Absolute Primes

Total Page:16

File Type:pdf, Size:1020Kb

Absolute Primes Absolute Primes A. Slinko For a long time primes have attracted the attention of mathematicians, especially those primes that possess some sort of symmetry. The mysterious and inconceivable repunits An = 111 . 1(n), whose decimal representation contains only units, form an important class of 1 them . For a repunit An to be prime, the number n of digits in its decimal representation must be also prime. But this condition is far from being sufficient: for instance, A = 111 = 3 37 and A = 11111 = 41 271. Some 3 · 5 · repunits are nonetheless prime: A2, A19, A23, A317 and possibly A1031, give the examples. The question of primeness of repunits was discussed by M. Gardner [1] and later in [2-4]. It is completely unclear whether the number of prime repunits is finite or infinite. The prime repunits are examples of integers which are prime and remain prime after an arbitrary permutation of their decimal digits. Integers with this property are called either permutable primes according to H.-E. Richert [5], who introduced them some 40 years ago, or absolute primes according to T.N. Bhagava and P.H. Doyle [6], and A.W.Johnson [7]. The intent of this note is to give a short proof, which does not require significant num- ber crunching, of all known facts referring to absolute primes different from repunits. Analyzing the table of primes which are less than 103, we find 21 absolute primes different form the repunit 11: 2, 3, 5, 7, 13, 17, 31, 37, 71, 73, 79, 97, 113, 131, 199, 311, 337, 373, 733, 919, 991. 1By a subscript in brackets we will indicate the number of digits in the decimal repre- sentation of the integer. 1 The first observation is easy to get: Lemma 1: A multidigit absolute prime contains in its decimal represen- tations only the four digits 1, 3, 7, 9. Proof: If any of the digits 0, 2, 4, 5, 6, 8 appear in the representation of an integer, then by shifting this digit to the units place we get a multiple of 2 or a multiple of 5. Now we can confine the area of the search, and this helps us to proceed with the following deliberations. Lemma 2: An absolute prime does not contain in its decimal represen- tation all of the digits 1, 3, 7, 9 simultaneously. Proof: Let N be a number with all of the digits 1, 3, 7, 9 in its decimal representation. Let us shift these four digits to the rightmost four places, to obtain an integer 5 N0 = c1 . cn 47931 = L 10 + 7931, − · n 1 n 2 where the notation a1 . an is used to denote the number a110 − +a210 − + . + an 110 + an, which decimal representation consists of digits a1, . , an. − The integers K0 = 7931, K1 = 1793, K2 = 9137, K3 = 7913, K4 = 7193, K5 = 1937, K6 = 7139 have different remainders on dividing by 7 since 5 Ki i (mod 7). The seven integers Ni = L 10 + Ki for i = 0, 1, 2, 3, 4, 5, 6 also≡have different remainders on dividing b·y 7. Therefore one of them is a multiple of 7. Since these integers can be obtained from N by a permutation of digits, N is not an absolute prime. Lemma 3: No absolute prime contains in its decimal representation three digits a and two digits b simultaneously, provided a = b. 6 Proof: Suppose that an integer N contains digits a, a, a, b, b in its decimal representation. By a permutation of digits of N, we can obtain integers i j Ni,j = c1 . cn 5aaaaa + (b a)(10 + 10 ), − − where 4 i > j 0. Since the integers 104 + 101, 103 + 102, 103 + 101, 102 + 100, 101 +≥ 100, 10≥4 + 100, 104 + 102 yield different remainders on dividing by 7, which are respectively 0, 1, 2, 3, 4, 5, 6, so do the integers (b a)(10i + 10j), − when 4 i > j 0. Therefore among the integers Ni,j there exists one that is a multiple≥ of 7.