Kein Folientitel
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
ACM SIGACT News Distributed Computing Column 28
ACM SIGACT News Distributed Computing Column 28 Idit Keidar Dept. of Electrical Engineering, Technion Haifa, 32000, Israel [email protected] Sergio Rajsbaum, who edited this column for seven years and established it as a relevant and popular venue, is stepping down. This issue is my first step in the big shoes he vacated. I would like to take this opportunity to thank Sergio for providing us with seven years’ worth of interesting columns. In producing these columns, Sergio has enjoyed the support of the community at-large and obtained material from many authors, who greatly contributed to the column’s success. I hope to enjoy a similar level of support; I warmly welcome your feedback and suggestions for material to include in this column! The main two conferences in the area of principles of distributed computing, PODC and DISC, took place this summer. This issue is centered around these conferences, and more broadly, distributed computing research as reflected therein, ranging from reviews of this year’s instantiations, through influential papers in past instantiations, to examining PODC’s place within the realm of computer science. I begin with a short review of PODC’07, and highlight some “hot” trends that have taken root in PODC, as reflected in this year’s program. Some of the forthcoming columns will be dedicated to these up-and- coming research topics. This is followed by a review of this year’s DISC, by Edward (Eddie) Bortnikov. For some perspective on long-running trends in the field, I next include the announcement of this year’s Edsger W. -
Distributed Consensus: Performance Comparison of Paxos and Raft
DEGREE PROJECT IN INFORMATION AND COMMUNICATION TECHNOLOGY, SECOND CYCLE, 30 CREDITS STOCKHOLM, SWEDEN 2020 Distributed Consensus: Performance Comparison of Paxos and Raft HARALD NG KTH ROYAL INSTITUTE OF TECHNOLOGY SCHOOL OF ELECTRICAL ENGINEERING AND COMPUTER SCIENCE Distributed Consensus: Performance Comparison of Paxos and Raft HARALD NG Master in Software Engineering of Distributed Systems Date: September 10, 2020 Supervisor: Lars Kroll (RISE), Max Meldrum (KTH) Examiner: Seif Haridi School of Electrical Engineering and Computer Science Host company: RISE Swedish title: Distribuerad Konsensus: Prestandajämförelse mellan Paxos och Raft iii Abstract With the growth of the internet, distributed systems have become increasingly important in order to provide more available and scalable applications. Con- sensus is a fundamental problem in distributed systems where multiple pro- cesses have to agree on the same proposed value in the presence of partial failures. Distributed consensus allows for building various applications such as lock services, configuration manager services or distributed databases. Two well-known consensus algorithms for building distributed logs are Multi-Paxos and Raft. Multi-Paxos was published almost three decades before Raft and gained a lot of popularity. However, critics of Multi-Paxos consider it difficult to understand. Raft was therefore published with the motivation of being an easily understood consensus algorithm. The Raft algorithm shares similar characteristics with a practical version of Multi-Paxos called Leader- based Sequence Paxos. However, the algorithms differ in important aspects such as leader election and reconfiguration. Existing work mainly compares Multi-Paxos and Raft in theory, but there is a lack of performance comparisons in practice. Hence, prototypes of Leader- based Sequence Paxos and Raft have been designed and implemented in this thesis. -
2011 Edsger W. Dijkstra Prize in Distributed Computing
2011 Edsger W. Dijkstra Prize in Distributed Computing We are proud to announce that the 2011 Edsger W. Dijkstra Prize in Distributed Computing is awarded to Hagit Attiya, Amotz Bar-Noy, and Danny Dolev, for their paper Sharing Memory Robustly in Message-Passing Systems which appeared in the Journal of the ACM (JACM) 42(1):124-142 (1995). This fundamental paper presents the first asynchronous fault-tolerant simulation of shared memory in a message passing system. In 1985 Fischer, Lynch, and Paterson (FLP) proved that consensus is not attainable in asynchronous message passing systems with failures. In the following years, Loui and Abu-Amara, and Herlihy proved that