Herding Hash Functions and Nostradamus Attack
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Increasing Cryptography Security Using Hash-Based Message
ISSN (Print) : 2319-8613 ISSN (Online) : 0975-4024 Seyyed Mehdi Mousavi et al. / International Journal of Engineering and Technology (IJET) Increasing Cryptography Security using Hash-based Message Authentication Code Seyyed Mehdi Mousavi*1, Dr.Mohammad Hossein Shakour 2 1-Department of Computer Engineering, Shiraz Branch, Islamic AzadUniversity, Shiraz, Iran . Email : [email protected] 2-Assistant Professor, Department of Computer Engineering, Shiraz Branch, Islamic Azad University ,Shiraz ,Iran Abstract Nowadays, with the fast growth of information and communication technologies (ICTs) and the vulnerabilities threatening human societies, protecting and maintaining information is critical, and much attention should be paid to it. In the cryptography using hash-based message authentication code (HMAC), one can ensure the authenticity of a message. Using a cryptography key and a hash function, HMAC creates the message authentication code and adds it to the end of the message supposed to be sent to the recipient. If the recipient of the message code is the same as message authentication code, the packet will be confirmed. The study introduced a complementary function called X-HMAC by examining HMAC structure. This function uses two cryptography keys derived from the dedicated cryptography key of each packet and the dedicated cryptography key of each packet derived from the main X-HMAC cryptography key. In two phases, it hashes message bits and HMAC using bit Swapp and rotation to left. The results show that X-HMAC function can be a strong barrier against data identification and HMAC against the attacker, so that it cannot attack it easily by identifying the blocks and using HMAC weakness. -
Shell Scripting with Bash
Introduction to Shell Scripting with Bash Charles Jahnke Research Computing Services Information Services & Technology Topics for Today ● Introductions ● Basic Terminology ● How to get help ● Command-line vs. Scripting ● Variables ● Handling Arguments ● Standard I/O, Pipes, and Redirection ● Control Structures (loops and If statements) ● SCC Job Submission Example Research Computing Services Research Computing Services (RCS) A group within Information Services & Technology at Boston University provides computing, storage, and visualization resources and services to support research that has specialized or highly intensive computation, storage, bandwidth, or graphics requirements. Three Primary Services: ● Research Computation ● Research Visualization ● Research Consulting and Training Breadth of Research on the Shared Computing Cluster (SCC) Me ● Research Facilitator and Administrator ● Background in biomedical engineering, bioinformatics, and IT systems ● Offices on both CRC and BUMC ○ Most of our staff on the Charles River Campus, some dedicated to BUMC ● Contact: [email protected] You ● Who has experience programming? ● Using Linux? ● Using the Shared Computing Cluster (SCC)? Basic Terminology The Command-line The line on which commands are typed and passed to the shell. Username Hostname Current Directory [username@scc1 ~]$ Prompt Command Line (input) The Shell ● The interface between the user and the operating system ● Program that interprets and executes input ● Provides: ○ Built-in commands ○ Programming control structures ○ Environment -
A Full Key Recovery Attack on HMAC-AURORA-512
A Full Key Recovery Attack on HMAC-AURORA-512 Yu Sasaki NTT Information Sharing Platform Laboratories, NTT Corporation 3-9-11 Midori-cho, Musashino-shi, Tokyo, 180-8585 Japan [email protected] Abstract. In this note, we present a full key recovery attack on HMAC- AURORA-512 when 512-bit secret keys are used and the MAC length is 512-bit long. Our attack requires 2257 queries and the off-line com- plexity is 2259 AURORA-512 operations, which is significantly less than the complexity of the exhaustive search for a 512-bit key. The attack can be carried out with a negligible amount of memory. Our attack can also recover the inner-key of HMAC-AURORA-384 with almost the same complexity as in HMAC-AURORA-512. This attack does not recover the outer-key of HMAC-AURORA-384, but universal forgery is possible by combining the inner-key recovery and 2nd-preimage attacks. Our attack exploits some weaknesses in the mode of operation. keywords: AURORA, DMMD, HMAC, Key recovery attack 1 Description 1.1 Mode of operation for AURORA-512 We briefly describe the specification of AURORA-512. Please refer to Ref. [2] for details. An input message is padded to be a multiple of 512 bits by the standard MD message padding, then, the padded message is divided into 512-bit message blocks (M0;M1;:::;MN¡1). 256 512 256 In AURORA-512, compression functions Fk : f0; 1g £f0; 1g ! f0; 1g 256 512 256 512 and Gk : f0; 1g £ f0; 1g ! f0; 1g , two functions MF : f0; 1g ! f0; 1g512 and MFF : f0; 1g512 ! f0; 1g512, and two initial 256-bit chaining U D 1 values H0 and H0 are defined . -
Treatise on Astral Projection V2
