Chapter 6. The Free-Electron Model Free electron model for electrons in

โ€ข It is sometimes found that the outmost valence Positively charged are shielded by other electrons in a can be treated as if they are electrons. ๐‘‰~0 inside solid essentially free electrons, particularly in metals where outer-most valence electrons are not โ€œParticle in a boxโ€ model involved in chemical bonding. ex) metallic sodium has 1s22s22p63s1, and the ๐‘‰๐‘–๐‘› 0

outermost 3s electron can be considered ๐‘‰๐‘œ๐‘ข๐‘ก~โˆž to be essentially free. โ€ข Almost-free electrons confined within the โ†’ The potential barrier to overcome for escape is the work function.

[Main questions in chapter 6] 1. What energies are allowed for the valence electrons in a metal? 2. What is the density of allowed states? How many states lie between E and E+dE? 3. How are these states occupied by electrons at various temperatures? What energies are allowed?

โ„ Outside metal; ๐œ“~0, inside metal; โˆ‡๐œ“๐ธ๐œ“0 (Schrodinger eq.) (separation of variables) ๐œ“๐‘ฅ, ๐‘ฆ, ๐‘ง ๐‘‹๐‘ฅ๐‘Œ๐‘ฆ๐‘๐‘ง ๐ธ๐ธ ๐ธ ๐ธ ๐‘‘๐‘‹ 2๐‘š ๐‘’. ๐‘”. ๐ธ ๐‘‹0 ๐‘‘๐‘ฅ โ„ ๐‘‰ 0 2 ๐‘›๐œ‹๐‘ฅ ๐‘–๐‘› ๐‘‹ sin ๐‘‰ ~โˆž ๐ฟ ๐ฟ ๐‘œ๐‘ข๐‘ก โ„ ๐ธ ๐‘› (๐‘› :integer) 2 ๐‘› ๐œ‹๐‘ฅ ๐‘›๐œ‹๐‘ฆ ๐‘› ๐œ‹๐‘ง ๐œ“ sin sin sin ๐ฟ ๐ฟ ๐ฟ ๐ฟ

โ„๐œ‹ โ„ ๐ธ ๐‘› ๐‘› ๐‘› ๐ค 2๐‘š๐ฟ 2m ๐‘› ๐œ‹ ๐‘›๐œ‹ ๐‘› ๐œ‹ with ๐ค๐ž ๐ž ๐ž ๐ฟ ๐ฟ ๐ฟ What energies are allowed?

3.42 10 The ground state energy is ๐ธ ๐‘› ๐‘› ๐‘› ๐‘’๐‘‰ ๐ฟ effectively zero, and the distribution of energy states can be treated as โ„ Ground state: E quasiโˆ’continous since the differences between discrete states ๐ฟ~๐‘‚ ๐‘๐‘š , ๐ธ~0, ฮ”๐ธ~0 are so small

Degeneracy : Different state with different spatial distribution of probability density, but the same energy (single energy level)

Degenerate state ๐‘›,๐‘›,๐‘› 1,1,1, 2,2,2 : not degenerate

โ„๐œ‹ Degeneracy: ๐ธ41 2๐‘š๐ฟ 1,2,6, 1,6,2, 2,1,6, 2,6,1, 6,1,2, 6,2,1 3,4,4, 4,3,4, 4,4,3 9 fold degenerate state The density of the allowed states as a function of E

Number of states within โ„ the interval of 20 The as a function of E

How many states lie within a particular energy range, e.g., the energy range between E and E+dE? Let n(E) is the density of electron at energy E, Then n(E)=N(E)ฦ’(E) where, N(E): density of allowed state, # of states between E and E+dE ฦ’(E) : probability of occupation of a state n N(E): the total number of states with energy less than E z

N N๐ธ ๐‘๐ธ๐‘‘๐ธ, ๐‘๐ธ (1,1, 2) (1,1,1)

