El Producto Vectorial

Total Page:16

File Type:pdf, Size:1020Kb

El Producto Vectorial EL PRODUCTO VECTORIAL Juan Francisco Gonz´alezHern´andez *** Resumen Se desarrolla una exposici´onhist´orica del origen de la operaci´onque llamamos producto vectorial, destac´andoselos problemas y conceptos ma- tem´aticos que llevaron a su introducci´onen el Algebra.´ Se incluye una descripci´onde las m´asdestacadas y representativas aplicaciones de este producto en F´ısica y Matem´aticas, as´ı como una visi´ongeneral de las diferentes alternativas para generalizar este producto a espacios de m´as dimensiones. Finalmente, se discute acerca de la mejor manera de intro- ducir este concepto a nivel te´orico y pr´actico en los ´ultimos cursos de la E.S.O. y en Bachillerato, destac´andosealgunos puntos pedag´ogicos y did´acticos que pueden ser de inter´es pr´actico. ´Indice 1. Introducci´on 2 2. Historia y desarrollo del producto vectorial 3 2.1. W. R.Hamilton: complejos, cuaternios y vectores . 4 2.2. Grassmann y el c´alculo de extensiones . 8 2.3. Gibbs, Heaviside y el an´alisis vectorial . 10 2.4. William K. Clifford . 12 2.5. Una s´ıntesis moderna del producto vectorial . 13 2.5.1. Definici´on. 14 2.5.2. Ejemplos . 14 2.5.3. Propiedades interesantes . 14 2.5.4. Matrices, SO(3) y producto vectorial . 14 2.5.5. Notaci´ontensorial y producto vectorial . 15 2.5.6. Vectores axiales y quiralidad . 15 3. Aplicaciones del producto vectorial 16 3.1. Aplicaciones en Matem´aticas . 16 3.1.1. C´alculode ´areasy vol´umenes . 16 3.1.2. Teorema de Stokes . 16 3.1.3. Algebras´ de Lie y producto vectorial . 17 3.1.4. M´etodo de Cayley-Dickson, semioctavas, octavas y Matri- ces de Zorn . 18 3.1.5. Otras utilidades matem´aticas . 19 *k: jfgh.teorfi[email protected] **H: 655 246 827 1 3.2. Aplicaciones en la F´ısica . 19 3.2.1. Momento angular y torque . 19 3.2.2. Vector de Laplace-Runge-Lenz . 20 3.2.3. Sistemas de referencia no inerciales . 21 3.2.4. Redes de Bravais . 21 3.2.5. Expresi´onde la fuerza de Lorentz y vector de Poynting . 22 3.2.6. Ley de Biot-Savart . 23 3.2.7. Ecuaciones de Maxwell . 23 3.2.8. Rotacional y vorticidad . 23 4. Generalizaciones 24 4.1. Algebras´ normadas en D=1, 2, 4, 8 . 24 4.1.1. Las ´algebras con divisi´on K = R, C, H, O . 24 4.1.2. A × B s´oloexiste en D = 0, 1, 3, 7 . 25 4.2. Producto exterior y Algebra´ de Grassmann . 29 4.2.1. Algebra´ de Grassmann para principiantes . 29 4.2.2. Algebras´ de Grassmann en serio. 31 4.3. Forma de volumen y dual de Hodge . 32 4.4. Algebras´ de Clifford (Algebra´ geom´etrica) . 33 5. Pedagog´ıay Did´actica 35 5.1. La regla del tornillo y del sacacorchos . 35 5.2. La regla de la mano derecha . 36 5.3. La t´ecnica e intuici´onalgebraicas . 36 5.4. Problemas comunes de tipo did´actico y recursos pedag´ogicos . 37 6. Conclusiones y discusi´on 38 A. Cronolog´ıa algebraica 39 B. Perfiles biogr´aficos 45 B.1. W. R. Hamilton . 45 B.2. Hermann G¨unther Grassmann . 48 B.3. Oliver Heaviside . 49 B.4. Josiah W. Gibbs . 52 B.5. Arthur Cayley . 52 B.6. W. K. Clifford . 53 B.7. Nabla . 