An Introduction to L\'{E} Vy Processes with Applications in Finance

Total Page:16

File Type:pdf, Size:1020Kb

An Introduction to L\'{E} Vy Processes with Applications in Finance AN INTRODUCTION TO LEVY´ PROCESSES WITH APPLICATIONS IN FINANCE ANTONIS PAPAPANTOLEON Abstract. These lectures notes aim at introducing L´evyprocesses in an informal and intuitive way, accessible to non-specialists in the field. In the first part, we focus on the theory of L´evyprocesses. We analyze a `toy' example of a L´evyprocess, viz. a L´evyjump-diffusion, which yet offers significant insight into the distributional and path structure of a L´evyprocess. Then, we present several important results about L´evy processes, such as infinite divisibility and the L´evy-Khintchine formula, the L´evy-It^odecomposition, the It^oformula for L´evyprocesses and Gir- sanov's transformation. Some (sketches of) proofs are presented, still the majority of proofs is omitted and the reader is referred to textbooks instead. In the second part, we turn our attention to the applications of L´evyprocesses in financial modeling and option pricing. We discuss how the price process of an asset can be modeled using L´evyprocesses and give a brief account of market incompleteness. Popular models in the literature are presented and revisited from the point of view of L´evy processes, and we also discuss three methods for pricing financial deriva- tives. Finally, some indicative evidence from applications to market data is presented. Contents Part 1. Theory 2 1. Introduction2 2. Definition5 3. `Toy' example: a L´evyjump-diffusion6 4. Infinitely divisible distributions and the L´evy-Khintchine formula8 5. Analysis of jumps and Poisson random measures 11 6. The L´evy-It^odecomposition 12 7. The L´evymeasure, path and moment properties 14 8. Some classes of particular interest 17 8.1. Subordinator 17 arXiv:0804.0482v2 [q-fin.PR] 3 Nov 2008 8.2. Jumps of finite variation 17 8.3. Spectrally one-sided 18 8.4. Finite first moment 18 2000 Mathematics Subject Classification. 60G51,60E07,60G44,91B28. Key words and phrases. L´evyprocesses, jump-diffusion, infinitely divisible laws, L´evy measure, Girsanov's theorem, asset price modeling, option pricing. These lecture notes were prepared for mini-courses taught at the University of Piraeus in April 2005 and March 2008, at the University of Leipzig in November 2005 and at the Technical University of Athens in September 2006 and March 2008. I am grateful for the opportunity of lecturing on these topics to George Skiadopoulos, Thorsten Schmidt, Nikolaos Stavrakakis and Gerassimos Athanassoulis. 1 2 ANTONIS PAPAPANTOLEON 9. Elements from semimartingale theory 18 10. Martingales and L´evyprocesses 21 11. It^o'sformula 22 12. Girsanov's theorem 23 13. Construction of L´evyprocesses 28 14. Simulation of L´evyprocesses 28 14.1. Finite activity 29 14.2. Infinite activity 29 Part 2. Applications in Finance 30 15. Asset price model 30 15.1. Real-world measure 30 15.2. Risk-neutral measure 31 15.3. On market incompleteness 32 16. Popular models 33 16.1. Black{Scholes 33 16.2. Merton 34 16.3. Kou 34 16.4. Generalized Hyperbolic 35 16.5. Normal Inverse Gaussian 36 16.6. CGMY 37 16.7. Meixner 37 17. Pricing European options 38 17.1. Transform methods 38 17.2. PIDE methods 40 17.3. Monte Carlo methods 42 18. Empirical evidence 42 Appendix A. Poisson random variables and processes 44 Appendix B. Compound Poisson random variables 45 Appendix C. Notation 46 Appendix D. Datasets 46 Appendix E. Paul L´evy 46 Acknowledgments 47 References 47 Part 1. Theory 1. Introduction L´evyprocesses play a central role in several fields of science, such as physics, in the study of turbulence, laser cooling and in quantum field theory; in engineering, for the study of networks, queues and dams; in economics, for continuous time-series models; in the actuarial science, for the calculation of insurance and re-insurance risk; and, of course, in mathematical finance. A comprehensive overview of several applications of L´evyprocesses can be found in Prabhu (1998), in Barndorff-Nielsen, Mikosch, and Resnick (2001), in Kyprianou, Schoutens, and Wilmott (2005) and in Kyprianou (2006). INTRODUCTION TO LEVY´ PROCESSES 3 150 USD/JPY 145 140 135 130 125 120 115 110 105 100 Oct 1997 Oct 1998 Oct 1999 Oct 2000 Oct 2001 Oct 2002 Oct 2003 Oct 2004 Figure 1.1. USD/JPY exchange rate, Oct. 1997{Oct. 2004. In mathematical finance, L´evy processes are becoming extremely fashion- able because they can describe the observed reality of financial markets in a more accurate way than models based on Brownian motion. In the `real' world, we observe that asset price processes have jumps or spikes, and risk managers have to take them into consideration; in Figure 1.1 we can observe some big price changes (jumps) even on the very liquid USD/JPY exchange rate. Moreover, the empirical distribution of asset returns exhibits fat tails and skewness, behavior