Foundations of Functional Programming Computer Science Tripos Part IB Easter Term Lawrence C Paulson Computer Laboratory University of Cambridge
[email protected] Copyright © 2021 by Lawrence C. Paulson Contents 1 Introduction 1 2 Equality and Normalization 6 3 Encoding Data in the λ-Calculus 11 4 Writing Recursive Functions in the λ-calculus 16 5 The λ-Calculus and Computation Theory 23 6 ISWIM: The λ-calculus as a Programming Language 29 7 Lazy Evaluation via Combinators 39 8 Compiling Methods Using Combinators 45 i ii 1 1 Introduction This course is concerned with the λ-calculus and its close relative, combinatory logic. The λ-calculus is important to functional programming and to computer science generally: 1. Variable binding and scoping in block-structured languages can be mod- elled. 2. Several function calling mechanisms — call-by-name, call-by-value, and call-by-need — can be modelled. The latter two are also known as strict evaluation and lazy evaluation. 3. The λ-calculus is Turing universal, and is probably the most natural model of computation. Church’s Thesis asserts that the ‘computable’ functions are precisely those that can be represented in the λ-calculus. 4. All the usual data structures of functional programming, including infinite lists, can be represented. Computation on infinite objects can be defined formally in the λ-calculus. 5. Its notions of confluence (Church-Rosser property), termination, and nor- mal form apply generally in rewriting theory. 6. Lisp, one of the first major programming languages, was inspired by the λ-calculus. Many functional languages, such as ML, consist of little more than the λ-calculus with additional syntax.