≥ 2 Using these two lemmas we are able by direct calculation (preferably on a computer) to prove that no n-digit absolute primes exist with n = 4, 5, 6. For example, if n = 6, we have to check all the numbers aaaaab, aaaabc, aabbcc, where a, b, c 1, 3, 7, 9 . ∈ { } Lemma 4: If N = c1 . cn 6aaaaab is an absolute prime, then K = − c1 . cn 6 is divisible by 7. − Proof: By permutations of the last 6 digits of N we can obtain the integers N = K 106 + a A + (b a)10i i · · 6 − for 0 i 5. Since b a is even and the powers 10i, 0 i 5, have different nonzero≤ remainders≤ on− dividing by 7: ≤ ≤ 100 1, 101 3, 102 2, 103 6, 104 4, 105 5, ≡ ≡ ≡ ≡ ≡ ≡ i 6 the integers (b a)10 have the same property. If the integer K 10 + a A6 had a nonzero remainder− on dividing by 7, we would find an integer· (b a)10· i, − which has the opposite remainder, and get Ni which is divisible by 7. Since 6 this is impossible, the number K 10 + a A6 is a multiple of 7. Moreover, as 0 1 2 3 4 · 5 · A6 = 10 +10 +10 +10 +10 +10 1+3+2+6+4+5 = 21 0 (mod 7), we conclude that K 106 and hence K≡, is divisible by 7. ≡ · Theorem 1: Every multidigit absolute prime integer N is either a re- punit, or can be obtained by a permutations of digits from the integer B (a, b) = aaa . ab = a A + (b a), n (n) · n − where a and b are different digits from the set 1, 3, 7, 9 . Proof: Let n be the number of digits of N.{We can}suppose that n > 6. By the first three lemmas N is written by the digits 1, 3, 7, 9 only but it does not contain in its decimal representation all of the digits 1, 3, 7, 9, and it can contain three such digits only if N is a permutation of digits of the number aaa . abc(n). Let us show that this is impossible. Since N is an absolute prime, the integers N1 = a . acaaaaab(n), N2 = a . abaaaaac(n), 3 are also absolute primes, and by Lemma 4 the integers a . ac(n 6) and − a . ab(n 6) are both divisible by 7. Thus their difference, whose absolute value is −b c , is also divisible by 7, which is impossible. Therefore| − |either N is a repunit or else it is written by two digits only. In the latter case we need Lemma 3 again, to secure that one digit appears only once. The prime number 7 played a significant role in the preceding consider- ations. But other useful primes also exist and we are going to find some of them. Note that the property of 7 most useful for us was the fact that the powers 10i, 0 < i < 6, had different nonzero remainders on dividing by 7. In general, by Fermat’s Little Theorem for every prime p > 5, we have p 1 10 − 1 (mod p). Let≡h(p) be the least possible positive integer such that 10h(p) 1 (mod p). It is obvious that h(p) is a divisor of p 1 and that 10q 1 ≡(mod p) im- plies that q is divisible by h(p). It is also− easy to see that≡the powers 10j, 0 < j < p 1, have different nonzero remainders on dividing by p as soon as h(p) = p− 1. When this is the case, 10 is said to be a primitive root modulo p. − Note that 10 is a primitive root modulo primes 17, 19, 23, 29 (the reader again may write a computer program to check that), but 10 is not a primitive root modulo 13 since 106 1 (mod 13). ≡ Lemma 5: Let An be a repunit and p > 3 is a prime. Then An 0 (mod p) if and only if n 0 (mod h(p)). ≡ n ≡ Proof: As 10 = 9 An + 1, we have An 0 (mod p) if and only if 10n 1 (mod p) and this· is equivalent to n 0 ≡(mod h(p)). ≡ ≡ This simple assertion gives information about divisors of the repunits: in particular, if n is prime and An = p1p2 . ps is the factorization of An into prime factors, then h(p1) = h(p2) = . = h(ps) = n. For instance, A = 239 4649 and h(239) = h(4649) = 7. 7 · Lemma 6: Let Bn(a, b) be an absolute prime, p be a prime such that n > p 1. Suppose that 10 is a primitive root modulo p, and a and p are relatively− prime. Then n is a multiple of p 1. Proof: Let us consider the integers − p 1 i Bi = a 10 − An p+1 + a Ap 1 + (b a) 10 , 0 i p 2, · · − · − − · ≤ ≤ − 4 obtained from Bn(a, b) by a permutation of the last p 1 digits. The powers 10i, 0 i p 2, yield all nonzero remainders on−dividing by p, so do ≤ ≤ − i the integers (b a) 10 , 0 i p 2, and hence all the integers Bi can − · ≤ ≤ − p 1 be simultaneously prime only in the case when the integer L = a 10 − p 1 · · An p+1 + a Ap 1 is divisible by p. But then, since GCD(a 10 − , p) = 1 and − · − · Ap 1 0 (mod p), it follows that An p+1 is divisible by p and by Lemma 5 n is− divisible≡ by p 1.