How to count N(E)? (2,1,1) 2๐‘š๐ฟ ny ๐‘› ๐‘› ๐‘› ๐ธ โ„๐œ‹ (1, 2,1) 2๐‘š๐ฟ n :equation of a sphere with radius of ๐ธ x โ„๐œ‹ [n-space]

: one state (nx, ny, nz) per unit volume The density of states as a function of E 2๐‘š๐ฟ N๐ธ: volume of the positive octant of the sphere with radius ๐‘… ๐ธ โ„๐œ‹ 1 4๐œ‹ 2๐‘š๐ฟ ๐ฟ 2๐‘š NEV () N๐ธ ๐ธ ๐ธ 8 3 โ„๐œ‹ 6๐œ‹ โ„ ๐‘‰ 2๐‘š ๐ธ ๐‘‰ ๐ฟ ) 6๐œ‹ โ„ ๐‘‘N๐ธ ๐‘‰ 2๐‘š ๐‘๐ธ ๐ธ ๐‘‘๐ธ 4๐œ‹ โ„ ๐ธ E โˆถ Density of orbital states without considering F

๐‘๐ธ: the number of states per unit volume "density of states" ๐‘๐ธ 2 due to spin degeneracy

1 2๐‘š ๐‘ ๐ธ ๐ธ 2๐œ‹ โ„ Occupation probability: ฦ’(E)

At 0 K, we can expect that electrons will fill up the states, starting from the lowest energy first, until the last electron to be added has an energy EF which marks the occupied states from the higher-lying unoccupied states.

NEV ()

Fermi energy Ef : The highest occupied electron state

E EF - Density of free electrons (n) 1 2๐‘š ๐‘› ๐‘๐ธ๐‘‘๐ธ ๐ธ 3๐œ‹ โ„ โ„ โ„ ๐‘˜ ๐ธ 3๐œ‹๐‘› ๐‘˜ 3๐œ‹๐‘› 2๐‘š 2๐‘š Occupation probability: ฦ’(E)

What is ๐‘“๐ธ for T > 0 K? ๐ธ is a very slow function of temperature.

1 fE()๏€ฝ F 2

Requirements on ๐‘“๐ธ 1 For E โ‰ชE, ๐‘“๐ธ=1 2 For E โ‰ซE, ๐‘“๐ธ~0 1 ๐‘“๐ธ [Fermiโˆ’Dirac distribution function] ๐‘’/ 1 Occupation probability: distribution

๐‘“๐ธ Bose Einstein ๐ธ 0 for Boltzman & Bโˆ’E ๐ธ ๐ธ for Fโˆ’D Fermi Dirac 1.0 Boltzman

Eref ๐ธ

At large energies, three distributions are the same.

For Fermi function For B-E distribution

๐‘“๐ธ=1 for E โ‰ชE Infinite occupancy for and photons with ๐‘“๐ธ= for E E zero energy ๐‘“๐ธ=0 for E โ‰ซE Density of occupied states : every physically distinct distribution of N particles among various energy states in equally likely to occur. 1 2๐‘š 1 ๐‘ ๐ธ ๐ธ ๐‘“๐ธ 2๐œ‹ โ„ ๐‘’/ 1

1 2๐‘š ๐ธ ๐‘› ๐ธ๐‘“E ๐‘ E 2๐œ‹ โ„ ๐‘’/ 1

๐‘“๐ธ ๐‘๐ธ โˆ๐ธ 1.0

๐‘›๐ธ

๐ธ Photoemission

KE.. Vacuum

๏จ๏ท work function ๐‘ž๐œ™ ๏จ๏ท e๏€ญ E detector F โˆ’measure the kinetic metal energy or electron current 0 metal surface Vacuum

โ€ข To be emitted from the metal, electrons need to overcome the energy barrier, work function.