54 1. Introducci´on La tercera operaci´onaritm´etica b´asica, el producto, es en Matem´aticas y en F´ısicauna de las fuentes de mayores sorpresas. Para n´umeros convencionales, tales como los n´umeros reales, R, la definici´ondel producto no presenta ning´un problema, ya que simplemente es cuesti´onde una extensi´on trivial de las reglas para el producto que tenemos en los n´umeros enteros, Z, y los racionales, Q. Sin embargo, todos nos hemos enfrentado alguna vez a la dificultad intr´ınse- ca que plantea el producto y su operaci´oninversa, la divisi´on, en cuerpos o 2 estructuras algebraicas m´asgenerales. Los ejemplos t´ıpicos que hoy d´ıase en- se˜nan en la E.S.O. y Bachillerato comprenden dos casos importantes: el ´algebra vectorial y el ´algebramatricial. El concepto de producto de dos vectores, o de dos matrices, es algo inherentemente complicado y sorprendente cuando se ve por primera vez. Esta ha sido las principales motivaciones, junto a la vertiente hist´orica, hoy totalmente arrinconada por desgracia, la que nos ha llevado a la realizaci´onde este trabajo. El conocimiento de los pasos l´ogicos que hist´orica- mente llevaron a sentar las bases del c´alculo vectorial y tensorial por un lado, y por otro del Algebra,´ tienen gran importancia para profundizar en el concepto sobre el cual, de una u otra forma, descansan la mayor parte de aplicaciones ´utiles: la noci´onde operaci´on. La organizaci´ondel presente trabajo es como sigue: en la secci´on1, estu- diamos c´omoapareci´oel concepto de vector y las distintas clases de producto durante la g´enesis de los Cuaternios en el siglo XIX, donde Hamilton introdujo la noci´onde vector y m´astarde Gibbs y Heaviside desarrollaron tanto la no- taci´oncomo la maquinaria matem´aticaconocida hoy no ya s´olopor f´ısicos y matem´aticos,sino por una gran parte de los estudiantes preuniversitarios, al mismo tiempo que se exponen cu´ales fueron los posteriores desarrollos hist´ori- cos. En la secci´on2, hacemos una extensa revisi´onde las aplicaciones que tiene la operaci´onde producto vectorial en las disciplinas de F´ısica y Matem´aticas. En la secci´on3, realizamos una s´ıntesis autocontenida de las distintas formas de generalizar, en un sentido concreto matem´atico, la noci´onde producto vectorial a espacios de m´asdimensiones usando dos enfoques diferentes. Finalmente, en la secci´on4, presentamos una discusi´onque se espera sea ´util a instructores y profesores, y donde cobran particular importancia tres aspectos: la visi´onespa- cial, la regla del tornillo o sacacorchos y la t´ecnica o intuici´onalgebraica, ´este ´ultimo normalmente poco destacado y valorado en libros y manuales. 2. Historia y desarrollo del producto vectorial La historia de la operaci´onproducto vectorial se encuentra ´ıntimamente uni- da al origen del Algebra´ y la propia evoluci´onnatural de la teor´ıade n´umeros[1]. En concreto, para ser m´asprecisos, su creaci´oncomo entidad propia se encuen- tra, como veremos, en el mismo per´ıodo de tiempo que llev´oa la introducci´on del an´alisis vectorial [2, 3, 4]. Entre los siglos XVI y XVIII tuvo lugar una aut´entica revoluci´onmatem´atica,consistente en la puesta en com´unde la Geo- metr´ıaCl´asica eucl´ıdea y el Algebra´ aparecida en el Renacimiento. Mediante los m´etodos de la Geometr´ıa Anal´ıtica,y del reci´eninventado C´alculo infinitesi- mal, se produjo una explosi´onde nuevos y poderosos resultados pero tambi´enal planteamiento de nuevas dificultades. As´ı,a finales del siglo XVIII y principios del siglo XIX, quedaban ya pocos matem´aticosatados a los m´etodos exclusiva- mente geom´etricos, usando preferentemente tambi´enya los nuevos desarrollos algebraicos procedentes de la teor´ıade ecuaciones. Sin embargo, conviene des- tacar que esta curiosa operaci´on, el producto vectorial, no apareci´oen primer lugar con los vectores, sino que fue m´asbien al rev´es, los vectores y las distin- tas operaciones entre ellos se crearon a partir de la soluci´onalgebraica de un problema concreto, que no es otro que la de la generalizaci´onde la noci´onde n´umero complejo. 