Recommended publications
  • Number Games Full Book.Pdf
    Should you read this book? If you think it is interesting that on September 11, 2001, Flight 77 reportedly hit the 77 foot tall Pentagon, in Washington D.C. on the 77th Meridian West, after taking off at 8:20 AM and crashing at 9:37 AM, 77 minutes later, then this book is for you. Furthermore, if you can comprehend that there is a code of numbers behind the letters of the English language, as simple as A, B, C is 1, 2, 3, and using this code reveals that phrases and names such as ‘September Eleventh’, ‘World Trade Center’ and ‘Order From Chaos’ equate to 77, this book is definitely for you. And please know, these are all facts, just the same as it is a fact that Pentagon construction began September 11, 1941, just prior to Pearl Harbor. Table of Contents 1 – Introduction to Gematria, the Language of The Cabal 2 – 1968, Year of the Coronavirus & 9/11 Master Plan 3 – 222 Months Later, From 9/11 to the Coronavirus Pandemic 4 – Event 201, The Jesuit Order, Anthony Fauci & Pope Francis 5 – Crimson Contagion Pandemic Exercise & New York Times 6 – Clade X Pandemic Exercise & the Pandemic 666 Days Later 7 – Operation Dark Winter & Mr. Bright’s “Darkest Winter” Warning 8 – Donald Trump’s Vaccine Plan, Operation Warp Speed 9 – H.R. 6666, Contact Tracing, ID2020 & the Big Tech Takeover 10 – Rockefeller’s 2010 Scenarios for the Future of Technology 11 – Bill Gates’ First Birthday on Jonas Salk’s 42nd... & Elvis 12 – Tom Hanks & the Use of Celebrity to Sell the Pandemic 13 – Nadia the Tiger, Tiger King & Year of the Tiger, 2022 14 – Coronavirus Predictive
    [Show full text]
  • International Refugee Assistance Project
    General Docket United States Court of Appeals for the Fourth Circuit Court of Appeals Docket #: 17-1351 Docketed: 03/17/2017 Nature of Suit: 2440 Other Civil Rights Termed: 05/25/2017 Intl Refugee Assistance v. Donald J. Trump Appeal From: United States District Court for the District of Maryland at Greenbelt Fee Status: us Case Type Information: 1) Civil U.S. 2) United States 3) null Originating Court Information: District: 0416-8 : 8:17-cv-00361-TDC Court Reporter: Kathy Chiarizia, Court Reporter Coordinator (Grnblt) Court Reporter: Cindy Davis, Official Court Reporter Presiding Judge: Theodore D. Chuang, U. S. District Court Judge Date Filed: 02/07/2017 Date Date Order/Judgment Date NOA Date Rec'd Order/Judgment: EOD: Filed: COA: 03/16/2017 03/16/2017 03/17/2017 03/17/2017 Prior Cases: None Current Cases: None INTERNATIONAL REFUGEE Spencer Elijah Wittmann Amdur ASSISTANCE PROJECT, a project of the Direct: 212-549-2572 Urban Justice Center, Inc., on behalf of itself Email: [email protected] and its clients [COR NTC Retained] Plaintiff - Appellee AMERICAN CIVIL LIBERTIES UNION 18th Floor 125 Broad Street New York, NY 10004-2400 David Cole [On Brief] AMERICAN CIVIL LIBERTIES UNION 915 15th Street, NW Washington, DC 20005-0000 Justin Bryan Cox Direct: 678-404-9119 Email: [email protected] [COR NTC Retained] NATIONAL IMMIGRATION LAW CENTER 1989 College Avenue, NE Atlanta, GA 30317 Nicholas David Espiritu Email: [email protected] [COR NTC Retained] NATIONAL IMMIGRATION LAW CENTER 3435 Wilshire Boulevard Los Angeles, CA 90010 Lee P. Gelernt Direct: 212-549-2616 Email: [email protected] [COR NTC Retained] AMERICAN CIVIL LIBERTIES UNION 125 Broad Street New York, NY 10004-2400 Hugh Handeyside [On Brief] AMERICAN CIVIL LIBERTIES UNION 125 Broad Street New York, NY 10004-2400 Marielena Hincapie Direct: 213-639-3900 Email: [email protected] [COR NTC Retained] NATIONAL IMMIGRATION LAW CENTER Suite 1600 3435 Wilshire Boulevard Los Angeles, CA 90010 Omar C.