that deviates from normality; see Figure 1.2 for a characteristic picture. Hence, models that accurately fit return distributions are essential for the estimation of profit and loss (P&L) distributions. Simi- larly, in the `risk-neutral' world, we observe that implied volatilities are con- stant neither across strike nor across maturities as stipulated by the Black and Scholes (1973) (actually, Samuelson 1965) model; Figure 1.3 depicts a typical volatility surface. Therefore, traders need models that can capture the behavior of the implied volatility smiles more accurately, in order to handle the risk of trades. L´evyprocesses provide us with the appropriate tools to adequately and consistently describe all these observations, both in the `real' and in the `risk-neutral' world. The main aim of these lecture notes is to provide an accessible overview of the field of L´evyprocesses and their applications in mathematical finance to the non-specialist reader. To serve that purpose, we have avoided most of the proofs and only sketch a number of proofs, especially when they offer some important insight to the reader. Moreover, we have put emphasis on the intuitive understanding of the material, through several pictures and simulations. We begin with the definition of a L´evyprocess and some known exam- ples. Using these as the reference point, we construct and study a L´evy jump-diffusion; despite its simple nature, it offers significant insights and an intuitive understanding of general L´evyprocesses. We then discuss infinitely divisible distributions and present the celebrated L´evy{Khintchine formula, which links processes to distributions. The opposite way, from distributions 4 ANTONIS PAPAPANTOLEON 80 60 40 20 0 −0.02 −0.01 0.0 0.01 0.02 Figure 1.2. Empirical distribution of daily log-returns for the GBP/USD exchange rate and fitted Normal distribution. to processes, is the subject of the L´evy-It^odecomposition of a L´evypro- cess. The L´evymeasure, which is responsible for the richness of the class of L´evyprocesses, is studied in some detail and we use it to draw some conclu- sions about the path and moment properties of a L´evyprocess. In the next section, we look into several subclasses that have attracted special atten- tion and then present some important results from semimartingale theory. A study of martingale properties of L´evyprocesses and the It^oformula for L´evyprocesses follows. The change of probability measure and Girsanov's theorem are studied is some detail and we also give a complete proof in the case of the Esscher transform. Next, we outline three ways for constructing new L´evyprocesses and the first part closes with an account on simulation methods for some L´evyprocesses. The second part of the notes is devoted to the applications of L´evypro- cesses in mathematical finance. We describe the possible approaches in mod- eling the price process of a financial asset using L´evyprocesses under the `real' and the `risk-neutral' world, and give a brief account of market incom- pleteness which links the two worlds. Then, we present a primer of popular L´evymodels in the mathematical finance literature, listing some of their key properties, such as the characteristic function, moments and densities (if known). In the next section, we give an overview of three methods for pric- ing options in L´evy-driven models, viz. transform, partial integro-differential equation (PIDE) and Monte Carlo methods. Finally, we present some em- pirical results from the application of L´evyprocesses to real market financial data. The appendices collect some results about Poisson random variables and processes, explain some notation and provide information and links re- garding the data sets used. Naturally, there is a number of sources that the interested reader should consult in order to deepen his knowledge and understanding of L´evypro- cesses. We mention here the books of Bertoin (1996), Sato (1999), Apple- baum (2004), Kyprianou (2006) on various aspects of L´evyprocesses. Cont and Tankov (2003) and Schoutens (2003) focus on the applications of L´evy INTRODUCTION TO LEVY´ PROCESSES 5 14 13.5 13 12.5 12 implied vol (%) 11.5 11 10.5 10 10 20 30 40 9 10 50 8 60 6 7 70 4 5 80 2 3 delta (%) or strike 90 1 maturity Figure 1.3. Implied volatilities of vanilla options on the EUR/USD exchange rate on November 5, 2001. processes in finance. The books of Jacod and Shiryaev (2003) and Prot- ter (2004) are essential readings for semimartingale theory, while Shiryaev (1999) blends semimartingale theory and applications to finance in an im- pressive manner. Other interesting and inspiring sources are the papers by Eberlein (2001), Cont (2001), Barndorff-Nielsen and Prause (2001), Carr et al. (2002), Eberlein and Ozkan(¨ 2003) and Eberlein (2007). 2. Definition Let (Ω; F; F;P ) be a filtered probability space, where F = FT and the filtration F = (Ft)t2[0;T ] satisfies the usual conditions.