3 2.1. W. R.Hamilton: complejos, cuaternios y vectores Sir William Rowan Hamilton fue sin lugar a dudas una persona superdo- tada en muchos aspectos: a los 5 a˜nosle´ıagriego, lat´ın, hebreo y dominaba a los diez a˜nosmedia docena de lenguas orientales. Estudi´oen el Trinity Colle- ge de Dubl´ın, y a los 22 a˜nosera ya astr´onomoreal de Irlanda, director del Observatorio de Dunsink y profesor de Astronom´ıa. Public´opronto un trabajo sobre rayos en Optica,´ y estudi´ootros interesantes fen´omenos naturales cuya explicaci´ony confirmaci´onexperimental le dieron enorme prestigio, tanto como para ser elevado a la nobleza a los 30 a˜nos.Adem´as, fue la primera persona que present´oun trabajo original sobre el Algebra´ de n´umeros complejos ( aunque dicen las rumorolog´ıasmatem´aticasque Gauss ya conoc´ıaese sistema) siendo el primero en formalizarlo en 1833. As´ı, en ese a˜no,el art´ıculoque present´oa la Irish Academy, introdujo el concepto de n´umero complejo como un ´algebra 1formal de pares de n´umeros reales con operaciones suma y producto definidas como en la actualidad. De esta forma: (a, b) + (c, d) = (a + c, b + d) λ (a, b) = (λa, λb) (a, b)(c, d) = (ac − bd, ad + bc) El producto vectorial y el producto escalar surgieron a posteriori de la teor´ıa de los cuaternios de Hamilton, que son un conjunto de “n´umeros”de la forma siguiente: Q = a + bi + cj + dk (1) con a, b, c, d, ∈ R y los elementos base hipercomplejos cumpliendo las relaciones fundamentales siguientes: i 2 = j 2 = k 2 = ijk = −1 (2) ¿C´omo lleg´oHamilton a semejantes relaciones? Bien, la cuesti´ones ma- tem´aticamente no trivial, pero el problema es una “simple” generalizaci´on.Por analog´ıacon los n´umeros complejos, Hamilton se pregunt´osi ser´ıaposible hacer lo mismo para tripletes de n´umeros lo que hab´ıahecho para pares o dobletes de n´umeros reales, lo que hab´ıahecho para construir de una manera novel los n´umeros complejos.
Recommended publications
  • Fundamental Theorems in Mathematics
    SOME FUNDAMENTAL THEOREMS IN MATHEMATICS OLIVER KNILL Abstract. An expository hitchhikers guide to some theorems in mathematics. Criteria for the current list of 243 theorems are whether the result can be formulated elegantly, whether it is beautiful or useful and whether it could serve as a guide [6] without leading to panic. The order is not a ranking but ordered along a time-line when things were writ- ten down. Since [556] stated “a mathematical theorem only becomes beautiful if presented as a crown jewel within a context" we try sometimes to give some context. Of course, any such list of theorems is a matter of personal preferences, taste and limitations. The num- ber of theorems is arbitrary, the initial obvious goal was 42 but that number got eventually surpassed as it is hard to stop, once started. As a compensation, there are 42 “tweetable" theorems with included proofs. More comments on the choice of the theorems is included in an epilogue. For literature on general mathematics, see [193, 189, 29, 235, 254, 619, 412, 138], for history [217, 625, 376, 73, 46, 208, 379, 365, 690, 113, 618, 79, 259, 341], for popular, beautiful or elegant things [12, 529, 201, 182, 17, 672, 673, 44, 204, 190, 245, 446, 616, 303, 201, 2, 127, 146, 128, 502, 261, 172]. For comprehensive overviews in large parts of math- ematics, [74, 165, 166, 51, 593] or predictions on developments [47]. For reflections about mathematics in general [145, 455, 45, 306, 439, 99, 561]. Encyclopedic source examples are [188, 705, 670, 102, 192, 152, 221, 191, 111, 635].
