Chemoreceptors and Cardiovascular Control in Acute and Chronic Systemic Hypoxia

Total Page:16

File Type:pdf, Size:1020Kb

Chemoreceptors and Cardiovascular Control in Acute and Chronic Systemic Hypoxia Brazilian Journal of Medical and Biological Research (1998) 31: 863-888 Chemoreceptors and systemic hypoxia 863 ISSN 0100-879X Chemoreceptors and cardiovascular control in acute and chronic systemic hypoxia J.M. Marshall Department of Physiology, The Medical School, Birmingham, UK Abstract Correspondence This review describes the ways in which the primary bradycardia and Key words J.M. Marshall peripheral vasoconstriction evoked by selective stimulation of periph- • Hypoxia Department of Physiology eral chemoreceptors can be modified by the secondary effects of a • Adenosine The Medical School chemoreceptor-induced increase in ventilation. The evidence that • Chemoreceptors Birmingham B15 2TT strong stimulation of peripheral chemoreceptors can evoke the behav- • Vasodilatation UK • Noradrenaline E-mail: [email protected] ioural and cardiovascular components of the alerting or defence response which is characteristically evoked by novel or noxious Presented at the XII Annual Meeting stimuli is considered. The functional significance of all these influ- of the Federação de Sociedades de ences in systemic hypoxia is then discussed with emphasis on the fact Biologia Experimental, Caxambu, that these reflex changes can be overcome by the local effects of MG, Brasil, August 27-30, 1997. hypoxia: central neural hypoxia depresses ventilation, hypoxia acting on the heart causes bradycardia and local hypoxia of skeletal muscle and brain induces vasodilatation. Further, it is proposed that these Received January 20, 1998 local influences can become interdependent, so generating a positive Accepted March 17, 1998 feedback loop that may explain sudden infant death syndrome (SIDS). It is also argued that a major contributor to these local influences is adenosine. The role of adenosine in determining the distribution of O2 in skeletal muscle microcirculation in hypoxia is discussed, together with its possible cellular mechanisms of action. Finally, evidence is presented that in chronic systemic hypoxia, the reflex vasoconstrictor influences of the sympathetic nervous system are reduced and/or the local dilator influences of hypoxia are enhanced. In vitro and in vivo findings suggest this is partly explained by upregulation of nitric oxide (NO) synthesis by the vascular endothelium which facilitates vasodi- latation induced by adenosine and other NO-dependent dilators and attenuates noradrenaline-evoked vasoconstriction. Introduction cardiovascular system. Since then, a great deal has been discovered about the respira- The peripheral chemoreceptors have been tory, cardiac and vascular responses evoked known about at least since the beginning of when the chemoreceptors are selectively this century. In the 1920’s and 1930’s it was stimulated and about the ways in which the recognised that stimulation of the carotid responses interact with one another. How- and aortic chemoreceptors could produce ever, still relatively little is known about the reflex effects both on the respiratory and functional importance of peripheral chemore- Braz J Med Biol Res 31(7) 1998 864 J.M. Marshall ceptors in cardiovascular control under natu- of chemoreceptor stimulation could have a ral, physiological conditions, or in patho- large impact on the magnitude and direction logical situations. Over the last 10-15 years of the cardiovascular changes (3). The na- we have been investigating their role in regu- ture of these respiratory and cardiovascular lating the cardiovascular system in acute and interactions was largely established by the chronic systemic hypoxia and in particular, carefully controlled work of M. de Burgh we have been trying to establish how the Daly and colleagues (see Figure 1). reflex responses interact with the local influ- ences of hypoxia. This is the major subject Vascular responses matter of this review. However, in order to put this work into context, it is first neces- In a series of studies on dogs anaesthe- sary to briefly review what is known of the tised with chloralose or barbiturates, Daly effects of selective stimulation of the periph- and co-workers perfused the vascularly iso- eral chemoreceptors. lated carotid regions with blood from a donor dog in such a manner that the perfusion pres- Primary and secondary responses sure and therefore the stimulus to the carotid baroreceptors was maintained constant, Between the 1930’s and 1950’s, several whilst the carotid bodies were exposed either studies were published on the cardiovascu- to normoxic, normocapnic blood or to hy- lar changes that could be evoked by selective poxic, hypercapnic blood. In early studies, stimulation of the carotid bodies, either by the systemic circulation was performed by