Recommended publications
  • Completely Random Measures and Related Models
    CRMs Sinead Williamson Background Completely random measures and related L´evyprocesses Completely models random measures Applications Normalized Sinead Williamson random measures Neutral-to-the- right processes Computational and Biological Learning Laboratory Exchangeable University of Cambridge matrices January 20, 2011 Outline CRMs Sinead Williamson 1 Background Background L´evyprocesses Completely 2 L´evyprocesses random measures Applications 3 Completely random measures Normalized random measures Neutral-to-the- right processes 4 Applications Exchangeable matrices Normalized random measures Neutral-to-the-right processes Exchangeable matrices A little measure theory CRMs Sinead Williamson Set: e.g. Integers, real numbers, people called James. Background May be finite, countably infinite, or uncountably infinite. L´evyprocesses Completely Algebra: Class T of subsets of a set T s.t. random measures 1 T 2 T . 2 If A 2 T , then Ac 2 T . Applications K Normalized 3 If A1;:::; AK 2 T , then [ Ak = A1 [ A2 [ ::: AK 2 T random k=1 measures (closed under finite unions). Neutral-to-the- right K processes 4 If A1;:::; AK 2 T , then \k=1Ak = A1 \ A2 \ ::: AK 2 T Exchangeable matrices (closed under finite intersections). σ-Algebra: Algebra that is closed under countably infinite unions and intersections. A little measure theory CRMs Sinead Williamson Background L´evyprocesses Measurable space: Combination (T ; T ) of a set and a Completely σ-algebra on that set. random measures Measure: Function µ between a σ-field and the positive Applications reals (+ 1) s.t. Normalized random measures 1 µ(;) = 0. Neutral-to-the- right 2 For all countable collections of disjoint sets processes P Exchangeable A1; A2; · · · 2 T , µ([k Ak ) = µ(Ak ).
    [Show full text]
  • A University of Sussex Phd Thesis Available Online Via Sussex
    A University of Sussex PhD thesis Available online via Sussex Research Online: http://sro.sussex.ac.uk/ This thesis is protected by copyright which belongs to the author. This thesis cannot be reproduced or quoted extensively from without first obtaining permission in writing from the Author The content must not be changed in any way or sold commercially in any format or medium without the formal permission of the Author When referring to this work, full bibliographic details including the author, title, awarding institution and date of the thesis must be given Please visit Sussex Research Online for more information and further details NON-STATIONARY PROCESSES AND THEIR APPLICATION TO FINANCIAL HIGH-FREQUENCY DATA Mailan Trinh A thesis submitted for the degree of Doctor of Philosophy University of Sussex March 2018 UNIVERSITY OF SUSSEX MAILAN TRINH A THESIS FOR THE DEGREE OF DOCTOR OF PHILOSOPHY NON-STATIONARY PROCESSES AND THEIR APPLICATION TO FINANCIAL HIGH-FREQUENCY DATA SUMMARY The thesis is devoted to non-stationary point process models as generalizations of the standard homogeneous Poisson process. The work can be divided in two parts. In the first part, we introduce a fractional non-homogeneous Poisson process (FNPP) by applying a random time change to the standard Poisson process. We character- ize the FNPP by deriving its non-local governing equation. We further compute moments and covariance of the process and discuss the distribution of the arrival times. Moreover, we give both finite-dimensional and functional limit theorems for the FNPP and the corresponding fractional non-homogeneous compound Poisson process. The limit theorems are derived by using martingale methods, regular vari- ation properties and Anscombe's theorem.