    [Show full text]
  • An Amazing Prime Heuristic.Pdf
    This document has been moved to https://arxiv.org/abs/2103.04483 Please use that version instead. AN AMAZING PRIME HEURISTIC CHRIS K. CALDWELL 1. Introduction The record for the largest known twin prime is constantly changing. For example, in October of 2000, David Underbakke found the record primes: 83475759 264955 1: · The very next day Giovanni La Barbera found the new record primes: 1693965 266443 1: · The fact that the size of these records are close is no coincidence! Before we seek a record like this, we usually try to estimate how long the search might take, and use this information to determine our search parameters. To do this we need to know how common twin primes are. It has been conjectured that the number of twin primes less than or equal to N is asymptotic to N dx 2C2N 2C2 2 2 Z2 (log x) ∼ (log N) where C2, called the twin prime constant, is approximately 0:6601618. Using this we can estimate how many numbers we will need to try before we find a prime. In the case of Underbakke and La Barbera, they were both using the same sieving software (NewPGen1 by Paul Jobling) and the same primality proving software (Proth.exe2 by Yves Gallot) on similar hardware{so of course they choose similar ranges to search. But where does this conjecture come from? In this chapter we will discuss a general method to form conjectures similar to the twin prime conjecture above. We will then apply it to a number of different forms of primes such as Sophie Germain primes, primes in arithmetic progressions, primorial primes and even the Goldbach conjecture.
    [Show full text]
  • New Formulas for Semi-Primes. Testing, Counting and Identification
    New Formulas for Semi-Primes. Testing, Counting and Identification of the nth and next Semi-Primes Issam Kaddouraa, Samih Abdul-Nabib, Khadija Al-Akhrassa aDepartment of Mathematics, school of arts and sciences bDepartment of computers and communications engineering, Lebanese International University, Beirut, Lebanon Abstract In this paper we give a new semiprimality test and we construct a new formula for π(2)(N), the function that counts the number of semiprimes not exceeding a given number N. We also present new formulas to identify the nth semiprime and the next semiprime to a given number. The new formulas are based on the knowledge of the primes less than or equal to the cube roots 3 of N : P , P ....P 3 √N. 1 2 π( √N) ≤ Keywords: prime, semiprime, nth semiprime, next semiprime 1. Introduction Securing data remains a concern for every individual and every organiza- tion on the globe. In telecommunication, cryptography is one of the studies that permits the secure transfer of information [1] over the Internet. Prime numbers have special properties that make them of fundamental importance in cryptography. The core of the Internet security is based on protocols, such arXiv:1608.05405v1 [math.NT] 17 Aug 2016 as SSL and TSL [2] released in 1994 and persist as the basis for securing dif- ferent aspects of today’s Internet [3]. The Rivest-Shamir-Adleman encryption method [4], released in 1978, uses asymmetric keys for exchanging data. A secret key Sk and a public key Pk are generated by the recipient with the following property: A message enciphered Email addresses: [email protected] (Issam Kaddoura), [email protected] (Samih Abdul-Nabi) 1 by Pk can only be deciphered by Sk and vice versa.