a local injection of substances such as sodium pump at a constant volume per minute so that cyanide or saline equilibrated with CO2, or any change in perfusion pressure reflected by perfusion with hypoxia and hypercapnic changes in systemic vascular resistance. In blood. The results obtained were somewhat this way they were able to show that when confusing, some studies showing a rise in ventilation was spontaneous, selective stimu- arterial pressure, others a fall, some showing lation of the carotid chemoreceptors induced bradycardia, and others tachycardia (e.g. 1,2). a fall in systemic vascular resistance indicat- However, already it was beginning to be ing peripheral vasodilatation. However, when recognised that the respiratory consequences ventilation was maintained constant during Figure 1 - Schematic diagram showing the primary and sec- PaCO HR + vasodilatation ondary effects of selective stim- 2 ulation of peripheral chemore- ceptors. + indicates an excita- Lung stretch tory effect. Broken arrow indi- + HR + vasodilata- Respiration receptors cates direct or local rather than tion reflex effects. Open arrow to especially in defence areas indicates a higher skeletal muscle Inspiratory threshold effect. For further de- HR + vasoconstriction drive tails see text. HR, Heart rate. + Peripheral + chemoreceptor Defence HR + vasoconstriction + vasodilatation stimulation areas in splanchnic in skeletal and renal muscle HR + vasoconstriction in skeletal muscle, splanchnic and renal Braz J Med Biol Res 31(7) 1998 Chemoreceptors and systemic hypoxia 865 artificial ventilation, the same stimulus tion of aortic chemoreceptors evoked only a evoked an increase in systemic vascular re- small ventilatory response. sistance reflecting peripheral vasoconstric- tion (4,5). This suggested that the primary Cardiac responses reflex response to carotid chemoreceptor stimulation was vasoconstriction and that the The heart rate response was also investi- vasodilatation was secondary to the chemore- gated in other early experiments on the dog. ceptor-induced hyperventilation. Other ex- Selective stimulation of the carotid chemore- periments showed that the peripheral vasodi- ceptors was shown to be more likely to evoke latation induced by chemoreceptor stimula- tachycardia when the ventilatory response tion was also greatly reduced or reversed to was large (~200% higher compared to con- vasoconstriction if the dog was allowed to trol); when the ventilatory response was hyperventilate, but with the vagus nerves cut, small, a bradycardia was often seen (6). Care- or if the partial pressure of CO2 in the arterial ful examination of these responses revealed blood (PaCO2) was maintained constant (4,6). that just as with the vascular responses, two Thus, it was concluded that the two major aspects of the hyperventilatory response to factors that contributed to the secondary va- chemoreceptor stimulation affected the car- sodilatation were a reflex triggered by vagal diac response: both pulmonary stretch re- afferent fibres and the hypocapnia that arose ceptor stimulation and hypocapnia contrib- from hyperventilation. Further experiments uted to the tachycardia, while the underlying demonstrated that vasodilatation secondary primary response was apparently bradycar- to hyperventilation occurred in skeletal dia (6-8). However, even when ventilation muscle and skin of the limbs, and in renal and was maintained constant, carotid chemore- splanchnic vasculature, the response being ceptor stimulation still sometimes evoked most pronounced in muscle (7,8). As far as tachycardia in a way that seemed related to the vagal afferents were concerned, the im- the stimulatory drive to ventilation and which portant receptors turned out to be the slowly was most evident when the cardiac vagal adapting pulmonary stretch receptors (6,9), fibres were intact (6,8). This effect was remi- while the efferent arm of the reflex was shown niscent of the sinus arrhythmia that persists to be an inhibition of sympathetic noradre- after lung denervation and which was at first nergic tone (7). The mechanisms underlying ascribed to “irradiation” of the cardiac vagus the vasodilator effects of hypocapnia have with impulses from the respiratory centre received far less attention: they seem to be (13). More recently, it has become clear that mediated mainly by the unloading of the collaterals of central inspiratory neurones central chemoreceptors for CO2 and the re- exert an inhibitory effect on cardiac vagal sulting fall in sympathetic noradrenergic ac- neurones (14,15). This helps to explain the tivity (see 10-12). increase in heart rate that normally occurs It is worth noting that in the early studies with every inspiration (sinus arrhythmia) and of Daly and Ungar (5), selective stimulation reflects a central neural mechanism by which of
Recommended publications
  • Nociceptors – Characteristics?
