The Seasonal Behavior of Water Ice Clouds in the Tharsis and Valles Marineris Regions of Mars: Mars Orbiter Camera Observations. J

Total Page:16

File Type:pdf, Size:1020Kb

The Seasonal Behavior of Water Ice Clouds in the Tharsis and Valles Marineris Regions of Mars: Mars Orbiter Camera Observations. J Sixth International Conference on Mars (2003) 3147.pdf THE SEASONAL BEHAVIOR OF WATER ICE CLOUDS IN THE THARSIS AND VALLES MARINERIS REGIONS OF MARS: MARS ORBITER CAMERA OBSERVATIONS. J. L. Benson1, B. P. Bonev1, P. B. James1, K. J. Shan1, B. A. Cantor2, and M. A. Caplinger2, 1Ritter Astrophysical Research Center, Dept. of Physics and Astronomy, Univ. of Toledo, Toledo, OH 43606 ([email protected]; [email protected]; [email protected]), 2Malin Space Science Systems, P. O. Box 910148, San Diego, CA 92191 ([email protected]; [email protected]). Introduction: Clouds in the martian atmosphere The Mars Orbiter Camera (MOC) was used to ob- have been observed and studied for many decades. tain global maps of the Martian surface. The maps Nathaniel E. Green first identified clouds in the mar- used were acquired between March 15, 1999 (LS = tian atmosphere in 1877 when he observed white spots 110º) and July 31, 2001 (LS = 205º), corresponding to near the limb of the planet and concluded that they approximately one and a quarter martian years. In this were morning and evening clouds high in the atmos- work we focused on water ice clouds associated with phere [1]. The Tharsis region is known for the “W” the surface features of Olympus Mons, Ascraeus clouds [2], which are prominent from northern mid- Mons, Pavonis Mons, Arsia Mons, Alba Patera, and spring to midsummer. Smith and Smith [3] studied the the Valles Marineris canyon system. Using these data, diurnal and seasonal behavior of the clouds associated we have made three types of quantitative measure- with Olympus Mons using ground based data collected ments to characterize the cloud activity: 1) cloud area between 1924 and 1971 and found that cloud activity and location, 2) cloud height, and 3) cloud optical was generally confined to late spring and early sum- depth. We have also searched for short period varia- mer seasons in the northern hemisphere. Based on a tions in the cloud areas. comparison of their data with seasonal water abun- MOC Observations: MOC includes two wide- dances, Smith and Smith concluded that Type I dis- angle (WA) cameras, one in the blue (400-450 nm) crete white clouds are composed of water ice. Curran bandpass and the other in the red (575-625 nm) band- et al. [4] gave the first spectroscopic evidence confirm- pass, each with a 140º field of view [7]. This coverage ing the presence of water ice clouds on Mars in the is optimal for separating clouds that are composed of Tharsis region using data collected with the infrared condensates from those that contain dust; while dust interferometer spectrometer on the Mariner 9 space- clouds and ice clouds often appear of similar bright- craft. The Mariner 9 spectral shape was consistent ness in red, condensate clouds are very bright in blue with a mean radius of the water ice particles of ~ 2.0 while dust clouds are dark. The WA camera images µm. are bounded by the horizons, corresponding to nomi- There are several meteorological factors that may nal local times of 1217 to 1543 at the equator. contribute to cloud formation and seasonal variability A variable summing algorithm is used to obtain in the Tharsis region. The seasonal variation in the continuous observations with both WA cameras so that cross-equatorial Hadley cells that characterize the gen- in a 24-hour period a complete global map is obtained eral circulation of the martian atmosphere is an impor- at a resolution of approximately 7.5 km/pixel. To con- tant factor [5]. The local circulation over the volcanoes struct the global map, only roughly the center half of is also an important factor: low thermal inertia causes each orbital swath’s coverage is used; every two hours the volcanoes to act as a heat source in the atmosphere, a new image strip is acquired and added to the previ- and warm upslope winds in the afternoon favor cloud ous strips. The daily global maps (DGMs) that we formation and enhance clouds [6]. Insolation and water have used for this work are composite cylindrical pro- vapor concentrations are also potentially important jections colored with a false green channel. factors. Cloud Area Measurements: Clouds were identi- Mars Global Surveyor (MGS) provides the first fied by visual inspection of the DGMs, and then these complete data set with which to study the properties features were matched with the blue images taken by and seasonal variability of clouds throughout the entire MOC. The clouds appear more prominent in blue im- martian year. MGS instruments do not provide much ages due to