    [Show full text]
  • STOCHASTIC COMPARISONS and AGING PROPERTIES of an EXTENDED GAMMA PROCESS Zeina Al Masry, Sophie Mercier, Ghislain Verdier
    STOCHASTIC COMPARISONS AND AGING PROPERTIES OF AN EXTENDED GAMMA PROCESS Zeina Al Masry, Sophie Mercier, Ghislain Verdier To cite this version: Zeina Al Masry, Sophie Mercier, Ghislain Verdier. STOCHASTIC COMPARISONS AND AGING PROPERTIES OF AN EXTENDED GAMMA PROCESS. Journal of Applied Probability, Cambridge University press, 2021, 58 (1), pp.140-163. 10.1017/jpr.2020.74. hal-02894591 HAL Id: hal-02894591 https://hal.archives-ouvertes.fr/hal-02894591 Submitted on 9 Jul 2020 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Applied Probability Trust (4 July 2020) STOCHASTIC COMPARISONS AND AGING PROPERTIES OF AN EXTENDED GAMMA PROCESS ZEINA AL MASRY,∗ FEMTO-ST, Univ. Bourgogne Franche-Comt´e,CNRS, ENSMM SOPHIE MERCIER & GHISLAIN VERDIER,∗∗ Universite de Pau et des Pays de l'Adour, E2S UPPA, CNRS, LMAP, Pau, France Abstract Extended gamma processes have been seen to be a flexible extension of standard gamma processes in the recent reliability literature, for cumulative deterioration modeling purpose. The probabilistic properties of the standard gamma process have been well explored since the 1970's, whereas those of its extension remain largely unexplored. In particular, stochastic comparisons between degradation levels modeled by standard gamma processes and aging properties for the corresponding level-crossing times are nowadays well understood.
    [Show full text]
  • Lecture Notes
    Lecture Notes Lars Peter Hansen October 8, 2007 2 Contents 1 Approximation Results 5 1.1 One way to Build a Stochastic Process . 5 1.2 Stationary Stochastic Process . 6 1.3 Invariant Events and the Law of Large Numbers . 6 1.4 Another Way to Build a Stochastic Process . 8 1.4.1 Stationarity . 8 1.4.2 Limiting behavior . 9 1.4.3 Ergodicity . 10 1.5 Building Nonstationary Processes . 10 1.6 Martingale Approximation . 11 3 4 CONTENTS Chapter 1 Approximation Results 1.1 One way to Build a Stochastic Process • Consider a probability space (Ω, F, P r) where Ω is a set of sample points, F is an event collection (sigma algebra) and P r assigns proba- bilities to events . • Introduce a function S :Ω → Ω such that for any event Λ, S−1(Λ) = {ω ∈ Ω: S(ω) ∈ Λ} is an event. • Introduce a (Borel measurable) measurement function x :Ω → Rn. x is a random vector. • Construct a stochastic process {Xt : t = 1, 2, ...} via the formula: t Xt(ω) = X[S (ω)] or t Xt = X ◦ S . Example 1.1.1. Let Ω be a collection of infinite sequences of real numbers. Specifically, ω = (r0, r1, ...), S(ω) = (r1, r2, ...) and x(ω) = r0. Then Xt(ω) = rt. 5 6 CHAPTER 1. APPROXIMATION RESULTS 1.2 Stationary Stochastic Process Definition 1.2.1. The transformation S is measure-preserving if: P r(Λ) = P r{S−1(Λ)} for all Λ ∈ F. Proposition 1.2.2. When S is measure-preserving, the process {Xt : t = 1, 2, ...} has identical distributions for every t.