TREATISE ON ASTRAL PROJECTION V2 by Robert Bruce Copyright © 1999 Contents Part One................................................................................................................................. 1 Part Two................................................................................................................................. 6 Part Three .............................................................................................................................. 12 Part Four ............................................................................................................................... 17 Part Five ................................................................................................................................ 21 Part Six................................................................................................................................... 27 Part Seven .............................................................................................................................. 34 Part Eight............................................................................................................................... 41 Book Release – “Astral Dynamics”....................................................................................... 51 Book Release – “Practical Psychic Self-Defense”................................................................ 52 i Copyright © Robert Bruce 1999 1 Part One This version has been completely rewritten and updated, with thought to all -
The First Collision for Full SHA-1
The first collision for full SHA-1 Marc Stevens1, Elie Bursztein2, Pierre Karpman1, Ange Albertini2, Yarik Markov2 1 CWI Amsterdam 2 Google Research [email protected] https://shattered.io Abstract. SHA-1 is a widely used 1995 NIST cryptographic hash function standard that was officially deprecated by NIST in 2011 due to fundamental security weaknesses demonstrated in various analyses and theoretical attacks. Despite its deprecation, SHA-1 remains widely used in 2017 for document and TLS certificate signatures, and also in many software such as the GIT versioning system for integrity and backup purposes. A key reason behind the reluctance of many industry players to replace SHA-1 with a safer alternative is the fact that finding an actual collision has seemed to be impractical for the past eleven years due to the high complexity and computational cost of the attack. In this paper, we demonstrate that SHA-1 collision attacks have finally become practical by providing the first known instance of a collision. Furthermore, the prefix of the colliding messages was carefully chosen so that they allow an attacker to forge two PDF documents with the same SHA-1 hash yet that display arbitrarily-chosen distinct visual contents. We were able to find this collision by combining many special cryptanalytic techniques in complex ways and improving upon previous work. In total the computational effort spent is equivalent to 263:1 SHA-1 compressions and took approximately 6 500 CPU years and 100 GPU years. As a result while the computational power spent on this collision is larger than other public cryptanalytic computations, it is still more than 100 000 times faster than a brute force search. -
Powerview Command Reference
PowerView Command Reference TRACE32 Online Help TRACE32 Directory TRACE32 Index TRACE32 Documents ...................................................................................................................... PowerView User Interface ............................................................................................................ PowerView Command Reference .............................................................................................1 History ...................................................................................................................................... 12 ABORT ...................................................................................................................................... 13 ABORT Abort driver program 13 AREA ........................................................................................................................................ 14 AREA Message windows 14 AREA.CLEAR Clear area 15 AREA.CLOSE Close output file 15 AREA.Create Create or modify message area 16 AREA.Delete Delete message area 17 AREA.List Display a detailed list off all message areas 18 AREA.OPEN Open output file 20 AREA.PIPE Redirect area to stdout 21 AREA.RESet Reset areas 21 AREA.SAVE Save AREA window contents to file 21 AREA.Select Select area 22 AREA.STDERR Redirect area to stderr 23 AREA.STDOUT Redirect area to stdout 23 AREA.view Display message area in AREA window 24 AutoSTOre .............................................................................................................................. -
Related-Key and Key-Collision Attacks Against RMAC