the relatively high single scattering albedo diurnal coverage in the equatorial regions, however, (~0.9) of these particles relative to the low surface because the orbit is fixed at ~ 2pm at the nadir. Only albedo at these wavelengths. To measure the areas of the early afternoon part of the cycle, in which previous the clouds an IDL program was used, and it took a observations have suggested growth in the large cloud subset of each DGM that corresponded to the particu- features, can be studied, but this does make it possible lar surface features studied and measured the number to determine the seasonal behavior, augmented by lim- of pixels in the blue image which had a threshold digi- ited local time coverage. tal number value greater than 120. This value was cho- Sixth International Conference on Mars (2003) 3147.pdf sen through visual inspection of cloud boundaries in ity is between LS = 227º-235º, which corresponds ex- the blue images. Because the resolution varies with actly to the largest regional dust storm seen by [8] and latitude for a cylindrical projection, each line is multi- [9]. TES observations showed that the dust storm ex- plied by a correction factor. These lines were then panded into the region around Arsia Mons at LS = 228° added and multiplied by the resolution of the projec- and was accompanied by a roughly 15 K increase in tion at the equator to give the true cloud area. temperature. By LS = 237º the dust storm had mi- Cloud Area Results: A plot of cloud area vs. LS grated much further south of Arsia, and the atmos- for Olympus Mons is presented in Figure 1. The cloud pheric temperature in the region had decreased. area maximum near LS = 100º is likely due to cooler Richardson et al. [10] demonstrated that cloud ice con- atmospheric temperatures and maximum upward ad- tent decreases strongly as a function of increasing dust vecting velocities in the solstice Hadley circulation. optical depth. The temperature increase lowers the The cloud area decrease at LS = 120º is probably relative humidity, suppressing cloud activity [11]. caused by the rise in air temperature due to the season (moving away from aphelion) and increased atmos- pheric dust [8]. Figure 2: Arsia Mons clouds area versus Ls. Note that the abrupt disappearance of clouds near Ls = 185º is due to the global dust storm of 2001, not to a lack of data. Figure 1: Olympus Mons cloud area versus Ls. Cloud activity ends earlier at all of our sites in the Observations of Ascraeus Mons show the same second martian year than in the first. This is most general trend for cloud area as Olympus Mons, with a clearly seen in Fig. 2. In the first martian year, cloud peak near L = 100º. At L = 140º, there is a minimum S S activity ceased near LS = 210º at Alba Patera, Olympus in cloud area that is especially prominent in the first Mons, and Ascraeus Mons, and near LS = 220º at Pa- martian year of observations. vonis Mons. However, in the second martian year, Alba Patera cloud activity displays a double peak clouds disappeared in all regions between LS = 183º feature that was not observed in any of the other re- and LS = 190º (June 24 and July 4, 2001). This earlier gions. The peaks occur at LS = 60º and 140º, with a cessation of cloud activity almost certainly results minimum near LS = 85º. The peaks in the seasonal from the global martian dust storm of 2001. As seen activity of Alba Patera occur at the times that the cloud from the TES data, atmospheric temperatures near the areas associated with Olympus and Ascraeus Mons Tharsis region began to rise around June 25 and the volcanoes are rapidly increasing or decreasing; this dust storm had expanded into the region by July 2 anticorrelation is one of the most interesting and unex- [12]. As noted above, the increased dust and atmos- pected results of this study. pheric temperature promote the dissipation of water ice Clouds over Pavonis Mons have maximum area clouds. near L = 100º. There is a local minimum in cloud S Valles Marineris: Clouds associated with the area at L = 140º observed during both martian years. S western Valles Marineris canyon system and other Then cloud area increases for a second peak between small surface features were also observed during the L = 140º-220º, which corresponds to the time of S time period of this study. The clouds associated with maximum cloud area at Arsia Mons. Valles Marineris generally were located in the latitude Cloud area vs. L for Arsia Mons is shown in Fig- S range -4° to +4° N and longitude range 70° to 80° W. ure 2. Observations of Arsia Mons reveal more or less Clouds were also seen around 12° S latitude, 100° W continuous cloud activity. The only period of inactiv- Sixth International Conference on Mars (2003) 3147.pdf longitude, in the region of Syria Planum, near 27° N local time at the topographic feature.
