g ≡ 1- v 2 c 2 Non-relativistic electrons: (g ~ 1) - cyclotron radiation Relativistic electrons: (g >> 1) - synchrotron radiation Same physical origin† but very different spectra - makes sense to consider separate phenomena. ASTR 3730: Fall 2003 Start with the non-relativistic case: Particle of charge q moving at velocity v in a magnetic field B feels a force: q F = v ¥ B c Let v be the component of velocity perpendicular to the field lines (component parallel to the field remains constant). Force is constant and† normal to direction of motion. Circular motion: acceleration - qvB a = B mc …for particle mass m. v † ASTR 3730: Fall 2003 Let angular velocity of the rotation be wB. Condition for circular motion: v 2 qvB m = r c qvB mw v = B c Use c.g.s. units when applying this formula, i.e. qB -10 w = • electron charge = 4.80 x 10 esu B mc • B in Gauss • m in g • c in cm/s Power given by Larmor’s formula: † 2 2 2 4 2 2 2q 2 2q Ê qvBˆ 2q b B P = a = ¥Á ˜ = where b=v/c 3c 3 3c 3 Ë mc ¯ 3c 3m2 ASTR 3730: Fall 2003 † 4 2 2 Magnetic energy 2q b B 2 P = 3 2 density is B / 8p 3c m (c.g.s.) - energy loss is proportional to the energy density. Energy loss is† largest for low mass particles, electrons radiate much more than protons (c.f.
    [Show full text]