    [Show full text]
  • The Pseudoprimes to 25 • 109
    MATHEMATICS OF COMPUTATION, VOLUME 35, NUMBER 151 JULY 1980, PAGES 1003-1026 The Pseudoprimes to 25 • 109 By Carl Pomerance, J. L. Selfridge and Samuel S. Wagstaff, Jr. Abstract. The odd composite n < 25 • 10 such that 2n_1 = 1 (mod n) have been determined and their distribution tabulated. We investigate the properties of three special types of pseudoprimes: Euler pseudoprimes, strong pseudoprimes, and Car- michael numbers. The theoretical upper bound and the heuristic lower bound due to Erdös for the counting function of the Carmichael numbers are both sharpened. Several new quick tests for primality are proposed, including some which combine pseudoprimes with Lucas sequences. 1. Introduction. According to Fermat's "Little Theorem", if p is prime and (a, p) = 1, then ap~1 = 1 (mod p). This theorem provides a "test" for primality which is very often correct: Given a large odd integer p, choose some a satisfying 1 <a <p - 1 and compute ap~1 (mod p). If ap~1 pi (mod p), then p is certainly composite. If ap~l = 1 (mod p), then p is probably prime. Odd composite numbers n for which (1) a"_1 = l (mod«) are called pseudoprimes to base a (psp(a)). (For simplicity, a can be any positive in- teger in this definition. We could let a be negative with little additional work. In the last 15 years, some authors have used pseudoprime (base a) to mean any number n > 1 satisfying (1), whether composite or prime.) It is well known that for each base a, there are infinitely many pseudoprimes to base a.
    [Show full text]
  • Primes and Primality Testing
    Primes and Primality Testing A Technological/Historical Perspective Jennifer Ellis Department of Mathematics and Computer Science What is a prime number? A number p greater than one is prime if and only if the only divisors of p are 1 and p. Examples: 2, 3, 5, and 7 A few larger examples: 71887 524287 65537 2127 1 Primality Testing: Origins Eratosthenes: Developed “sieve” method 276-194 B.C. Nicknamed Beta – “second place” in many different academic disciplines Also made contributions to www-history.mcs.st- geometry, approximation of andrews.ac.uk/PictDisplay/Eratosthenes.html the Earth’s circumference Sieve of Eratosthenes 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 Sieve of Eratosthenes We only need to “sieve” the multiples of numbers less than 10. Why? (10)(10)=100 (p)(q)<=100 Consider pq where p>10. Then for pq <=100, q must be less than 10. By sieving all the multiples of numbers less than 10 (here, multiples of q), we have removed all composite numbers less than 100.
    [Show full text]
  • A NEW LARGEST SMITH NUMBER Patrick Costello Department of Mathematics and Statistics, Eastern Kentucky University, Richmond, KY 40475 (Submitted September 2000)
    A NEW LARGEST SMITH NUMBER Patrick Costello Department of Mathematics and Statistics, Eastern Kentucky University, Richmond, KY 40475 (Submitted September 2000) 1. INTRODUCTION In 1982, Albert Wilansky, a mathematics professor at Lehigh University wrote a short article in the Two-Year College Mathematics Journal [6]. In that article he identified a new subset of the composite numbers. He defined a Smith number to be a composite number where the sum of the digits in its prime factorization is equal to the digit sum of the number. The set was named in honor of Wi!anskyJs brother-in-law, Dr. Harold Smith, whose telephone number 493-7775 when written as a single number 4,937,775 possessed this interesting characteristic. Adding the digits in the number and the digits of its prime factors 3, 5, 5 and 65,837 resulted in identical sums of42. Wilansky provided two other examples of numbers with this characteristic: 9,985 and 6,036. Since that time, many things have been discovered about Smith numbers including the fact that there are infinitely many Smith numbers [4]. The largest Smith numbers were produced by Samuel Yates. Using a large repunit and large palindromic prime, Yates was able to produce Smith numbers having ten million digits and thirteen million digits. Using the same large repunit and a new large palindromic prime, the author is able to find a Smith number with over thirty-two million digits. 2. NOTATIONS AND BASIC FACTS For any positive integer w, we let S(ri) denote the sum of the digits of n.