Recommended publications
  • Curiosity's Candidate Field Site in Gale Crater, Mars
    Curiosity’s Candidate Field Site in Gale Crater, Mars K. S. Edgett – 27 September 2010 Simulated view from Curiosity rover in landing ellipse looking toward the field area in Gale; made using MRO CTX stereopair images; no vertical exaggeration. The mound is ~15 km away 4th MSL Landing Site Workshop, 27–29 September 2010 in this view. Note that one would see Gale’s SW wall in the distant background if this were Edgett, 1 actually taken by the Mastcams on Mars. Gale Presents Perhaps the Thickest and Most Diverse Exposed Stratigraphic Section on Mars • Gale’s Mound appears to present the thickest and most diverse exposed stratigraphic section on Mars that we can hope access in this decade. • Mound has ~5 km of stratified rock. (That’s 3 miles!) • There is no evidence that volcanism ever occurred in Gale. • Mound materials were deposited as sediment. • Diverse materials are present. • Diverse events are recorded. – Episodes of sedimentation and lithification and diagenesis. – Episodes of erosion, transport, and re-deposition of mound materials. 4th MSL Landing Site Workshop, 27–29 September 2010 Edgett, 2 Gale is at ~5°S on the “north-south dichotomy boundary” in the Aeolis and Nepenthes Mensae Region base map made by MSSS for National Geographic (February 2001); from MOC wide angle images and MOLA topography 4th MSL Landing Site Workshop, 27–29 September 2010 Edgett, 3 Proposed MSL Field Site In Gale Crater Landing ellipse - very low elevation (–4.5 km) - shown here as 25 x 20 km - alluvium from crater walls - drive to mound Anderson & Bell
    [Show full text]
  • Design of Low-Altitude Martian Orbits Using Frequency Analysis A
    Design of Low-Altitude Martian Orbits using Frequency Analysis A. Noullez, K. Tsiganis To cite this version: A. Noullez, K. Tsiganis. Design of Low-Altitude Martian Orbits using Frequency Analysis. Advances in Space Research, Elsevier, 2021, 67, pp.477-495. 10.1016/j.asr.2020.10.032. hal-03007909 HAL Id: hal-03007909 https://hal.archives-ouvertes.fr/hal-03007909 Submitted on 16 Nov 2020 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Design of Low-Altitude Martian Orbits using Frequency Analysis A. Noulleza,∗, K. Tsiganisb aUniversit´eC^oted'Azur, Observatoire de la C^oted'Azur, CNRS, Laboratoire Lagrange, bd. de l'Observatoire, C.S. 34229, 06304 Nice Cedex 4, France bSection of Astrophysics Astronomy & Mechanics, Department of Physics, Aristotle University of Thessaloniki, GR 541 24 Thessaloniki, Greece Abstract Nearly-circular Frozen Orbits (FOs) around axisymmetric bodies | or, quasi-circular Periodic Orbits (POs) around non-axisymmetric bodies | are of primary concern in the design of low-altitude survey missions. Here, we study very low-altitude orbits (down to 50 km) in a high-degree and order model of the Martian gravity field. We apply Prony's Frequency Analysis (FA) to characterize the time variation of their orbital elements by computing accurate quasi-periodic decompositions of the eccentricity and inclination vectors.