๐พ. ๐ธ. โ„๐œ” ๐‘‰ โ€ข At low temperature, the minimum energy to produce photoemission is hc ๏จ๏ท๏ฆ๏ฌ๏€ฝ๏€ฝq min max q๏ฆ

: Method for measurement of the work function of a metal surface Note work function varies depending on the crystal face. Photoemission (a) Rate of electron excitation by light ๐ถexp๐›ผ๐‘ฅ ๐›ผ: absorption coefficient

(b) Absorption coefficient is a function of the photon energy, โ„๐œ”. The photoemission current depends on the photon energy.

(c) Excitation of electrons can occur from the initial states at the or below.

(d) If electrons are scattered during excitation, there would be no emission. (probability of not being scattered during traveling a distance x) = exp ๐‘ฅ: for scattering

(e) Electrons approaching the surface and to be photoemitted undergo reflection due to wave-like properties and change in kinetic energy at the surface. Photoemission

ex) ๐‘ž๐œ™ โ‰ก๐‘‰ ๐ธ ๐‘ž๐œ™ of metals: 1.8 ๐‘’๐‘‰ cesium ~ 4.8 ๐‘’๐‘‰ nickel Cs Ni 700 nm 260 nm

Internal photoemission : In a contact between metal and another material, there is a barrier for photoemission. Photoemission yield ~ (photon E โ€“ barrier height)2

control of work function in intermetallic compounds

โ€ข Emission of high energy electron corresponding to the high energy tail of the Fermi-distribution at high temperature. 1 For thermionic emission, ๐ธ ๐‘š๐‘ฃ ๐ธ ๐‘ž๐œ™ 2 ๐ฝ density of electrons with sufficient energy to pass into vacuum velocity component in the x directon ๏‚ฎ J ๐ฝ ๐‘ž๐‘ฃ๐‘‘๐‘› ๐‘ž๐‘ฃ๐‘› ๐ธ๐‘‘๐ธ x

๐‘ž๐œ™

๐‘›๐ธ๐‘‘๐ธ ๐‘“๐ธ๐‘ ๐ธ๐‘‘๐ธ E 8๐œ‹๐‘š ๐‘ฃ๐‘‘๐‘ฃ F โ„Ž ๐‘’ / 1 ๐‘›๐ธ 1 0 x โˆต ๐ธ ๐‘š๐‘ฃ,๐‘‘๐ธ๐‘š๐‘ฃ๐‘‘๐‘ฃ 2 metal surface Vacuum Thermionic emission

4๐œ‹๐‘ฃ ๐‘‘๐‘ฃin spherical coordinate~๐‘‘๐‘ฃ๐‘‘๐‘ฃ๐‘‘๐‘ฃ in courtesian coordinate

Since ๐ธ๐ธ โ‰ซ๐‘˜๐‘‡ 1 โ†’๐‘’/ ๐‘’/๐‘’ ๐‘’/ 1

2๐‘š ๐ฝ ๐‘‘๐‘ฃ ๐‘‘๐‘ฃ ๐‘ž๐‘ฃ ๐‘’/๐‘’ ๐‘‘๐‘ฃ โ„Ž 2๐œ‹๐‘˜๐‘‡ ๐‘’ ๐‘‘๐‘ฃ ๐‘’ ๐‘‘๐‘ฃ ๐‘š ๐‘˜๐‘‡ ๐‘ฃ ๐‘’ ๐‘‘๐‘ฅ ๐‘’/ ๐‘š 4๐œ‹๐‘ž๐‘š 4๐œ‹๐‘ž๐‘š ๐‘ž๐œ™ ๐ด ๐‘˜๐‘‡ โˆด๐ฝ ๐‘˜๐‘‡ exp [Richardson Eq.] โ„Ž โ„Ž ๐‘˜๐‘‡ (Richardson constant) Thermionic emission

๐ฝ 1 From a plot of ln vs. from ๐ฝ ๐‘˜๐‘‡ exp ๐‘ž๐œ™/๐‘˜๐‘‡ ๐‘‡ ๐‘‡ Straight line with a slope of ๐‘ž๐œ™/๐‘˜

ex) contact between Pd and a-Si The slope gives an effective barrier height of 0.97 eV, which is similar to the barrier measured by photoemission. Field emission