    Nociceptors – characteristics? • ? • ? • ? • ? • ? • ? Nociceptors - true/false No – pain is an experience NonociceptornotNoNo – –all nociceptors– TRPV1 nociceptorsC fibers somata is areexpressed may alsoin have • Nociceptors are pain fibers typically associated with Typically yes, but therelowsensorynociceptorsinhave manyisor ahigh efferentsemantic gangliadifferent thresholds and functions mayproblemnot cells, all befor • All C fibers are nociceptors nociceptoractivationsmallnociceptorsincluding or large non-neuronalactivation are in Cdiameter fibers tissue • Nociceptors have small diameter somata • All nociceptors express TRPV1 channels • Nociceptors have high thresholds for response • Nociceptors have only afferent (sensory) functions • Nociceptors encode stimuli into the noxious range Nociceptors – outline Why are nociceptors important? What’s a nociceptor? Nociceptor properties – somata, axons, content, etc. Nociceptors in skin, muscle, joints & viscera Mechanically-insensitive nociceptors (sleeping or silent) Microneurography Heterogeneity Why are nociceptors important? • Pain relief when remove afferent drive • Afferent is more accessible • With peripherally restricted intervention, can avoid many of the most deleterious side effects Widespread hyperalgesia in irritable bowel syndrome is dynamically maintained by tonic visceral impulse input …. Price DD, Craggs JG, Zhou Q, Verne GN, et al. Neuroimage 47:995-1001, 2009 IBS IBS rectal rectal placebo lidocaine rectal lidocaine Time (min) Importantly, areas of somatic referral were
    [Show full text]
  • Carotid Body Detection on CT Angiography
    ORIGINAL RESEARCH Carotid Body Detection on CT Angiography R.P. Nguyen BACKGROUND AND PURPOSE: Advances in multidetector CT provide exquisite detail with improved L.M. Shah delineation of the normal anatomic structures in the head and neck. The carotid body is 1 structure that is now routinely depicted with this new imaging technique. An understanding of the size range of the E.P. Quigley normal carotid body will allow the radiologist to distinguish patients with prominent normal carotid H.R. Harnsberger bodies from those who have a small carotid body paraganglioma. R.H. Wiggins MATERIALS AND METHODS: We performed a retrospective analysis of 180 CTAs to assess the imaging appearance of the normal carotid body in its expected anatomic location. RESULTS: The carotid body was detected in Ͼ80% of carotid bifurcations. The normal size range measured from 1.1 to 3.9 mm Ϯ 2 SDs, which is consistent with the reported values from anatomic dissections. CONCLUSIONS: An ovoid avidly enhancing structure at the inferomedial aspect of the carotid bifurca- tion within the above range should be considered a normal carotid body. When the carotid body measures Ͼ6 mm, a small carotid body paraganglioma should be suspected and further evaluated. ABBREVIATIONS: AP ϭ anteroposterior; CTA ϭ CT angiography he carotid body is a structure usually located within the glomus jugulare; and at the cochlear promontory, a glomus Tadventitia of the common carotid artery at the inferome- tympanicum.5 There have been rare reports of paraganglio- dial aspect of the carotid
    [Show full text]
  • Does Serotonin Deficiency Lead to Anosmia, Ageusia, Dysfunctional Chemesthesis and Increased Severity of Illness in COVID-19?
    Does serotonin deficiency lead to anosmia, ageusia, dysfunctional chemesthesis and increased severity of illness in COVID-19? Amarnath Sen 40 Jadunath Sarbovouma Lane, Kolkata 700035, India, E-mail: [email protected] ABSTRACT Anosmia, ageusia and impaired chemesthetic sensations are quite common in coronavirus patients. Different mechanisms have been proposed to explain the anosmia and ageusia in COVID-19, though for reversible anosmia and ageusia, which are resolved quickly, the proposed mechanisms seem to be incomplete. In addition, the reason behind the impaired chemesthetic sensations in some coronavirus patients remains unknown. It is proposed that coronavirus patients suffer from depletion of tryptophan (an essential amino acid), as ACE2, a key element in the process of absorption of tryptophan from the food, is significantly reduced due to the attack of coronavirus, which use ACE2 as the receptor for its entry into the host cells. The depletion of tryptophan should lead to a deficit of serotonin (5-HT) in SARS-COV- 2 patients because tryptophan is the precursor in the synthesis of 5-HT. Such 5-HT deficiency can give rise to anosmia, ageusia and dysfunctional chemesthesis in COVID-19, given the fact that 5-HT is an important neuromodulator in the olfactory neurons and taste receptor cells and 5-HT also enhances the nociceptor activity of transient receptor potential channels (TRP channels) responsible for the chemesthetic sensations. In addition, 5-HT deficiency is expected to worsen silent hypoxemia and depress hypoxic pulmonary vasoconstriction (a protective reflex) leading to an increased severity of the disease and poor outcome. Melatonin, a potential adjuvant in the treatment of COVID-19, which can tone down cytokine storm, is produced from 5-HT and is expected to decrease due to the deficit of 5-HT in the coronavirus patients.