    [Show full text]
  • Variability of Mars' North Polar Water Ice Cap I. Analysis of Mariner 9 and Viking Orbiter Imaging Data
    Icarus 144, 382–396 (2000) doi:10.1006/icar.1999.6300, available online at http://www.idealibrary.com on Variability of Mars’ North Polar Water Ice Cap I. Analysis of Mariner 9 and Viking Orbiter Imaging Data Deborah S. Bass Instrumentation and Space Research Division, Southwest Research Institute, P.O. Drawer 28510, San Antonio, Texas 78228-0510 E-mail: [email protected] Kenneth E. Herkenhoff U.S. Geological Survey, 2255 North Gemini Drive, Flagstaff, Arizona 86001 and David A. Paige Department of Earth and Space Sciences, University of California, Los Angeles, 405 Hilgard Avenue, Los Angeles, California 90095-1567 Received May 15, 1998; revised November 17, 1999 1. INTRODUCTION Previous studies interpreted differences in ice coverage between Mariner 9 and Viking Orbiter observations of Mars’ north residual Like Earth, Mars has perennial ice caps and an active wa- polar cap as evidence of interannual variability of ice deposition on ter cycle. The Viking Orbiter determined that the surface of the the cap. However,these investigators did not consider the possibility northern residual cap is water ice (Kieffer et al. 1976, Farmer that there could be significant changes in the ice coverage within et al. 1976). At the south residual polar cap, both Mariner 9 the northern residual cap over the course of the summer season. and Viking Orbiter observed carbon dioxide ice throughout the Our more comprehensive analysis of Mariner 9 and Viking Orbiter summer. Many have related observed atmospheric water vapor imaging data shows that the appearance of the residual cap does not abundances to seasonal exchange between reservoirs such as show large-scale variance on an interannual basis.
    [Show full text]
  • The Eastern Outlet of Valles Marineris: a Window Into the Ancient Geologic and Hydrologic Evolution of Mars
    First Landing Site/Exploration Zone Workshop for Human Missions to the Surface of Mars (2015) 1054.pdf The Eastern Outlet of Valles Marineris: A Window into the Ancient Geologic and Hydrologic Evolution of Mars Stephen M. Clifford, David A. Kring, and Allan H. Treiman, Lunar and Planetary Institute/USRA, 3600 Bay Area Bvld., Houston, TX 77058 Over its 3,500 km length, Valles Marineris exhibits enormous range of geologic and environmental diversity. At its western end, the canyon is dominated by the tectonic complex of Noctis Labyrinthus while, in the east, it grades into an extensive region of chaos - where scoured channels and streamlined islands provide evidence of catastrophic floods that spilled into the northern plains [1-4]. In the central portion of the system, debris derived from the massive interior layered deposits of Candor, Ophir and Hebes Chasmas spills into the central trough have been identified as possible lucustrine sediments that may have been laid down in long-standing ice-covered lakes [3-6]. The potential survival and growth of Martian organisms in such an environment, or in the aquifers whose disruption gave birth to the chaotic terrain at the east end of the canyon, raises the possibility that fossil indicators of life may be present in the local sediment and rock. In other areas, 6 km-deep exposures of Hesperian and Noachian-age canyon wall stratigraphy have collapsed in massive landslides that extend many tens of kilometers across the canyon floor. Ejecta from interior craters, aeolian sediments, and possible volcanics (which appear to have emanated from structurally controlled vents along the base of the scarps), further contribute to the canyon's geologic complexity [2,3].
    [Show full text]
  • Review of the MEPAG Report on Mars Special Regions
    THE NATIONAL ACADEMIES PRESS This PDF is available at http://nap.edu/21816 SHARE Review of the MEPAG Report on Mars Special Regions DETAILS 80 pages | 8.5 x 11 | PAPERBACK ISBN 978-0-309-37904-5 | DOI 10.17226/21816 CONTRIBUTORS GET THIS BOOK Committee to Review the MEPAG Report on Mars Special Regions; Space Studies Board; Division on Engineering and Physical Sciences; National Academies of Sciences, Engineering, and Medicine; European Space Sciences Committee; FIND RELATED TITLES European Science Foundation Visit the National Academies Press at NAP.edu and login or register to get: – Access to free PDF downloads of thousands of scientific reports – 10% off the price of print titles – Email or social media notifications of new titles related to your interests – Special offers and discounts Distribution, posting, or copying of this PDF is strictly prohibited without written permission of the National Academies Press. (Request Permission) Unless otherwise indicated, all materials in this PDF are copyrighted by the National Academy of Sciences. Copyright © National Academy of Sciences. All rights reserved. Review of the MEPAG Report on Mars Special Regions Committee to Review the MEPAG Report on Mars Special Regions Space Studies Board Division on Engineering and Physical Sciences European Space Sciences Committee European Science Foundation Strasbourg, France Copyright National Academy of Sciences. All rights reserved. Review of the MEPAG Report on Mars Special Regions THE NATIONAL ACADEMIES PRESS 500 Fifth Street, NW Washington, DC 20001 This study is based on work supported by the Contract NNH11CD57B between the National Academy of Sciences and the National Aeronautics and Space Administration and work supported by the Contract RFP/IPL-PTM/PA/fg/306.2014 between the European Science Foundation and the European Space Agency.