โ€ข Field-induced electron emission from metals โ€ข The mechanism: quantum mechanical tunneling โ€ข The rate of emission โˆ n(E)โœ•T(E) n(E): the density of occupied states at a given E T(E): tunneling transmission coefficient at the same E Field emission โ€ข Rate of emission ~ (density of occupied states at given E) (tunneling transmission coeff.) โ€ข Total emission = (the rate of emission)dE ๏ƒฒE

โ€ข Most of the emission, however, comes from state close to EF For high energy, n(E) โ†“, T(E) โ†‘ For low energy, n(E) โ†‘, T(E) โ†“

๐œ€โˆ‡๐œ™ (๐œ™: potential, ๐œ€: electric field)

๐œ™๐‘ž๐œ€ for const. ๐œ€ : In electric field, potential energy varies with distance x from the surface โ€ข A traveling wave moving in the +x direction approaching the barrier from the left would be attenuated in passing โ€œthroughโ€ the region of the barrier Field emission

โ€ข Approximate tunneling probability T is given by Wentzelโˆ’Kramersโˆ’Brillouin 2 tungsten ๐‘‡exp 2๐‘š๐‘‰ ๐ธ ๐‘‘๐‘ฅ [WKB model] โ„ ๐‘‰ ๐ธ : ffectivee barrier height, ๐‘‘: barrier width Considering the tunneling at the , ๐‘ฅ ๐‘‰ ๐ธ๐‘ž๐œ™ 1 , ๐‘‘๐‘™ ๐‘™ 4 ๐œ™ โˆด๐‘‡ ๐ธ exp 2๐‘š๐‘ž 3โ„ ๐œ€

โ€ข From integration over the whole distribution of n(E) T(E)

4 ๐œ™ ๐ฝ~๐œ€ exp 2๐‘š๐‘ž Plot of ln vs. โŸน straight line with slope of ๐œ™ 3โ„ ๐œ€

note: J is independent of temperature Scanning tunneling microscope (STM) STM tip (tungsten)

Tunneling distance

Low High Graphene current current

Leakage current in nanoscale transistor

The size of the transistor constantly scales down. At the same time, the thickness of gate oxide - an separating the gate electrode and channel layer - also becomes thinner. When the thickness of the oxide is only a few nanometers, the tunneling current through the gate oxide becomes sizeable, which induces failure of the devices. To resolve this issue, the industry (pioneered by

Intel) changed the material for the gate oxide from SiO2 to HfO2 that has high dielectric constant. So, we can decrease the oxide thickness while maintaining the capacitance.

โ€ข A significant contribution to the heat capacity comes from the free electrons present in the metals in addition to the lattice vibration. ex) and insulator โ€“ lattice vibration metal โ€“ free electrons significantly contribute to the heat capacity โ€ข The contribution of lattice vibrations:

๐ถ ๐œ•๐‘ˆ/๐œ•๐‘‡ E Density of lattice vibrational states ๐‘ˆ ๐‘ˆ๐œ”๐‘‘๐œ” โ„๐œ”exp โ„๐œ”/๐‘˜๐‘‡ 1 ๐‘๐œ”๐‘‘๐œ” ๐ถ โˆ ๐‘‡ โ€ข The contribution of free electrons

๐ถ ๐œ•๐‘ˆ/๐œ•๐‘‡ ๐‘ˆ ๐‘ˆ๐ธ๐‘‘๐ธ ๐ธ๐‘“๐ธ๐‘๐ธ ๐‘‘๐ธ ๐ถ โˆ๐‘‡for low T โ€ข At low temperature, ๐ถ๐ถ ๐ถ ๐ด๐‘‡ ๐ต๐‘‡ Plot of vs. ๐‘‡ โŸน slope = A and intercept = B