    [Show full text]
  • Lattice Filtrations for G 2 of a P-Adic Field
    UNIVERSITY OF CALIFORNIA SANTA CRUZ LATTICE FILTRATIONS FOR G2 OF A p -ADIC FIELD A dissertation submitted in partial satisfaction of the requirements for the degree of DOCTOR OF PHILOSOPHY in MATHEMATICS by Paul Tokorcheck June 2012 The Dissertation of Paul Tokorcheck is approved: arXiv:1209.1420v1 [math.NT] 6 Sep 2012 Martin H. Weissman, Chair Robert Boltje Hirotaka Tamanoi Dean Tyrus Miller Vice Provost and Dean of Graduate Studies Table of Contents List of Figures iv List of Symbols v Abstract vii Preface viii Dedication ix Acknowledgments x I Part I: General Fields 1 1 Introduction 2 2 Composition Algebras and the Octonions. 3 2.1 Objects ............................................ 3 2.2 Morphisms.......................................... 7 2.3 Generating and Decomposing Composition Algebras . .......... 8 3 Automorphisms of the Split Octonion Algebra. 14 3.1 Generalities ....................................... ... 14 3.2 A subgroup isomorphic to SL3(k) ............................. 15 3.3 Some subgroups isomorphic to SL2(k) ........................... 16 3.4 Some (other) subgroups isomorphic to SL2(k) ...................... 18 3.5 MattersofNotation.................................. .... 18 4 Chevalley Groups 20 4.1 Background ......................................... 20 4.2 AbstractRootSystems ................................ .... 21 4.3 TheChevalleyConstruction . ...... 22 4.4 WhenMoreisKnown .................................... 23 4.5 AnExample .......................................... 24 5 Chevalley Generators of G2 26 5.1 BackgroundandStrategy . .... 26 5.2 AssociationsandVerifications. ........ 28 5.3 The Algebra of Derivations of O .............................. 31 ii 5.4 A Chevalley Basis of DerO .................................. 32 II Part II: Local Fields 35 6 Introduction 36 7 Construction of the Standard Apartment 37 7.1 CorootsandtheCorootDiagram . ..... 37 7.2 Affine Roots, the Apartment, and Hyperplanes . ......... 40 8 Lattice Filtrations and Octonion Orders 46 8.1 Lattices and Orders in O ..................................
    [Show full text]
  • Groups, Rings and Fields Karl-Heinz Fieseler Uppsala 2010
    Groups, Rings and Fields Karl-Heinz Fieseler Uppsala 2010 1 Preface These notes give an introduction to the basic notions of abstract algebra, groups, rings (so far as they are necessary for the construction of field exten- sions) and Galois theory. Each section is followed by a series of problems, partly to check understanding (marked with the letter \R": Recommended problem), partly to present further examples or to extend theory. For useful hints and remarks I am indebted to my colleague Ernst Dieterich. Uppsala, September 2010 Karl-Heinz Fieseler 2 Contents 1 Introduction 4 2 Groups 12 2.1 Definitions and Examples . 12 2.2 Homomorphisms . 17 2.3 Subgroups . 24 2.3.1 Digression: Quaternions . 32 2.4 Order and Cyclic Groups . 37 2.5 Factor Groups . 39 2.5.1 Digression: Free Groups . 44 2.6 Simple Groups and Composition Series . 52 2.7 Abelian Groups . 56 2.7.1 Digression: Free Abelian Groups . 62 2.8 Sylow Subgroups . 63 3 Rings 70 3.1 Definitions and Examples . 70 3.2 Homomorphisms . 79 3.3 Ideals and Factor Rings . 82 3.3.1 Digression: p-adic number fields . 90 3.4 Irreducibility Criteria . 95 4 Field Extensions and Galois Theory 100 4.1 Basic Definitions . 100 4.2 Automorphism Groups . 106 4.3 Formal Derivatives and Multiplicities . 112 4.4 Splitting Fields . 116 4.5 Finite Fields . 124 4.5.1 Digression 1: Quadratic reciprocity . 126 4.5.2 Digression 2: Further Simple Groups . 130 4.6 Galois Theory . 136 4.7 The Fundamental Theorem of Algebra . 142 4.8 Cyclotomic Extensions .