    [Show full text]
  • Appendix a Tables of Fermat Numbers and Their Prime Factors
    Appendix A Tables of Fermat Numbers and Their Prime Factors The problem of distinguishing prime numbers from composite numbers and of resolving the latter into their prime factors is known to be one of the most important and useful in arithmetic. Carl Friedrich Gauss Disquisitiones arithmeticae, Sec. 329 Fermat Numbers Fo =3, FI =5, F2 =17, F3 =257, F4 =65537, F5 =4294967297, F6 =18446744073709551617, F7 =340282366920938463463374607431768211457, Fs =115792089237316195423570985008687907853 269984665640564039457584007913129639937, Fg =134078079299425970995740249982058461274 793658205923933777235614437217640300735 469768018742981669034276900318581864860 50853753882811946569946433649006084097, FlO =179769313486231590772930519078902473361 797697894230657273430081157732675805500 963132708477322407536021120113879871393 357658789768814416622492847430639474124 377767893424865485276302219601246094119 453082952085005768838150682342462881473 913110540827237163350510684586298239947 245938479716304835356329624224137217. The only known Fermat primes are Fo, ... , F4 • 208 17 lectures on Fermat numbers Completely Factored Composite Fermat Numbers m prime factor year discoverer 5 641 1732 Euler 5 6700417 1732 Euler 6 274177 1855 Clausen 6 67280421310721* 1855 Clausen 7 59649589127497217 1970 Morrison, Brillhart 7 5704689200685129054721 1970 Morrison, Brillhart 8 1238926361552897 1980 Brent, Pollard 8 p**62 1980 Brent, Pollard 9 2424833 1903 Western 9 P49 1990 Lenstra, Lenstra, Jr., Manasse, Pollard 9 p***99 1990 Lenstra, Lenstra, Jr., Manasse, Pollard
    [Show full text]
  • Properties of Pell Numbers Modulo Prime Fermat Numbers 1 General
    Properties of Pell numbers modulo prime Fermat numbers Tony Reix ([email protected]) 2005, ??th of February The Pell numbers are generated by the Lucas Sequence: 2 Xn = P Xn−1 QXn−2 with (P, Q)=(2, 1) and D = P 4Q = 8. There are: − − − The Pell Sequence: Un = 2Un−1 + Un−2 with (U0, U1)=(0, 1), and ◦ The Companion Pell Sequence: V = 2V + V with (V , V )=(2, 2). ◦ n n−1 n−2 0 1 The properties of Lucas Sequences (named from Edouard´ Lucas) are studied since hundreds of years. Paulo Ribenboim and H.C. Williams provided the properties of Lucas Sequences in their 2 famous books: ”The Little Book of Bigger Primes” (PR) and ”Edouard´ Lucas and Primality Testing” (HCW). The goal of this paper is to gather all known properties of Pell numbers in order to try proving a faster Primality test of Fermat numbers. Though these properties are detailed in the Ribenboim’s and Williams’ books, the special values of (P, Q) lead to new properties. Properties from Ribenboim’s book are noted: (PR). Properties from Williams’ book are noted: (HCW). Properties built by myself are noted: (TR). n -3 -2 -1 0 1 2 3 4 5 6 7 8 9 10 Un 5 -2 1 0 1 2 5 12 29 70 169 408 985 2378 Vn -14 6 -2 2 2 6 14 34 82 198 478 1154 2786 6726 Table 1: First Pell numbers 1 General properties of Pell numbers 1.1 The Little Book of Bigger Primes The polynomial X2 2X 1 has discriminant D = 8 and roots: − − α = 1 √2 β ± 1 So: α + β = 2 αβ = 1 − α β = 2√2 − and we define the sequences of numbers: αn βn U = − and V = αn + βn for n 0.
    [Show full text]
  • The Distribution of Pseudoprimes
    The Distribution of Pseudoprimes Matt Green September, 2002 The RSA crypto-system relies on the availability of very large prime num- bers. Tests for finding these large primes can be categorized as deterministic and probabilistic. Deterministic tests, such as the Sieve of Erastothenes, of- fer a 100 percent assurance that the number tested and passed as prime is actually prime. Despite their refusal to err, deterministic tests are generally not used to find large primes because they are very slow (with the exception of a recently discovered polynomial time algorithm). Probabilistic tests offer a much quicker way to find large primes with only a negligibal amount of error. I have studied a simple, and comparatively to other probabilistic tests, error prone test based on Fermat’s little theorem. Fermat’s little theorem states that if b is a natural number and n a prime then bn−1 ≡ 1 (mod n). To test a number n for primality we pick any natural number less than n and greater than 1 and first see if it is relatively prime to n. If it is, then we use this number as a base b and see if Fermat’s little theorem holds for n and b. If the theorem doesn’t hold, then we know that n is not prime. If the theorem does hold then we can accept n as prime right now, leaving a large chance that we have made an error, or we can test again with a different base. Chances improve that n is prime with every base that passes but for really big numbers it is cumbersome to test all possible bases.