    [Show full text]
  • Aqueous Minerals from Arsia Chasmata of Arsia Mons, Tharsis Region: Implications for Aqueous Alteration Processes on Mars
    45th Lunar and Planetary Science Conference (2014) 1826.pdf AQUEOUS MINERALS FROM ARSIA CHASMATA OF ARSIA MONS, THARSIS REGION: IMPLICATIONS FOR AQUEOUS ALTERATION PROCESSES ON MARS. N. Jain*, S. Bhattacharya, P. Chauhan, Space Applications Centre (ISRO), Ahmedabad, Gujarat, India ([email protected]/ Fax: +91-079- 26915825). Introduction: The Arsia Chasmata is a complex help of high resolution data such as MGS-MOC (Mars collapsed region located at the northeastern flank of Global Surveyor-Mars Orbiter Camera), Viking orbiter Arsia Mons (figure 1 A and B) within Tharsis region [3], fresh appearing lava flows [4], graben and glaciers of planet Mars and is the most important region for the on flanks of Arsia Mons [5], young lava flows [6] study of minerals like phyllosilicate and pyroxene. The small shields at floor of caldera [7]. reflectance data of MRO-CRISM (figure 1 C D) has Present study mainly focuses on the mineralogy of confirmed above mentioned minerals in the study area. Arsia Chasmata which interestingly contains The presence of these minerals at the Arsia Chasmata absorption features of aqueous altered minerals such as on Mars provides the evidence of its past watery serpentine (phyllosilicate). This mineral is also located environment and their processes of formation. In the in Nili Fossae region which is long, narrow depression present study the absorption features of serpentine present on Mars [8]. But in the present study (phyllosilicate) are obtained at 2.32 µm, 1.94 µm and occurrence of this mineral at high altitude region raise 2.51 µm. Previous studies on Mars show that the curiosity to know about their formation processes.
    [Show full text]
  • Physical Properties of Martian Meteorites: Porosity and Density Measurements
    Meteoritics & Planetary Science 42, Nr 12, 2043–2054 (2007) Abstract available online at http://meteoritics.org Physical properties of Martian meteorites: Porosity and density measurements Ian M. COULSON1, 2*, Martin BEECH3, and Wenshuang NIE3 1Solid Earth Studies Laboratory (SESL), Department of Geology, University of Regina, Regina, Saskatchewan S4S 0A2, Canada 2Institut für Geowissenschaften, Universität Tübingen, 72074 Tübingen, Germany 3Campion College, University of Regina, Regina, Saskatchewan S4S 0A2, Canada *Corresponding author. E-mail: [email protected] (Received 11 September 2006; revision accepted 06 June 2007) Abstract–Martian meteorites are fragments of the Martian crust. These samples represent igneous rocks, much like basalt. As such, many laboratory techniques designed for the study of Earth materials have been applied to these meteorites. Despite numerous studies of Martian meteorites, little data exists on their basic structural characteristics, such as porosity or density, information that is important in interpreting their origin, shock modification, and cosmic ray exposure history. Analysis of these meteorites provides both insight into the various lithologies present as well as the impact history of the planet’s surface. We present new data relating to the physical characteristics of twelve Martian meteorites. Porosity was determined via a combination of scanning electron microscope (SEM) imagery/image analysis and helium pycnometry, coupled with a modified Archimedean method for bulk density measurements. Our results show a range in porosity and density values and that porosity tends to increase toward the edge of the sample. Preliminary interpretation of the data demonstrates good agreement between porosity measured at 100× and 300× magnification for the shergottite group, while others exhibit more variability.