Related-Key and Key-Collision Attacks Against RMAC Tadayoshi Kohno CSE Department, UC San Diego 9500 Gilman Drive, MC-0114 La Jolla, California 92093-0114, USA IACR ePrint archive 2002/159, 21 October 2002, revised 2 December 2002. Abstract. In [JJV02] Jaulmes, Joux, and Valette propose a new ran- domized message authentication scheme, called RMAC, which NIST is currently in the process of standardizing [NIS02]. In this work we present several attacks against RMAC. The attacks are based on a new protocol- level related-key attack against RMAC and can be considered variants of Biham’s key-collision attack [Bih02]. These attacks provide insights into the RMAC design. We believe that the protocol-level related-key attack is of independent interest. Keywords: RMAC, key-collision attacks, related-key attacks. 1 Introduction Jaulmes, Joux, and Valette’s RMAC construction [JJV02] is a new ran- domized message authentication scheme. Similar to Petrank and Rackoff’s DMAC construction [PR97] and Black and Rogaway’s ECBC construc- tion [BR00], the RMAC construction is a CBC-MAC variant in which an input message is first MACed with standard CBC-MAC and then the resulting intermediate value is enciphered with one additional block ci- pher application. Rather than using a fixed key for the last block cipher application (as DMAC and ECBC do), RMAC enciphers the last block with a randomly chosen (but related) key. One immediate observation is that RMAC directly exposes the underlying block cipher to a weak form of related-key attacks [Bih93]. We are interested in attacks that do not exploit some related-key weakness of the underlying block cipher, but rather some property of the RMAC mode itself. -
A New Approach in Expanding the Hash Size of MD5
374 International Journal of Communication Networks and Information Security (IJCNIS) Vol. 10, No. 2, August 2018 A New Approach in Expanding the Hash Size of MD5 Esmael V. Maliberan, Ariel M. Sison, Ruji P. Medina Graduate Programs, Technological Institute of the Philippines, Quezon City, Philippines Abstract: The enhanced MD5 algorithm has been developed by variants and RIPEMD-160. These hash algorithms are used expanding its hash value up to 1280 bits from the original size of widely in cryptographic protocols and internet 128 bit using XOR and AND operators. Findings revealed that the communication in general. Among several hashing hash value of the modified algorithm was not cracked or hacked algorithms mentioned above, MD5 still surpasses the other during the experiment and testing using powerful bruteforce, since it is still widely used in the domain authentication dictionary, cracking tools and rainbow table such as security owing to its feature of irreversible [41]. This only CrackingStation, Hash Cracker, Cain and Abel and Rainbow Crack which are available online thus improved its security level means that the confirmation does not need to demand the compared to the original MD5. Furthermore, the proposed method original data but only need to have an effective digest to could output a hash value with 1280 bits with only 10.9 ms confirm the identity of the client. The MD5 message digest additional execution time from MD5. algorithm was developed by Ronald Rivest sometime in 1991 to change a previous hash function MD4, and it is commonly Keywords: MD5 algorithm, hashing, client-server used in securing data in various applications [27,23,22]. -
An Empirical Comparison of Widely Adopted Hash Functions in Digital Forensics: Does the Programming Language and Operating System Make a Difference?
2015 Annual ADFSL Conference on Digital Forensics, Security and Law Proceedings May 19th, 11:45 AM An Empirical Comparison of Widely Adopted Hash Functions in Digital Forensics: Does the Programming Language and Operating System Make a Difference? Satyendra Gurjar Cyber Forensics Research and Education Group (UNHcFREG), Tagliatela College of Engineering, ECECS Department, University of New Haven, [email protected] Ibrahim Baggili Cyber Forensics Research and Education Group (UNHcFREG), Tagliatela College of Engineering, ECECS Department, University of New Haven Frank Breitinger CyberFollow F thisorensics and additional Research worksand Education at: https:/ Gr/commons.eroup (UNHcFREG),au.edu/adfsl Tagliatela College of Engineering, ECECS Depar Partment,t of the Univ Aviationersity ofSaf Newety and Hav Securityen Commons, Computer Law Commons, Defense and Security AliceStudies Fischer Commons , Forensic Science and Technology Commons, Information Security Commons, CyberNational For Securityensics Resear Law Commonsch and Education, OS and GrNetworksoup (UNHcFREG), Commons T, Otheragliatela Computer College Sciences of Engineering, Commons ECECS, and theDepar Socialtment, Contr Univol,ersity Law , ofCrime, New andHav enDe,viance AFischer@newha Commons ven.edu Scholarly Commons Citation Gurjar, Satyendra; Baggili, Ibrahim; Breitinger, Frank; and Fischer, Alice, "An Empirical Comparison of Widely Adopted Hash Functions in Digital Forensics: Does the Programming Language and Operating System Make a Difference?" (2015). Annual ADFSL Conference on Digital Forensics, Security and Law. 6. https://commons.erau.edu/adfsl/2015/tuesday/6 This Peer Reviewed Paper is brought to you for free and open access by the Conferences at Scholarly Commons. It has been accepted for inclusion in Annual ADFSL Conference on Digital Forensics, Security and Law by an (c)ADFSL authorized administrator of Scholarly Commons. -
Lecture 17 the Shell and Shell Scripting Simple Shell Scripts