    [Show full text]
  • Arbitrage Free Approximations to Candidate Volatility Surface Quotations
    Journal of Risk and Financial Management Article Arbitrage Free Approximations to Candidate Volatility Surface Quotations Dilip B. Madan 1,* and Wim Schoutens 2,* 1 Robert H. Smith School of Business, University of Maryland, College Park, MD 20742, USA 2 Department of Mathematics, KU Leuven, 3000 Leuven, Belgium * Correspondence: [email protected] (D.B.M.); [email protected] (W.S.) Received: 19 February 2019; Accepted: 10 April 2019; Published: 21 April 2019 Abstract: It is argued that the growth in the breadth of option strikes traded after the financial crisis of 2008 poses difficulties for the use of Fourier inversion methodologies in volatility surface calibration. Continuous time Markov chain approximations are proposed as an alternative. They are shown to be adequate, competitive, and stable though slow for the moment. Further research can be devoted to speed enhancements. The Markov chain approximation is general and not constrained to processes with independent increments. Calibrations are illustrated for data on 2695 options across 28 maturities for SPY as at 8 February 2018. Keywords: bilateral gamma; fast Fourier transform; sato process; matrix exponentials JEL Classification: G10; G12; G13 1. Introduction A variety of arbitrage free models for approximating quoted option prices have been available for some time. The quotations are typically in terms of (Black and Scholes 1973; Merton 1973) implied volatilities for the traded strikes and maturities. Consequently, the set of such quotations is now popularly referred to as the volatility surface. Some of the models are nonparametric with the Dupire(1994) local volatility model being a popular example. The local volatility model is specified in terms of a deterministic function s(K, T) that expresses the local volatility for the stock if the stock were to be at level K at time T.
    [Show full text]
  • Portfolio Optimization and Option Pricing Under Defaultable Lévy
    Universit`adegli Studi di Padova Dipartimento di Matematica Scuola di Dottorato in Scienze Matematiche Indirizzo Matematica Computazionale XXVI◦ ciclo Portfolio optimization and option pricing under defaultable L´evy driven models Direttore della scuola: Ch.mo Prof. Paolo Dai Pra Coordinatore dell’indirizzo: Ch.ma Prof.ssa. Michela Redivo Zaglia Supervisore: Ch.mo Prof. Tiziano Vargiolu Universit`adegli Studi di Padova Corelatori: Ch.mo Prof. Agostino Capponi Ch.mo Prof. Andrea Pascucci Johns Hopkins University Universit`adegli Studi di Bologna Dottorando: Stefano Pagliarani To Carolina and to my family “An old man, who had spent his life looking for a winning formula (martingale), spent the last days of his life putting it into practice, and his last pennies to see it fail. The martingale is as elusive as the soul.” Alexandre Dumas Mille et un fantˆomes, 1849 Acknowledgements First and foremost, I would like to thank my supervisor Prof. Tiziano Vargiolu and my co-advisors Prof. Agostino Capponi and Prof. Andrea Pascucci, for coauthoring with me all the material appearing in this thesis. In particular, thank you to Tiziano Vargiolu for supporting me scientifically and finan- cially throughout my research and all the activities related to it. Thank you to Agostino Capponi for inviting me twice to work with him at Purdue University, and for his hospital- ity and kindness during my double stay in West Lafayette. Thank you to Andrea Pascucci for wisely leading me throughout my research during the last four years, and for giving me the chance to collaborate with him side by side, thus sharing with me his knowledge and his experience.
    [Show full text]
  • Levy Processes
    LÉVY PROCESSES, STABLE PROCESSES, AND SUBORDINATORS STEVEN P.LALLEY 1. DEFINITIONSAND EXAMPLES d Definition 1.1. A continuous–time process Xt = X(t ) t 0 with values in R (or, more generally, in an abelian topological groupG ) isf called a Lévyg ≥ process if (1) its sample paths are right-continuous and have left limits at every time point t , and (2) it has stationary, independent increments, that is: (a) For all 0 = t0 < t1 < < tk , the increments X(ti ) X(ti 1) are independent. − (b) For all 0 s t the··· random variables X(t ) X−(s ) and X(t s ) X(0) have the same distribution.≤ ≤ − − − The default initial condition is X0 = 0. A subordinator is a real-valued Lévy process with nondecreasing sample paths. A stable process is a real-valued Lévy process Xt t 0 with ≥ initial value X0 = 0 that satisfies the self-similarity property f g 1/α (1.1) Xt =t =D X1 t > 0. 8 The parameter α is called the exponent of the process. Example 1.1. The most fundamental Lévy processes are the Wiener process and the Poisson process. The Poisson process is a subordinator, but is not stable; the Wiener process is stable, with exponent α = 2. Any linear combination of independent Lévy processes is again a Lévy process, so, for instance, if the Wiener process Wt and the Poisson process Nt are independent then Wt Nt is a Lévy process. More important, linear combinations of independent Poisson− processes are Lévy processes: these are special cases of what are called compound Poisson processes: see sec.