    [Show full text]
  • Ion Channels of Nociception
    International Journal of Molecular Sciences Editorial Ion Channels of Nociception Rashid Giniatullin A.I. Virtanen Institute, University of Eastern Finland, 70211 Kuopio, Finland; Rashid.Giniatullin@uef.fi; Tel.: +358-403553665 Received: 13 May 2020; Accepted: 15 May 2020; Published: 18 May 2020 Abstract: The special issue “Ion Channels of Nociception” contains 13 articles published by 73 authors from different countries united by the main focusing on the peripheral mechanisms of pain. The content covers the mechanisms of neuropathic, inflammatory, and dental pain as well as pain in migraine and diabetes, nociceptive roles of P2X3, ASIC, Piezo and TRP channels, pain control through GPCRs and pharmacological agents and non-pharmacological treatment with electroacupuncture. Keywords: pain; nociception; sensory neurons; ion channels; P2X3; TRPV1; TRPA1; ASIC; Piezo channels; migraine; tooth pain Sensation of pain is one of the fundamental attributes of most species, including humans. Physiological (acute) pain protects our physical and mental health from harmful stimuli, whereas chronic and pathological pain are debilitating and contribute to the disease state. Despite active studies for decades, molecular mechanisms of pain—especially of pathological pain—remain largely unaddressed, as evidenced by the growing number of patients with chronic forms of pain. There are, however, some very promising advances emerging. A new field of pain treatment via neuromodulation is quickly growing, as well as novel mechanistic explanations unleashing the efficiency of traditional techniques of Chinese medicine. New molecular actors with important roles in pain mechanisms are being characterized, such as the mechanosensitive Piezo ion channels [1]. Pain signals are detected by specialized sensory neurons, emitting nerve impulses encoding pain in response to noxious stimuli.
    [Show full text]
  • Cardiac Physiology
    Chapter 20 Cardiac Physiology LENA S. SUN • JOHANNA SCHWARZENBERGER • RADHIKA DINAVAHI K EY P OINTS • The cardiac cycle is the sequence of electrical and mechanical events during the course of a single heartbeat. • Cardiac output is determined by the heart rate, myocardial contractility, and preload and afterload. • The majority of cardiomyocytes consist of myofibrils, which are rodlike bundles that form the contractile elements within the cardiomyocyte. • The basic working unit of contraction is the sarcomere. • Gap junctions are responsible for the electrical coupling of small molecules between cells. • Action potentials have four phases in the heart. • The key player in cardiac excitation-contraction coupling is the ubiquitous second messenger calcium. • Calcium-induced sparks are spatially and temporally patterned activations of localized calcium release that are important for excitation-contraction coupling and regulation of automaticity and contractility. • β -Adrenoreceptors stimulate chronotropy, inotropy, lusitropy, and dromotropy. • Hormones with cardiac action can be synthesized and secreted by cardiomyocytes or produced by other tissues and delivered to the heart. • Cardiac reflexes are fast-acting reflex loops between the heart and central nervous system that contribute to the regulation of cardiac function and the maintenance of physiologic homeostasis. In 1628, English physician, William Harvey, first advanced oxygen (O2) and nutrients and to remove carbon dioxide the modern concept of circulation with the heart as the (CO2) and metabolites from various tissue beds. generator for the circulation. Modern cardiac physiology includes not only physiology of the heart as a pump but also concepts of cellular and molecular biology of the car- PHYSIOLOGY OF THE INTACT HEART diomyocyte and regulation of cardiac function by neural and humoral factors.