    [Show full text]
  • THE 1:1,000,000 GEOLOGIC MAP of ARSIA MONS, MARS. W. B. Garry1, D. A. Williams2, A. M. Dapremont3 and D. E. Shean4 1NASA Goddard
    Planetary Geologic Mappers Meeting 2018 (LPI Contrib. No. 2066) 7028.pdf THE 1:1,000,000 GEOLOGIC MAP OF ARSIA MONS, MARS. W. B. Garry1, D. A. Williams2, A. M. Dapremont3 and D. E. Shean4 1NASA Goddard Space Flight Center, 8800 Greenbelt Rd., Greenbelt, MD 20771, [email protected], 2School of Earth and Space Exploration, Arizona State University, Tempe, AZ, 85287, 3Earth and Atmospheric Sciences, Georgia Institute of Technology, Atlanta, GA, 30331, 4College of Engineering, University of Washington, Seattle, WA, 98195. Introduction: Arsia Mons, centered at 8.26°S and (MGS) Mars Orbiter Laser Altimeter (MOLA) topogra- 239.1°E, is the southernmost edifice of the three Tharsis phy [15] that reveal morphologic details and spatial re- Montes volcanoes on Mars. Each volcano has a similar, lationships appropriate for our mapping purposes. overall shape and structure [1, 2], but there are distinct Mapping Methods: Mapping was completed in spatial distributions of morphologic features that hint ESRI’s ArcMap™ 10.2. Line work was drawn at map each volcano has a slightly different evolution history scales of ~1:100,000 to ~1:50,000 with vertex spacing [3]. To determine the differences between these three of 500 m and registered to the THEMIS daytime infra- Martian shield volcanoes, we present a series of individ- red base map. The final ArcMap project includes loca- ual geologic maps of Arsia (this map), Pavonis [4], and tion features (points), linear features (lines), geologic Ascraeus Mons [5] based on high-resolution data sets to contacts (lines), and geologic map (polygons). show their similarities and differences.
    [Show full text]
  • Volcanism on Mars
    Author's personal copy Chapter 41 Volcanism on Mars James R. Zimbelman Center for Earth and Planetary Studies, National Air and Space Museum, Smithsonian Institution, Washington, DC, USA William Brent Garry and Jacob Elvin Bleacher Sciences and Exploration Directorate, Code 600, NASA Goddard Space Flight Center, Greenbelt, MD, USA David A. Crown Planetary Science Institute, Tucson, AZ, USA Chapter Outline 1. Introduction 717 7. Volcanic Plains 724 2. Background 718 8. Medusae Fossae Formation 725 3. Large Central Volcanoes 720 9. Compositional Constraints 726 4. Paterae and Tholi 721 10. Volcanic History of Mars 727 5. Hellas Highland Volcanoes 722 11. Future Studies 728 6. Small Constructs 723 Further Reading 728 GLOSSARY shield volcano A broad volcanic construct consisting of a multitude of individual lava flows. Flank slopes are typically w5, or less AMAZONIAN The youngest geologic time period on Mars identi- than half as steep as the flanks on a typical composite volcano. fied through geologic mapping of superposition relations and the SNC meteorites A group of igneous meteorites that originated on areal density of impact craters. Mars, as indicated by a relatively young age for most of these caldera An irregular collapse feature formed over the evacuated meteorites, but most importantly because gases trapped within magma chamber within a volcano, which includes the potential glassy parts of the meteorite are identical to the atmosphere of for a significant role for explosive volcanism. Mars. The abbreviation is derived from the names of the three central volcano Edifice created by the emplacement of volcanic meteorites that define major subdivisions identified within the materials from a centralized source vent rather than from along a group: S, Shergotty; N, Nakhla; C, Chassigny.