    [Show full text]
  • Some Theory for the Analysis of Random Fields Diplomarbeit
    Philipp Pluch Some Theory for the Analysis of Random Fields With Applications to Geostatistics Diplomarbeit zur Erlangung des akademischen Grades Diplom-Ingenieur Studium der Technischen Mathematik Universit¨at Klagenfurt Fakult¨at fur¨ Wirtschaftswissenschaften und Informatik Begutachter: O.Univ.-Prof.Dr. Jurgen¨ Pilz Institut fur¨ Mathematik September 2004 To my parents, Verena and all my friends Ehrenw¨ortliche Erkl¨arung Ich erkl¨are ehrenw¨ortlich, dass ich die vorliegende Schrift verfasst und die mit ihr unmittelbar verbundenen Arbeiten selbst durchgefuhrt¨ habe. Die in der Schrift verwendete Literatur sowie das Ausmaß der mir im gesamten Arbeitsvorgang gew¨ahrten Unterstutzung¨ sind ausnahmslos angegeben. Die Schrift ist noch keiner anderen Prufungsb¨ eh¨orde vorgelegt worden. St. Urban, 29 September 2004 Preface I remember when I first was at our univeristy - I walked inside this large corridor called ’Aula’ and had no idea what I should do, didn’t know what I should study, I had interest in Psychology or Media Studies, and now I’m sitting in my office at the university, five years later, writing my final lines for my master degree theses in mathematics. A long and also hard but so beautiful way was gone, I remember at the beginning, the first mathematic courses in discrete mathematics, how difficult that was for me, the abstract thinking, my first exams and now I have finished them all, I mastered them. I have to thank so many people and I will do so now. First I have to thank my parents, who always believed in me, who gave me financial support and who had to fight with my mood when I was working hard.
    [Show full text]
  • Completely Random Measures
    Pacific Journal of Mathematics COMPLETELY RANDOM MEASURES JOHN FRANK CHARLES KINGMAN Vol. 21, No. 1 November 1967 PACIFIC JOURNAL OF MATHEMATICS Vol. 21, No. 1, 1967 COMPLETELY RANDOM MEASURES J. F. C. KlNGMAN The theory of stochastic processes is concerned with random functions defined on some parameter set. This paper is con- cerned with the case, which occurs naturally in some practical situations, in which the parameter set is a ^-algebra of subsets of some space, and the random functions are all measures on this space. Among all such random measures are distinguished some which are called completely random, which have the property that the values they take on disjoint subsets are independent. A representation theorem is proved for all completely random measures satisfying a weak finiteness condi- tion, and as a consequence it is shown that all such measures are necessarily purely atomic. 1. Stochastic processes X(t) whose realisation are nondecreasing functions of a real parameter t occur in a number of applications of probability theory. For instance, the number of events of a point process in the interval (0, t), the 'load function' of a queue input [2], the amount of water entering a reservoir in time t, and the local time process in a Markov chain ([8], [7] §14), are all processes of this type. In many applications the function X(t) enters as a convenient way of representing a measure on the real line, the Stieltjes measure Φ defined as the unique Borel measure for which (1) Φ(a, b] = X(b + ) - X(a + ), (-co <α< b< oo).