Lecture 17 The Shell and Shell Scripting In this lecture • The UNIX shell • Simple Shell Scripts • Shell variables • File System commands, IO commands, IO redirection • Command Line Arguments • Evaluating Expr in Shell • Predicates, operators for testing strings, ints and files • If-then-else in Shell • The for, while and do loop in Shell • Writing Shell scripts • Exercises In this course, we need to be familiar with the "UNIX shell". We use it, whether bash, csh, tcsh, zsh, or other variants, to start and stop processes, control the terminal, and to otherwise interact with the system. Many of you have heard of, or made use of "shell scripting", that is the process of providing instructions to shell in a simple, interpreted programming language . To see what shell we are working on, first SSH into unix.andrew.cmu.edu and type echo $SHELL ---- to see the working shell in SSH We will be writing our shell scripts for this particular shell (csh). The shell scripting language does not fit the classic definition of a useful language. It does not have many of the features such as portability, facilities for resource intensive tasks such as recursion or hashing or sorting. It does not have data structures like arrays and hash tables. It does not have facilities for direct access to hardware or good security features. But in many other ways the language of the shell is very powerful -- it has functions, conditionals, loops. It does not support strong data typing -- it is completely untyped (everything is a string). But, the real power of shell program doesn't come from the language itself, but from the diverse library that it can call upon -- any program. -
CMSC 426/626 - Computer Security Fall 2014
Authentication and Passwords CMSC 426/626 - Computer Security Fall 2014 Outline • Types of authentication • Vulnerabilities of password authentication • Linux password authentication • Windows Password authentication • Cracking techniques Goals of Authentication • Identification - provide a claimed identity to the system. • Verification - establish validity of the provided identity. We’re not talking about message authentication, e.g. the use of digital signatures. Means of Authentication • Something you know, e.g. password • Something you have, e.g. USB dongle or Common Access Card (CAC) • Something you are, e.g. fingerprint • Something you do, e.g. hand writing Password-Based Authentication • User provides identity and password; system verifies that the password is correct for the given identity. • Identity determines access and privileges. • Identity can be used for Discretionary Access Control, e.g. to give another user access to a file. Password Hashing Password • System stores hash of the user password, not the plain text password. Hash Algorithm • Commonly used technique, e.g. UNIX password hashing. Password Hash Password Vulnerabilities Assume the authentication system stores hashed passwords. There are eight attack strategies. • Off-line Dictionary Attack - get hold of the password file, test a collection (dictionary) of possible passwords. ‣ Most systems protect the password file, but attackers sometimes get hold of one. • Specific Account Attack - given a specific user account, try popular passwords. ‣ Most systems use lockout mechanisms to make these attacks difficult. • Popular Password Attack - given a popular password, try it on multiple accounts. ‣ Harder to defend against - have to look for patterns in failed access attempts. • Targeted Password Guessing - use what you know about a user to intelligently guess their password. -
Jellyfish Count -M 21 -S 100M -T 10 -C Reads.Fasta
Jellysh 2 User Guide December 13, 2013 Contents 1 Getting started 2 1.1 Counting all k-mers . .2 1.1.1 Counting k-mers in sequencing reads . .3 1.1.2 Counting k-mers in a genome . .3 1.2 Counting high-frequency k-mers . .3 1.2.1 One pass method . .3 1.2.2 Two pass method . .4 2 FAQ 5 2.1 How to read compressed les (or other format)?newmacroname . .5 2.2 How to read multiple les at once? . .5 2.3 How to reduce the output size? . .6 3 Subcommands 7 3.1 histo .............................................7 3.2 dump .............................................7 3.3 query .............................................7 3.4 info ..............................................8 3.5 merge ............................................8 3.6 cite . .8 1 Chapter 1 Getting started 1.1 Counting all k-mers The basic command to count all k-mers is as follows: jellyfish count -m 21 -s 100M -t 10 -C reads.fasta This will count canonical (-C) 21-mers (-m 21), using a hash with 100 million elements (-s 100 M) and 10 threads (-t 10) in the sequences in the le reads.fasta. The output is written in the le 'mer_counts.jf' by default (change with -o switch). To compute the histogram of the k-mer occurrences, use the histo subcommand (see section 3.1): jellyfish histo mer_counts.jf To query the counts of a particular k-mer, use the query subcommand (see section 3.3): jellyfish query mer_counts.jf AACGTTG To output all the counts for all the k-mers in the le, use the dump subcommand (see section 3.2): jellyfish dump mer_counts.jf > mer_counts_dumps.fa To get some information on how, when and where this jellysh le was generated, use the info subcommand (see section 3.4): jellyfish info mer_counts.jf For more detail information, see the relevant sections in this document.