    [Show full text]
  • Shape of the Northern Hemisphere of Mars from the Mars Orbiter Laser Altimeter (MOLA)
    GEOPHYSICAL RESEARCH LETTERS, VOL. 25, NO. 24, PAGES 4393-4396, DECEMBER 15, 1998 Shape of the northern hemisphere of Mars from the Mars Orbiter Laser Altimeter (MOLA) Maria T. Zuber1,2, David E. Smith2, Roger J. Phillips3, Sean C. Solomon4, W. Bruce Banerdt5,GregoryA.Neumann1,2, Oded Aharonson1 Abstract. Eighteen profiles of ∼N-S-trending topography potentially change the flattening by at most 5%. Allowing from the Mars Orbiter Laser Altimeter (MOLA) are used for the 3.1-km offset of the center of mass (COM) from the to analyze the shape of Mars’ northern hemisphere. MOLA center of figure (COF) along the polar axis [Smith and Zuber, observations show smaller northern hemisphere flattening 1996], we can expect the flattening of the full planet to be than previously thought. The hypsometric distribution is less than that of the northern hemisphere by ∼ 15%, or narrowly peaked with > 20% of the surface lying within 200 1/174 6. This is significantly less than the earlier value m of the mean elevation. Low elevation correlates with low of 1/154.4[Bills and Ferrari, 1978] and slightly less than surface roughness, but the elevation and roughness may re- the ellipsoidal value of 1/166.53 [Smith and Zuber, 1996] flect different mechanisms. Bouguer gravity indicates less that have been used in geophysical analyses. However, it variability in crustal thickness and/or lateral density struc- is larger than the flattening of 1/192 used in making maps ture than previously expected. The 3.1-km offset between [Wu, 1991]. Consideration of ice cap topography will further centers of mass and figure along the polar axis results in a decrease the value.
    [Show full text]
  • Dikes of Distinct Composition Intruded Into Noachian-Aged Crust Exposed in the Walls of Valles Marineris Jessica Flahaut, John F
    Dikes of distinct composition intruded into Noachian-aged crust exposed in the walls of Valles Marineris Jessica Flahaut, John F. Mustard, Cathy Quantin, Harold Clenet, Pascal Allemand, Pierre Thomas To cite this version: Jessica Flahaut, John F. Mustard, Cathy Quantin, Harold Clenet, Pascal Allemand, et al.. Dikes of dis- tinct composition intruded into Noachian-aged crust exposed in the walls of Valles Marineris. Geophys- ical Research Letters, American Geophysical Union, 2011, 38, pp.L15202. 10.1029/2011GL048109. hal-00659784 HAL Id: hal-00659784 https://hal.archives-ouvertes.fr/hal-00659784 Submitted on 19 Jan 2012 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. GEOPHYSICAL RESEARCH LETTERS, VOL. 38, L15202, doi:10.1029/2011GL048109, 2011 Dikes of distinct composition intruded into Noachian‐aged crust exposed in the walls of Valles Marineris Jessica Flahaut,1 John F. Mustard,2 Cathy Quantin,1 Harold Clenet,1 Pascal Allemand,1 and Pierre Thomas1 Received 12 May 2011; revised 27 June 2011; accepted 30 June 2011; published 5 August 2011. [1] Valles Marineris represents the deepest natural incision and HiRISE (High Resolution Imaging Science Experiment) in the Martian upper crust.
    [Show full text]
  • Alluvial Fans As Potential Sites for Preservation of Biosignatures on Mars
    Alluvial Fans as Potential Sites for Preservation of Biosignatures on Mars Phylindia Gant August 15, 2016 Candidate, Masters of Environmental Science Committee Chair: Dr. Deborah Lawrence Committee Member: Dr. Manuel Lerdau, Dr. Michael Pace 2 I. Introduction Understanding the origin of life Life on Earth began 3.5 million years ago as the temperatures in the atmosphere were cool enough for molten rocks to solidify (Mojzsis et al 1996). Water was then able to condense and fall to the Earth’s surface from the water vapor that collected in the atmosphere from volcanoes. Additionally, atmospheric gases from the volcanoes supplied Earth with carbon, hydrogen, nitrogen, and oxygen. Even though the oxygen was not free oxygen, it was possible for life to begin from the primordial ooze. The environment was ripe for life to begin, but how would it begin? This question has intrigued humanity since the dawn of civilization. Why search for life on Mars There are several different scientific ways to answer the question of how life began. Some scientists believe that life started out here on Earth, evolving from a single celled organism called Archaea. Archaea are a likely choice because they presently live in harsh environments similar to the early Earth environment such as hot springs, deep sea vents, and saline water (Wachtershauser 2006). Another possibility for the beginning of evolution is that life traveled to Earth on a meteorite from Mars (Whitted 1997). Even though Mars is anaerobic, carbonate-poor and sulfur rich, it was warm and wet when Earth first had organisms evolving (Lui et al.
    [Show full text]