    [Show full text]
  • Diversification and Specialization of Touch Receptors in Skin
    Downloaded from http://perspectivesinmedicine.cshlp.org/ on October 4, 2021 - Published by Cold Spring Harbor Laboratory Press Diversification and Specialization of Touch Receptors in Skin David M. Owens1,2 and Ellen A. Lumpkin1,3 1Department of Dermatology, Columbia University College of Physicians and Surgeons, New York, New York 10032 2Department of Pathology and Cell Biology, Columbia University College of Physicians and Surgeons, New York, New York 10032 3Department of Physiology and Cellular Biophysics, Columbia University College of Physicians and Surgeons, New York, New York 10032 Correspondence: [email protected] Our skin is the furthest outpost of the nervous system and a primary sensor for harmful and innocuous external stimuli. As a multifunctional sensory organ, the skin manifests a diverse and highly specialized array of mechanosensitive neurons with complex terminals, or end organs, which are able to discriminate different sensory stimuli and encode this information for appropriate central processing. Historically, the basis for this diversity of sensory special- izations has been poorly understood. In addition, the relationship between cutaneous me- chanosensory afferents and resident skin cells, including keratinocytes, Merkel cells, and Schwann cells, during the development and function of tactile receptors has been poorly defined. In this article, we will discuss conserved tactile end organs in the epidermis and hair follicles, with a focus on recent advances in our understanding that have emerged from studies of mouse hairy skin. kin is our body’s protective covering and skills, including typing, feeding, and dressing Sour largest sensory organ. Unique among ourselves. Touch is also important for social ex- our sensory systems, the skin’s nervous system change, including pair bonding and child rear- www.perspectivesinmedicine.org gives rise to distinct sensations, including gentle ing (Tessier et al.
    [Show full text]
  • CASE CONFERENCES Mark A
    CASE CONFERENCES Mark A. Chaney, MD Victor C. Baum, MD Section Editors CASE 7—2015 Perioperative Considerations for a Cardiac Paraganglioma…NotJustAnother Cardiac Mass Rebecca M. Gerlach, MD,* Adam B. Barrus, MD,* Danny Ramzy, MD,* Antonio Hernandez Conte, MD, MBA,* Swapnil Khoche, MBBS,† Sharon L. McCartney, MD,‡ and Madhav Swaminathan, MD‡ LTHOUGH INTRACARDIAC MASSES represent after a 2-year history of malignant hypertension, headaches, Auncommon cardiac pathology, detailed knowledge of the and palpitations. Investigation revealed markedly elevated implications of specific tumor types for anesthetic management serum normetanephrine and a 5 cm  4cm 4 cm mass in is vital for the cardiac anesthesiologist. Cardiac masses may the middle mediastinum, located caudal to the pulmonary artery interfere with valve structure or function, invade across bifurcation and aortic arch extending to the top of the left anatomic boundaries interfering with ventricular function or atrium (Fig 1). An endocrinologist was consulted for this blood flow, or compromise coronary blood flow leading to presumed paraganglioma, and after 2 weeks of medical ischemic-type myocardial dysfunction. Of particular interest are management, therapeutic levels of phenoxybenzamine (70 mg cardiac secretory tumors—these masses not only have local daily) and labetalol (50 mg daily) were achieved. implications but also can result in severe systemic disease. After uneventful induction of anesthesia with invasive mon- Perhaps the most interesting of these masses is cardiac itoring, a complete TEE assessment according to the American paraganglioma. Society of Echocardiography/Society of Cardiovascular Anes- Paragangliomas are rare neuroendocrine tumors with the thesiologists guidelines8 revealed a large mass impinging on the same morphology as pheochromocytomas, being made up of left atrium and pulmonary arteries with preserved cardiac function chromaffin cells.