    [Show full text]
  • Chapter 2 Relations, Functions, Partial Functions
    Chapter 2 Relations, Functions, Partial Functions 2.1 What is a Function? Roughly speaking, a function, f,isaruleormechanism, which takes input values in some input domain,sayX, and produces output values in some output domain,say Y ,insuchawaythattoeachinputx X corresponds a unique output value y Y ,denoted∈f(x). ∈ We usually write y = f(x), or better, x f(x). → Often, functions are defined by some sort of closed ex- pression (a formula), but not always. 219 220 CHAPTER 2. RELATIONS, FUNCTIONS, PARTIAL FUNCTIONS For example, the formula y =2x defines a function. Here, we can take both the input and output domain to be R,thesetofrealnumbers. Instead, we could have taken N,thesetofnaturalnum- bers; this gives us a different function. In the above example, 2x makes sense for all input x, whether the input domain is N or R,soourformulayields afunctiondefinedforallofitsinputvalues. Now, look at the function defined by the formula x y = . 2 If the input and output domains are both R,againthis function is well-defined. 2.1. WHAT IS A FUNCTION? 221 However, what if we assume that the input and output domains are both N? This time, we have a problem when x is odd. For exam- 3 ple, 2 is not an integer, so our function is not defined for all of its input values. It is a partial function,aconceptthatsubsumesthe notion of a function but is more general. Observe that this partial function is defined for the set of even natural numbers (sometimes denoted 2N)andthis set is called the domain (of definition) of f.
    [Show full text]
  • Looking Back ... Max Zorn
    Looking back … Max Zorn: World Renowned Mathematician and Member of the Indiana MAA Section Steve Carlson INMAA Historian Rose-Hulman Institute of Technology [email protected] Essentially all mathematics graduate students, as well as many undergraduate math majors, at some point in their studies learn the importance of the axiom of choice and some of its equivalent versions. The author of this note was a graduate student studying topology in the 1970’s, when the current “mathematical humor’’ in my group involved riddles like the following: Q: “What’s sour and yellow and equivalent to the axiom of choice?” A: “Zorn’s lemon!” While I knew that “Zorn” was the name of a mathematician who proved an equivalent version of the Axiom of Choice, I didn’t know much about the man Max Zorn until the late 1980s when a research colleague told me that Max was a professor at Indiana University, not far from Rose-Hulman, the school I happened to be joining as a faculty member. I never had a chance to meet Max, but during my first few years in Indiana it was a pleasure to learn more about this man, his interesting personality, and his mathematics. Max August Zorn was born in Germany on June 6, 1906. He attended Hamburg University, from which he received his Ph.D. in 1930; his thesis advisor was Emil Artin. After a few years at the University of Halle, Max and his family left Germany, and they moved to the United States in 1933. [1] It was as a Fellow at Yale University (1934 – 1936) that Max published “A Remark on Method in Transfinite Algebra” [2], the article in which he presented the result that would become known as “Zorn’s Lemma.” From 1936 through 1946 he served as an Associate Professor at UCLA, and in 1946 he moved to Bloomington, where he had accepted a position as Professor of Mathematics at Indiana University.
    [Show full text]
  • Lecture Notes of the Unione Matematica Italiana
    Lecture Notes of 3 the Unione Matematica Italiana Editorial Board Franco Brezzi (Editor in Chief) Persi Diaconis Dipartimento di Matematica Department of Statistics Università di Pavia Stanford University Via Ferrata 1 Stanford, CA 94305-4065, USA 27100 Pavia, Italy e-mail: [email protected], e-mail: [email protected] [email protected] John M. Ball Nicola Fusco Mathematical Institute Dipartimento di Matematica e Applicazioni 24-29 St Giles’ Università di Napoli “Federico II”, via Cintia Oxford OX1 3LB Complesso Universitario di Monte S. Angelo United Kingdom 80126 Napoli, Italy e-mail: [email protected] e-mail: [email protected] Alberto Bressan Carlos E. Kenig Department of Mathematics Department of Mathematics Penn State University University of Chicago University Park 1118 E 58th Street, University Avenue State College Chicago PA. 16802, USA IL 60637, USA e-mail: [email protected] e-mail: [email protected] Fabrizio Catanese Fulvio Ricci Mathematisches Institut Scuola Normale Superiore di Pisa Universitätstraße 30 Piazza dei Cavalieri 7 95447 Bayreuth, Germany 56126 Pisa, Italy e-mail: [email protected] e-mail: [email protected] Carlo Cercignani Gerard Van der Geer Dipartimento di Matematica Korteweg-de Vries Instituut Politecnico di Milano Universiteit van Amsterdam Piazza Leonardo da Vinci 32 Plantage Muidergracht 24 20133 Milano, Italy 1018 TV Amsterdam, The Netherlands e-mail: [email protected] e-mail: [email protected] Corrado De Concini Cédric Villani Dipartimento di Matematica Ecole Normale Supérieure de Lyon Università di Roma “La Sapienza” 46, allée d’Italie Piazzale Aldo Moro 2 69364 Lyon Cedex 07 00133 Roma, Italy France e-mail: [email protected] e-mail: [email protected] The Editorial Policy can be found at the back of the volume.