solving consensus in an asynchronous shared memory system is harder than implementing a read/write register. However, it was not known whether read/ write registers are implementable in asynchronous message-passing systems with failures. Hagit Attiya, Amotz Bar-Noy, and Danny Dolev’s paper (ABD) answered this fundamental question afrmatively. The ABD paper makes an important foundational contribution by allowing one to “view the shared-memory model as a higher-level language for designing algorithms in asynchronous distributed systems.” In a manner similar to that in which Turing Machines were proved equivalent to Random Access Memory, ABD proved that the implications of FLP are not idiosyncratic to a particular model. Impossibility results and lower bounds can be proved in the higher-level shared memory model, and then automatically translated to message passing. Besides FLP, this includes results such as the impossibility of k-set agreement in asynchronous systems as well as various weakest failure detector constructions. -
The Need for Language Support for Fault-Tolerant Distributed Systems
The Need for Language Support for Fault-tolerant Distributed Systems Cezara Drăgoi1, Thomas A. Henzinger∗2, and Damien Zufferey†3 1 INRIA, ENS, CNRS Paris, France [email protected] 2 IST Austria Klosterneuburg, Austria [email protected] 3 MIT CSAIL Cambridge, USA [email protected] Abstract Fault-tolerant distributed algorithms play an important role in many critical/high-availability applications. These algorithms are notoriously difficult to implement correctly, due to asyn- chronous communication and the occurrence of faults, such as the network dropping messages or computers crashing. Nonetheless there is surprisingly little language and verification support to build distributed systems based on fault-tolerant algorithms. In this paper, we present some of the challenges that a designer has to overcome to implement a fault-tolerant distributed system. Then we review different models that have been proposed to reason about distributed algorithms and sketch how such a model can form the basis for a domain-specific programming language. Adopting a high-level programming model can simplify the programmer’s life and make the code amenable to automated verification, while still compiling to efficiently executable code. We conclude by summarizing the current status of an ongoing language design and implementation project that is based on this idea. 1998 ACM Subject Classification D.3.3 Language Constructs and Features Keywords and phrases Programming language, Fault-tolerant distributed algorithms, Auto- mated verification Digital Object Identifier 10.4230/LIPIcs.xxx.yyy.p 1 Introduction Replication of data across multiple data centers allows applications to be available even in the case of failures, guaranteeing clients access to the data. -
R S S M : 20 Y A
Robust Simulation of Shared Memory: 20 Years After∗ Hagit Attiya Department of Computer Science, Technion and School of Computer and Communication Sciences, EPFL Abstract The article explores the concept of simulating the abstraction of a shared memory in message passing systems, despite the existence of failures. This abstraction provides an atomic register accessed with read and write opera- tions. This article describes the Attiya, Bar-Noy and Dolev simulation, its origins and generalizations, as well as its applications in theory and practice. Dedicated to the 60th birthday of Danny Dolev 1 Introduction In the summer of 1989, I spent a week in the bay area, visiting Danny Dolev, who was at IBM Almaden at that time, and Amotz Bar-Noy, who was a post- doc at Stanford, before going to PODC in Edmonton.1 Danny and Amotz have already done some work on equivalence between shared memory and message- passing communication primitives [14]. Their goal was to port specific renaming algorithms from message-passing systems [10] to shared-memory systems, and therefore, their simulation was tailored for the specific construct—stable vectors– used in these algorithms. Register constructions were a big fad at the time, and motivated by them, we were looking for a more generic simulation of shared-memory in message passing systems. ∗This article is based on my invited talk at SPAA 2008. 1 During the same visit, Danny and I also worked on the first snapshot algorithm with bounded memory; these ideas, tremendously simplified and improved by our coauthors later, lead to the atomic snapshots paper [2]. -