    [Show full text]
  • A Representation Free Quantum Stochastic Calculus
    JOURNAL OF FUNCTIONAL ANALYSIS 104, 149-197 (1992) A Representation Free Quantum Stochastic Calculus L. ACCARDI Centro Matemarico V. Volterra, Diparfimento di Matematica, Universitci di Roma II, Rome, Italy F. FACNOLA Dipartimento di Matematica, Vniversild di Trento, Povo, Italy AND J. QUAEGEBEUR Department of Mathemarics, Universiteit Leuven, Louvain, Belgium Communicated by L. Gross Received January 2; revised March 1, 1991 We develop a representation free stochastic calculus based on three inequalities (semimartingale inequality, scalar forward derivative inequality, scalar conditional variance inequality). We prove that our scheme includes all the previously developed stochastic calculi and some new examples. The abstract theory is applied to prove a Boson Levy martingale representation theorem in bounded form and a general existence, uniqueness, and unitarity theorem for quantum stochastic differential equations. 0 1992 Academic Press. Inc. 0. INTRODUCTION Stochastic calculus is a powerful tool in classical probability theory. Recently various kinds of stochastic calculi have been introduced in quan- tum probability [18, 12, 10,211. The common features of these calculi are: - One starts from a representation of the canonical commutation (or anticommutation) relations (CCR or CAR) over a space of the form L2(R+, dr; X) (where 3? is a given Hilbert space). - One introduces a family of operator valued measures on R,, related to this representation, e.g., expressed in terms of creation or annihilation or number or field operators. 149 0022-1236192 $3.00 Copyright 0 1992 by Academic Press, Inc. All rights of reproduction in any form reserved. 150 QUANTUM STOCHASTIC CALCULUS -- One shows that it is possible to develop a theory of stochastic integration with respect to these operator valued measures sufficiently rich to allow one to solve some nontrivial stochastic differential equations.
    [Show full text]
  • Normalized Random Measures Driven by Increasing Additive Processes
    The Annals of Statistics 2004, Vol. 32, No. 6, 2343–2360 DOI: 10.1214/009053604000000625 c Institute of Mathematical Statistics, 2004 NORMALIZED RANDOM MEASURES DRIVEN BY INCREASING ADDITIVE PROCESSES By Luis E. Nieto-Barajas1, Igor Prunster¨ 2 and Stephen G. Walker3 ITAM-M´exico, Universit`adegli Studi di Pavia and University of Kent This paper introduces and studies a new class of nonparamet- ric prior distributions. Random probability distribution functions are constructed via normalization of random measures driven by increas- ing additive processes. In particular, we present results for the dis- tribution of means under both prior and posterior conditions and, via the use of strategic latent variables, undertake a full Bayesian analysis. Our class of priors includes the well-known and widely used mixture of a Dirichlet process. 1. Introduction. This paper considers the problem of constructing a stochastic process, defined on the real line, which has sample paths be- having almost surely (a.s.) as a probability distribution function (d.f.). The law governing the process acts as a prior in Bayesian nonparametric prob- lems. One popular idea is to take the random probability d.f. as a normal- ized increasing process F (t)= Z(t)/Z¯, where Z¯ = limt→∞ Z(t) < +∞ (a.s.). For example, the Dirichlet process [Ferguson (1973)] arises when Z is a suitably reparameterized gamma process. We consider the case of normal- ized random d.f.s driven by an increasing additive process (IAP) L, that is, Z(t)= k(t,x) dL(x) and provide regularity conditions on k and L to ensure F is a random probability d.f.
    [Show full text]
  • Poisson Point Processes
    Poisson Point Processes Will Perkins April 23, 2013 The Poisson Process Say you run a website or a bank. How woul you model the arrival of customers to your site? Continuous time process, integer valued. What properties should the process have? Properties 1 The numbers of customers arriving in disjoint time intervals are independent. 2 The number of customers arriving in [t1; t2] depends only on t2 − t1. (Can be relaxed) 3 The probability that one customer arrives in [t; t + ] is λ + o(). 4 The probability that at least two customers arrive in [t; t + ] is o(). The Poisson Process Theorem If a process N(t1; t2) satisfies the above properties, then N(0; t) has a Poisson distribution with mean λt. Such a process is called a Poisson process. Proof: Other Properties 1 Conditioning on the number of arrivals in [0; T ], how are the arrival times distributed? 2 What is the distribution of the time between arrival k and k + 1? 3 Does this process have the continuous-time Markov property? Proofs: Constructing a Poisson Process We can construct a Poisson process using a sequence of iid random variables. Let X1; X2;::: be iid Exponential rv's with mean 1/λ. Then let k+1 X N(0; t) = inffk : Xi ≥ t i=1 Show that this is a Poisson process with mean λ. What would happend if we chose a different distribution for the Xi 's? Inhomogeneous Poisson Process Let f (t) be a non-negative, integrable function. Then we can define an inhomogeneous Poisson process with intensity measure f (t) as follows: 1 The number of arrivals in disjoint intervals are independent.
    [Show full text]