    [Show full text]
  • RM Calendar 2018
    Rudi Mathematici x3 – 6’138 x2 + 12’557’564 x – 8’563’189’272 = 0 www.rudimathematici.com 1 1 M (1803) Guglielmo Libri Carucci dalla Sommaja RM132 (1878) Agner Krarup Erlang Rudi Mathematici (1894) Satyendranath Bose RM168 (1912) Boris Gnedenko 2 T (1822) Rudolf Julius Emmanuel Clausius (1905) Lev Genrichovich Shnirelman (1938) Anatoly Samoilenko 3 W (1917) Yuri Alexeievich Mitropolsky January 4 T (1643) Isaac Newton RM071 5 F (1723) Nicole-Reine Étable de Labrière Lepaute (1838) Marie Ennemond Camille Jordan Putnam 2003, A1 (1871) Federigo Enriques RM084 Let n be a fixed positive integer. How many ways are (1871) Gino Fano there to write n as a sum of positive integers, n = a1 + 6 S (1807) Jozeph Mitza Petzval a2 + … + ak, with k an arbitrary positive integer and a1 (1841) Rudolf Sturm ≤ a2 ≤ … ≤ ak ≤ a1+1? For example, for n=4 there are 7 S (1871) Felix Edouard Justin Émile Borel four ways: 4; 2+2; 2+1+1, 1+1+1+1. (1907) Raymond Edward Alan Christopher Paley 2 8 M (1888) Richard Courant RM156 Invited to the Great Ball of Scientists... (1924) Paul Moritz Cohn ... Ampere was following the current. (1942) Stephen William Hawking 9 T (1864) Vladimir Adreievich Steklov How do mathematicians do it? (1915) Mollie Orshansky Möbius always did it on the same side. 10 W (1875) Issai Schur (1905) Ruth Moufang If a man will begin with certainties, he shall end in 11 T (1545) Guidobaldo del Monte RM120 doubts; but if he will be content to begin with doubts, he (1707) Vincenzo Riccati shall end in certainties.
    [Show full text]
  • Arxiv:1807.08416V3
    SOME FUNDAMENTAL THEOREMS IN MATHEMATICS OLIVER KNILL Abstract. An expository hitchhikers guide to some theorems in mathematics. Criteria for the current list of 200 theorems are whether the result can be formulated elegantly, whether it is beautiful or useful and whether it could serve as a guide [6] without leading to panic. The order is not a ranking but ordered along a time-line when things were written down. Since [431] stated “a mathematical theorem only becomes beautiful if presented as a crown jewel within a context” we try sometimes to give some context. Of course, any such list of theorems is a matter of personal preferences, taste and limitations. The number of theorems is arbitrary, the initial obvious goal was 42 but that number got eventually surpassed as it is hard to stop, once started. As a compensation, there are 42 “tweetable” theorems with included proofs. More comments on the choice of the theorems is included in an epilogue. For litera- ture on general mathematics, see [158, 154, 26, 190, 204, 478, 330, 114], for history [179, 484, 304, 62, 43, 170, 306, 296, 535, 95, 477, 68, 208, 275], for popular, beautiful or elegant things [10, 406, 163, 149, 15, 518, 519, 41, 166, 155, 198, 352, 475, 240, 163, 2, 104, 121, 105, 389]. For comprehensive overviews in large parts of mathematics, [63, 138, 139, 47, 458] or predictions on developments [44]. For reflections about mathematics in general [120, 358, 42, 242, 350, 87, 435]. Encyclopedic source examples are [153, 547, 516, 88, 157, 127, 182, 156, 93, 489].