On the Minimal Synchronism Needed for Distributed Consensus
On the Minimal Synchronism Needed for Distributed Consensus DANNY DOLEV Hebrew University, Jerusalem, Israel CYNTHIA DWORK Cornell Univer.sity, Ithaca, New York AND LARRY STOCKMEYER IBM Ahnaden Research Center, San Jose, California Abstract. Reaching agreement is a primitive of distributed computing. Whereas this poses no problem in an ideal, failure-free environment, it imposes certain constraints on the capabilities of an actual system: A system is viable only if it permits the existence of consensus protocols tolerant to some number of failures. Fischer et al. have shown that in a completely asynchronous model, even one failure cannot be tolerated. In this paper their work is extended: Several critical system parameters, including various synchrony conditions, are identified and how varying these affects the number of faults that can be tolerated is examined. The proofs expose general heuristic principles that explain why consensus is possible in certain models but not possible in others. Categories and Subject Descriptors: C.2.4 [Computer-Communication Networks]: Distributed Systems- distributed applications; distributed databases; network operating systems; C.4 [Performance of Systems]: reliability, availability, and serviceability; F. I .2 [Computation by Abstract Devices]: Modes of Computation-parallelism; H.2.4 [Database Management]: Systems-distributed systems General Terms: Algorithms, Reliability, Theory, Verification Additional Key Words and Phrases: Agreement problem, asynchronous system, Byzantine Generals problem, commit problem, consensus problem, distributed computing, fault tolerance, reliability 1. Introduction The problem of reaching agreement among separated processors is a fundamental problem of both practical and theoretical importance in the area of distributed systems; (see, e.g., [I], [7], [8], [ 1 l] and [ 121).We consider a system of N processors A preliminary version of this paper appears in the Proceedings of the 24th Annual Symposium on Foundations of Computer Science, November 7-9, 1983, Tucson, Ariz., pp. -
Distinguished Lecture Series
DISTINGUISHED LECTURE SERIES NANCY LYNCH NEC Professor of Software Science and Engineering, Department of Electrical Engineering and Computer Science, Massachusetts Institute of Technology “A Theoretical View of Distributed Systems” Thursday, January 30, 2020 • 2-3 p.m Donald Bren Hall, Room 6011 ABSTRACT For several decades, my collaborators, students, and I have worked on theory for distributed systems, in order to understand their capabilities and limitations in a rigorous, mathematical way. This work has produced many different kinds of results, including: • Abstract models for problems that are solved by distributed systems, and for the algorithms used to solve them, • Rigorous proofs of algorithm correctness and performance properties (also some error discoveries), • Impossibility results and lower bounds, expressing inherent limitations of distributed systems, • Some new algorithms, and • General mathematical foundations for modeling and analyzing distributed systems. These various results have spanned many different kinds of systems, ranging from distributed data- management systems, to communication systems, to biological systems such as insect colonies and brains. In this talk, I will overview some highlights of our work over many years on theory for distributed systems. I will break this down in terms of three intertwined “research threads”: algorithms for traditional distributed systems, impossibility results, and mathematical foundations. At the end, I will say something about ourrecent work on algorithms for new kinds of distributed systems. BIO Nancy Lynch is the NEC Professor of Software Science and Engineering in MIT’s EECS department. She heads the Theory of Distributed Systems research group in the Computer Science and AI Laboratory. She received her PhD from MIT and her BS from Brooklyn College, both in Mathematics Lynch has (co-)written many research articles about distributed algorithms and impossibility results, and about formal modeling and verification of distributed systems. -
BEATCS No 119