    [Show full text]
  • Cullen Numbers with the Lehmer Property
    PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY Volume 00, Number 0, Pages 000–000 S 0002-9939(XX)0000-0 CULLEN NUMBERS WITH THE LEHMER PROPERTY JOSE´ MAR´IA GRAU RIBAS AND FLORIAN LUCA Abstract. Here, we show that there is no positive integer n such that n the nth Cullen number Cn = n2 + 1 has the property that it is com- posite but φ(Cn) | Cn − 1. 1. Introduction n A Cullen number is a number of the form Cn = n2 + 1 for some n ≥ 1. They attracted attention of researchers since it seems that it is hard to find primes of this form. Indeed, Hooley [8] showed that for most n the number Cn is composite. For more about testing Cn for primality, see [3] and [6]. For an integer a > 1, a pseudoprime to base a is a compositive positive integer m such that am ≡ a (mod m). Pseudoprime Cullen numbers have also been studied. For example, in [12] it is shown that for most n, Cn is not a base a-pseudoprime. Some computer searchers up to several millions did not turn up any pseudo-prime Cn to any base. Thus, it would seem that Cullen numbers which are pseudoprimes are very scarce. A Carmichael number is a positive integer m which is a base a pseudoprime for any a. A composite integer m is called a Lehmer number if φ(m) | m − 1, where φ(m) is the Euler function of m. Lehmer numbers are Carmichael numbers; hence, pseudoprimes in every base. No Lehmer number is known, although it is known that there are no Lehmer numbers in certain sequences, such as the Fibonacci sequence (see [9]), or the sequence of repunits in base g for any g ∈ [2, 1000] (see [4]).
    [Show full text]
  • PELL FACTORIANGULAR NUMBERS Florian Luca, Japhet Odjoumani
    PUBLICATIONS DE L’INSTITUT MATHÉMATIQUE Nouvelle série, tome 105(119) (2019), 93–100 DOI: https://doi.org/10.2298/PIM1919093L PELL FACTORIANGULAR NUMBERS Florian Luca, Japhet Odjoumani, and Alain Togbé Abstract. We show that the only Pell numbers which are factoriangular are 2, 5 and 12. 1. Introduction Recall that the Pell numbers Pm m> are given by { } 1 αm βm P = − , for all m > 1, m α β − where α =1+ √2 and β =1 √2. The first few Pell numbers are − 1, 2, 5, 12, 29, 70, 169, 408, 985, 2378, 5741, 13860, 33461, 80782, 195025,... Castillo [3], dubbed a number of the form Ftn = n!+ n(n + 1)/2 for n > 1 a factoriangular number. The first few factoriangular numbers are 2, 5, 12, 34, 135, 741, 5068, 40356, 362925,... Luca and Gómez-Ruiz [8], proved that the only Fibonacci factoriangular numbers are 2, 5 and 34. This settled a conjecture of Castillo from [3]. In this paper, we prove the following related result. Theorem 1.1. The only Pell numbers which are factoriangular are 2, 5 and 12. Our method is similar to the one from [8]. Assuming Pm = Ftn for positive integers m and n, we use a linear forms in p-adic logarithms to find some bounds on m and n. The resulting bounds are large so we run a calculation to reduce the bounds. This computation is highly nontrivial and relates on reducing the diophantine equation Pm = Ftn modulo the primes from a carefully selected finite set of suitable primes. 2010 Mathematics Subject Classification: Primary 11D59, 11D09, 11D7; Secondary 11A55.
    [Show full text]