    [Show full text]
  • Foundations of Topology Basic Concepts of Set Theory
    FOUNDATIONSOFTOPOLOGY BASICCONCEPTSOFSETTHEORYLara Bocksnick, Valentina Cisternas & Lisa Zell February 17th, 2015 1 Introduction 2 2contentsSets, Classes, Conglomerates 2 2.1 Sets............................................. 2 2.2 Classes . 2 2.3 Conglomerates . 3 3 Axiomatic systems 4 3.1 The concept of ”set” . 4 3.2 Von Neumann–Bernays–Gödel set theory (NBG) . 4 3.3 Zermelo–Fraenkel set theory . 7 4 Relations and functions 8 5 Theorems in connection with the Axiom of choice 11 5.1 The Axiom of Choice . 11 5.2 Zorn’s Lemma . 12 5.3 Well-ordering Principle . 12 5.4 Hausdorff’s Maximal Principle . 12 5.5 Equivalents to the Axiom of Choice . 13 1 The barber is a man in town who shaves all those, 1 introductionand only those, men in town who do not shave themselves. Who shaves the barber? The ”barber paradoxon” is a very interesting question that we will be able to answer at the end of section three. The need to solve problems like this led to create different set theories. We will focus on two of them, namely the Neumann- Bernays- Gödel and the Zermelo- Fraenkel set theory, which are basically equivalent for the most part. But first we have to define some fundamental terms. 2 sets, classes, conglomerates We2.1 wantSets to assume that the following defnitions are well-known: property, subset, empty set, power set, union, intersection, relative complement, disjoint union • Let x and y be elements. (x, y) := ffxg, fx, ygg is defined as ordered pair. DEFINITION. • Let X and Y be sets. X × Y := f(x, y) j x 2 X ^ y 2 Yg is defined as Cartesian Product.
    [Show full text]
  • Algebra, Arithmetic and Geometry – with a View Toward Applications / 2005 Lectures : Tuesday/Thursday 18:15–19:15 ; LH-1, Department of Mathematics
    Department of Mathematics, Indian Institute of Science, Prof. D. P. Patil 2005 Algebra, Arithmetic and Geometry – With a View Toward Applications / 2005 Lectures : Tuesday/Thursday 18:15–19:15 ; LH-1, Department of Mathematics 0.C Ordered Sets Max August Zorn† (1906-1993) 0.C.1. Let (X, ≤) be an ordered set in which every subset has a least upper bound and has a greatest lower bound. Further, let f : X → X be an increasing map and let F be the fixed points of f . Show that: a). If {x ∈ X | f(x)<x} =∅and if a is its greatest lower bound, then either a ∈ F or f(a)∈ F . b). If {x ∈ X | x<f(x)} =∅and if z is its least upper bound, then either z ∈ F or f(z)∈ F . c). F is non-empty. Further, the least upper bound and the greatest lower bound of F belong to F . 0.C.2. a). (Lattice) Anordered set (X, ≤) is called a lattice ifforeverytwoelements x,y in X , Sup{x,y} and Inf{x,y} exist. The power set P(X), ⊆) of a set with respect to the natural inclusion is a lattice. Every totally ordered set is a lattice. If Xi ,i ∈ I , is a family of lattices, then so is the product set i∈I Xi with respect to the product order. If X is a lattice, then X is also lattice with respect to the inverse order; this lattice is called the (dual lattice). b). Let (X, ≤) be a lattice with largest and smallest element.
    [Show full text]
  • MA-231 Topology 3
    Prof. D. P.Patil, Department of Mathematics, Indian Institute of Science, Bangalore August-December 2004 MA-231 Topology 3. Ordered Sets —————————————— August 20, 2004 ; Submit solutions before 10:00 AM ;August 30, 2004. 3.1. Let (X, ≤) be an ordered set in which every subset has a least upper bound and has a greatest lower bound. Further, let f : X → X be an increasing map and let F be the fixed points of f . Show that: a). If {x ∈ X | f(x)<x} =∅and if a is its greatest lower bound, then either a ∈ F or f(a)∈ F . b). If {x ∈ X | x<f(x)} =∅and if z is its least upper bound, then either z ∈ F or f(z)∈ F . c). F is non-empty. Further, the least upper bound and the greatest lower bound of F belong to F . 3.2. Let (X, ≤) be a lattice (see T3.2) with a largest element and a smallest element. a). Suppose that X has the following property : if x,y ∈ X and if Sup{x,y} is a direct successer 1) of x, then Inf{x,y} is a direct predecesser of y. Prove the following Chain theorem: If X has a finite maximal chain, then every chain in X is finite and the lengths 2) of all maximal chains in X are equal. (Hint : It is enough to prove that: if X has a finite maximal chain x0 < ··· <xn of length n, then every finite chain y0 < ··· <ym in X has length m ≤ n. Induction on n:ifn ≥ 1,m ≥ 1, then apply induction hypothesis on the lattice {x ∈ M : x ≤ xn−1}.
    [Show full text]