ISSN 0252–9742 Bulletin of the European Association for Theoretical Computer Science EATCS E A T C S Number 119 June 2016 Council of the European Association for Theoretical Computer Science President:Luca Aceto Iceland Vice Presidents:Paul Spirakis United Kingdom and Greece Antonin Kucera Czech Republic Giuseppe Persiano Italy Treasurer:Dirk Janssens Belgium Bulletin Editor:Kazuo Iwama Kyoto,Japan Lars Arge Denmark Anca Muscholl France Jos Baeten The Netherlands Luke Ong UK Lars Birkedal Denmark Catuscia Palamidessi France Mikolaj Bojanczyk Poland Giuseppe Persiano Italy Fedor Fomin Norway Alberto Policriti Italy Pierre Fraigniaud France Alberto Marchetti Spaccamela Italy Leslie Ann Goldberg UK Vladimiro Sassone UK Magnus Halldorsson Iceland Thomas Schwentick Germany Monika Henzinger Austria Jukka Suomela Finland Christos Kaklamanis Greece Thomas Wilke Germany Elvira Mayordomo Spain Peter Widmayer Switzerland Michael Mitzenmacher USA Gerhard Woeginger¨ The Netherlands Past Presidents: Maurice Nivat (1972–1977)Mike Paterson (1977–1979) Arto Salomaa (1979–1985)Grzegorz Rozenberg (1985–1994) Wilfred Brauer (1994–1997)Josep D´iaz (1997–2002) Mogens Nielsen (2002–2006)Giorgio Ausiello (2006–2009) Burkhard Monien (2009–2012) Secretary Office:Ioannis Chatzigiannakis Italy Efi Chita Greece EATCS Council Members email addresses Luca Aceto ..................................... [email protected] Lars Arge .............................. [email protected] Jos Baeten ............................... [email protected] Lars Birkedal ............................ [email protected] Mikolaj Bojanczyk .......................... [email protected] Fedor Fomin ................................ [email protected] Pierre Fraigniaud .. [email protected] Leslie Ann Goldberg ................ [email protected] Magnus Halldorsson ........................ [email protected] Monika Henzinger ................ [email protected] Kazuo Iwama ........................ [email protected] Dirk Janssens ........................ -
Chapter on Distributed Computing
Chapter on Distributed Computing Leslie Lamport and Nancy Lynch February 3, 1989 Contents 1 What is Distributed Computing? 1 2 Models of Distributed Systems 2 2.1 Message-PassingModels . 2 2.1.1 Taxonomy......................... 2 2.1.2 MeasuringComplexity . 6 2.2 OtherModels........................... 8 2.2.1 SharedVariables . .. .. .. .. .. 8 2.2.2 Synchronous Communication . 9 2.3 FundamentalConcepts. 10 3 Reasoning About Distributed Algorithms 12 3.1 ASystemasaSetofBehaviors . 13 3.2 SafetyandLiveness. 14 3.3 DescribingaSystem . .. .. .. .. .. .. 14 3.4 AssertionalReasoning . 17 3.4.1 Simple Safety Properties . 17 3.4.2 Liveness Properties . 20 3.5 DerivingAlgorithms . 25 3.6 Specification............................ 26 4 Some Typical Distributed Algorithms 27 4.1 Shared Variable Algorithms . 28 4.1.1 MutualExclusion. 28 4.1.2 Other Contention Problems . 31 4.1.3 Cooperation Problems . 32 4.1.4 Concurrent Readers and Writers . 33 4.2 DistributedConsensus . 34 4.2.1 The Two-Generals Problem . 35 4.2.2 Agreement on a Value . 35 4.2.3 OtherConsensusProblems . 38 4.2.4 The Distributed Commit Problem . 41 4.3 Network Algorithms . 41 4.3.1 Static Algorithms . 42 4.3.2 Dynamic Algorithms . 44 4.3.3 Changing Networks . 47 4.3.4 LinkProtocols ...................... 48 i 4.4 Concurrency Control in Databases . 49 4.4.1 Techniques ........................ 50 4.4.2 DistributionIssues . 51 4.4.3 Nested Transactions . 52 ii Abstract Rigorous analysis starts with a precise model of a distributed system; the most popular models, differing in how they represent interprocess commu- nication, are message passing, shared variables, and synchronous communi- cation. The properties satisfied by an algorithm must be precisely stated and carefully proved; the most successful approach is based on assertional reasoning. -
A Formal Treatment of Lamport's Paxos Algorithm