    [Show full text]
  • Nociceptor Sensory Neuron–Immune Interactions in Pain and Inflammation
    Feature Review Nociceptor Sensory Neuron–Immune Interactions in Pain and Inflammation 1,2 2 Felipe A. Pinho-Ribeiro, Waldiceu A. Verri Jr., and 1, Isaac M. Chiu * Nociceptor sensory neurons protect organisms from danger by eliciting pain Trends and driving avoidance. Pain also accompanies many types of inflammation and A bidirectional crosstalk between noci- injury. It is increasingly clear that active crosstalk occurs between nociceptor ceptor sensory neurons and immune cells actively regulates pain and neurons and the immune system to regulate pain, host defense, and inflamma- inflammation. tory diseases. Immune cells at peripheral nerve terminals and within the spinal cord release mediators that modulate mechanical and thermal sensitivity. In Immune cells release lipids, cytokines, and growth factors that have a key role turn, nociceptor neurons release neuropeptides and neurotransmitters from in sensitizing nociceptor sensory neu- nerve terminals that regulate vascular, innate, and adaptive immune cell rons by acting in peripheral tissues and responses. Therefore, the dialog between nociceptor neurons and the immune the spinal cord to produce neuronal plasticity and chronic pain. system is a fundamental aspect of inflammation, both acute and chronic. A better understanding of these interactions could produce approaches to treat Nociceptor neurons release neuropep- chronic pain and inflammatory diseases. tides that drive changes in the vascu- lature, lymphatics, and polarization of innate and adaptive immune cell Neuronal Pathways of Pain Sensation function. Pain is one of four cardinal signs of inflammation defined by Celsus during the 1st century AD (De Nociceptor neurons modulate host Medicina). Nociceptors are a specialized subset of sensory neurons that mediate pain and defenses against bacterial and fungal densely innervate peripheral tissues, including the skin, joints, respiratory, and gastrointestinal pathogens, and, in some cases, neural fi tract.
    [Show full text]
  • Nociceptor Sensitization by Proinflammatory Cytokines and Chemokines Michaela Kress*
    The Open Pain Journal, 2010, 3, 97-107 97 Open Access Nociceptor Sensitization by Proinflammatory Cytokines And Chemokines Michaela Kress* Div. of Physiology, Department of Physiology, Medical Physics, Innsbruck Medical University, A-6020 Innsbruck, Austria Abstract: Cytokines are small proteins with a molecular mass lower than 30 kDa. They are produced and secreted on demand, have a short life span and only travel over short distances if not released into the blood circulation. In addition to the classical interleukins and the chemotactic chemokines, growth factors like VEGF or FGF and the colony stimulating factors are also considered cytokines since they have pleiotropic actions and regulatory function in the immune system. Despite the redundancy and pleiotropy of the cytokine network, specific actions of individual cytokines and endogenous control mechanisms have been identified. Particular local profiles of the classical proinflammatory cytokines are associated with inflammatory hypersensitivity and suggest an early involvement of TNFα, IL-1ß and IL-6. An increasing number of novel cytokines and the more recently discovered chemokines are being associated with pathological pain states. Besides acting as pro- or anti-inflammatory mediators increasing evidence indicates that cytokines act on nociceptors. Neurons within the nociceptive system express neuronal receptors and specifically bind cytokines or chemokines which regulate neuronal excitability, sensitivity to external stimuli and synaptic plasticity. A first step to- wards a more mechanistic and individual pain therapeutic strategy could be avoidance of hypersensitive pain processing by either neutralization strategies for the proalgesic cytokines or by shifting the balance in favour of antialgesic members of the cytokine-chemokine network. Keywords: Hypersensitivity, inflammatory pain, unrepathic pain, neuroimmune interaction.
    [Show full text]
  • NOCICEPTORS and the PERCEPTION of PAIN Alan Fein
    NOCICEPTORS AND THE PERCEPTION OF PAIN Alan Fein, Ph.D. Revised May 2014 NOCICEPTORS AND THE PERCEPTION OF PAIN Alan Fein, Ph.D. Professor of Cell Biology University of Connecticut Health Center 263 Farmington Ave. Farmington, CT 06030-3505 Email: [email protected] Telephone: 860-679-2263 Fax: 860-679-1269 Revised May 2014 i NOCICEPTORS AND THE PERCEPTION OF PAIN CONTENTS Chapter 1: INTRODUCTION CLASSIFICATION OF NOCICEPTORS BY THE CONDUCTION VELOCITY OF THEIR AXONS CLASSIFICATION OF NOCICEPTORS BY THE NOXIOUS STIMULUS HYPERSENSITIVITY: HYPERALGESIA AND ALLODYNIA Chapter 2: IONIC PERMEABILITY AND SENSORY TRANSDUCTION ION CHANNELS SENSORY STIMULI Chapter 3: THERMAL RECEPTORS AND MECHANICAL RECEPTORS MAMMALIAN TRP CHANNELS CHEMESTHESIS MEDIATORS OF NOXIOUS HEAT TRPV1 TRPV1 AS A THERAPEUTIC TARGET TRPV2 TRPV3 TRPV4 TRPM3 ANO1 ii TRPA1 TRPM8 MECHANICAL NOCICEPTORS Chapter 4: CHEMICAL MEDIATORS OF PAIN AND THEIR RECEPTORS 34 SEROTONIN BRADYKININ PHOSPHOLIPASE-C AND PHOSPHOLIPASE-A2 PHOSPHOLIPASE-C PHOSPHOLIPASE-A2 12-LIPOXYGENASE (LOX) PATHWAY CYCLOOXYGENASE (COX) PATHWAY ATP P2X RECEPTORS VISCERAL PAIN P2Y RECEPTORS PROTEINASE-ACTIVATED RECEPTORS NEUROGENIC INFLAMMATION LOW pH LYSOPHOSPHATIDIC ACID Epac (EXCHANGE PROTEIN DIRECTLY ACTIVATED BY cAMP) NERVE GROWTH FACTOR Chapter 5: Na+, K+, Ca++ and HCN CHANNELS iii + Na CHANNELS Nav1.7 Nav1.8 Nav 1.9 Nav 1.3 Nav 1.1 and Nav 1.6 + K CHANNELS + ATP-SENSITIVE K CHANNELS GIRK CHANNELS K2P CHANNELS KNa CHANNELS + OUTWARD K CHANNELS ++ Ca CHANNELS HCN CHANNELS Chapter 6: NEUROPATHIC PAIN ANIMAL
    [Show full text]
  • The Role of Corticotropin-Releasing Hormone at Peripheral Nociceptors: Implications for Pain Modulation
    biomedicines Review The Role of Corticotropin-Releasing Hormone at Peripheral Nociceptors: Implications for Pain Modulation Haiyan Zheng 1, Ji Yeon Lim 1, Jae Young Seong 1 and Sun Wook Hwang 1,2,* 1 Department of Biomedical Sciences, College of Medicine, Korea University, Seoul 02841, Korea; [email protected] (H.Z.); [email protected] (J.Y.L.); [email protected] (J.Y.S.) 2 Department of Physiology, College of Medicine, Korea University, Seoul 02841, Korea * Correspondence: [email protected]; Tel.: +82-2-2286-1204; Fax: +82-2-925-5492 Received: 12 November 2020; Accepted: 15 December 2020; Published: 17 December 2020 Abstract: Peripheral nociceptors and their synaptic partners utilize neuropeptides for signal transmission. Such communication tunes the excitatory and inhibitory function of nociceptor-based circuits, eventually contributing to pain modulation. Corticotropin-releasing hormone (CRH) is the initiator hormone for the conventional hypothalamic-pituitary-adrenal axis, preparing our body for stress insults. Although knowledge of the expression and functional profiles of CRH and its receptors and the outcomes of their interactions has been actively accumulating for many brain regions, those for nociceptors are still under gradual investigation. Currently, based on the evidence of their expressions in nociceptors and their neighboring components, several hypotheses for possible pain modulations are emerging. Here we overview the historical attention to CRH and its receptors on the peripheral nociception and the recent increases in information regarding their roles in tuning pain signals. We also briefly contemplate the possibility that the stress-response paradigm can be locally intrapolated into intercellular communication that is driven by nociceptor neurons.
    [Show full text]
  • Computational Functions of Neurons and Circuits Signaling Injury: Relationship to Pain Behavior
    Computational functions of neurons and circuits signaling injury: Relationship to pain behavior Lorne M. Mendell1 Department of Neurobiology and Behavior, State University of New York, Stony Brook, NY 11794 Edited by Donald W. Pfaff, The Rockefeller University, New York, NY, and approved November 3, 2010 (received for review August 16, 2010) The basic circuitry of the “pain pathway” mediating transmission cording from a population of small-diameter axons with proper- of information from the periphery to the brain is well known, ties of nociceptors. It is now well established that nociceptors consisting of specialized sensory fibers known as nociceptors pro- are a distinct population of sensory fibers with unique physio- jecting to specific spinal cord neurons, which in turn project on to logical, anatomical, and chemical properties. However, as we the thalamus and cerebral cortex. Here we survey some of the shall see below, activation of nociceptors can be prevented from unique properties of these circuits, such as peripheral and central causing pain, and conversely, pain is reported in situations in sensitization, and the segmental and descending modulatory con- which nociceptors are not activated. trol of synaptic transmission. We also review evidence indicating The defining characteristic of nociceptors is their high thresh- dissociation between nociceptor activity and behavioral indica- old to natural stimulation of their receptive field. This has been tions of pain. Together, these considerations point to the need investigated mostly
    [Show full text]