A Formal Treatment of Lamport’s Paxos Algorithm Roberto De Prisco Nancy Lynch Alex Shvartsman Nicole Immorlica Toh Ne Win October 10, 2002 Abstract This paper gives a formal presentation of Lamport’s Paxos algorithm for distributed consensus. The presentation includes a state machine model for the complete protocol, a correctness proof, and a perfor- mance analysis. The correctness proof, which shows the safety properties of agreement and validity, is based on a mapping to an abstract state machine representing a non-distributed version of the protocol. The performance analysis proves latency bounds, conditioned on certain timing and failure assumptions. Liveness and fault-tolerance correctness properties are corollaries of the performance properties. This work was supported in part by the NSF ITR Grant CCR-0121277. Massachusetts Institute of Technology, Laboratory for Computer Science, 200 Technology Square, NE43-365, Cambridge, MA 02139, USA. Email: [email protected]. Department of Computer Science and Engineering, 191 Auditorium Road, Unit 3155, University of Connecticut, Storrs, CT 06269 and Massachusetts Institute of Technology, Laboratory for Computer Science, 200 Technology Square, NE43-316, Cam- bridge, MA 02139, USA. Email: [email protected]. Massachusetts Institute of Technology, Laboratory for Computer Science, 200 Technology Square, NE43-???, Cambridge, MA 02139, USA. Email: [email protected]. Massachusetts Institute of Technology, Laboratory for Computer Science, 200 Technology Square, NE43-413, Cambridge, MA 02139, USA. Email: [email protected]. 1 Introduction Overview: Lamport’s Paxos algorithm [1] has at its core a solution to the problem of distributed consen- sus. In that consensus algorithm, the safety properties—agreement and validity—hold in all executions. -
Consensus on Transaction Commit
Consensus on Transaction Commit Jim Gray and Leslie Lamport Microsoft Research 1 January 2004 revised 19 April 2004 MSR-TR-2003-96 Abstract The distributed transaction commit problem requires reaching agreement on whether a transaction is committed or aborted. The classic Two-Phase Commit protocol blocks if the coordinator fails. Fault-tolerant consensus algorithms also reach agreement, but do not block whenever any majority of the processes are working. The Paxos Commit algorithm runs a Paxos consensus algorithm on the commit/abort decision of each participant to obtain a transaction commit protocol that uses 2F + 1 coordinators and makes progress if at least F + 1 of them are working. Paxos Commit has the same stable-storage write delay, and can be implemented to have the same message delay in the fault-free case, as Two-Phase Commit, but it uses more messages. The classic Two-Phase Commit algorithm is obtained as the special F = 0 case of the Paxos Commit algorithm. Contents 1 Introduction 1 2 Transaction Commit 2 3 Two-Phase Commit 4 3.1 The Protocol . 4 3.2 The Cost of Two-Phase Commit . 6 3.3 The Problem with Two-Phase Commit . 6 4 Paxos Commit 7 4.1 The Paxos Consensus Algorithm . 7 4.2 The Paxos Commit Algorithm . 10 4.3 The Cost of Paxos Commit . 12 5 Paxos versus Two-Phase Commit 14 6 Transaction Creation and Registration 16 6.1 Creation . 16 6.2 Registration . 17 7 Conclusion 18 A The TLA+ Specifications 21 A.1 The Specification of a Transaction Commit Protocol . -
Easy Impossibility Proofs for Distributed Consensus Problems
Distributed Computing (1986) 1:26 39 Easy impossibility proofs for distributed consensus problems Michael J. Fischer 1, Nancy A. Lynch 2, and Michael Merritt 3 Department of Computer Science, Yale University, P.O. Box 2158, New Haven, CT 06520, USA 2 Laboratory for Computer Science, Massachusetts Institute of Technology, 545 Technology Square, Cambridge, M A 02139, USA s AT & T Bell Laboratories, 600 Mountain Ave, Murray Hill, NJ 07974, USA and Laboratory for Computer Science, Massachusetts Institute of Technology, 545 Technology Square, Cambridge, M A 02139, US A Michael J. Fischer is cur- 1972. She has served on the .klculty of Tufts University, the rently Professor of Computer University of Southern California, Florida International Science at Yale University, University, Georgia Tech. New Haven, CT, where he heads the Theory of Compu- Michael Merritt is currently tation Group. He is also Edi- a member of the technical tor_in_Chief of the Journal of stq[] with AT& T Bell the Association .for Comput- Laboratories. During the 1984 ing Machinery. His research 85 academic year, he was interests include theory of a visiting lecturer at M.I.7:, distributed systems, crypto- sponsered by Bell Labs. His graphic protocols, and compu- research interests include dis- tational complexity. tributed computation, cryptog- Dr. Fischer received the raphy and security. Dr. Merritt B. S. degree in mathematics received the B. S. degree in j?om the University of Mi- computer science and philo- chigan, Ann Arbor, in 1963, sophy from Yale in 1978 and and the M. A. and Ph.D. degrees in applied mathematics the M. Sc.