Sarracenia L

Total Page:16

File Type:pdf, Size:1020Kb

Sarracenia L Sarracenia L. Pitcherplants Other Common Names: North American Pitcher Plants, Trumpet Pitchers. Family: Sarraceniaceae. Cold Hardiness: Cold and heat tolerance are highly variable among taxa as the range of hardiness varies from near boreal to subtropical; some such as S. purpurea are cold tolerant to USDA hardiness zone 4 (3) whereas most other species may be tolerant of only USDA hardiness zone 7 or 8 winters. Foliage: Evergreen to dieback herbaceous narrowly funnel-shaped mature leaves resemble thin blown- glass wineglasses or squat goblet-shapes with a flared forward bent hood giving them an almost snake-like character; the shape of the hoods varies from flat-topped or snake-like hoods (S. alata, S. flava, S. rubra), to those resembling folds (S. purpurea, S. rosea), folded flaps (S. minor), or even a parrot's beak (S. psittacina); the color contrasts of the intricate venation pattern and background tissues in the hoods enhance this sibilant effect; smaller green lanceolate leaves are often clustered at the base of the larger mature leaves; leaves are variable in length from 6 to 12 on some taxa to as much as 36 on others; the unique shape and color patterns lure insects into the funnel-shaped leaf where exudates and inverted hairs prevent their escape; over time the insects are passively digested and the nutrients, particularly nitrates absorbed into the plant permitting them to persist on extremely nutrient poor soils. Flower: The flowers are interesting but infrequently seen; typically borne on stalks that extend to the height of or above the foliage by several inches, most flowers are fairly large, 2 to 4 inches across; most are broadly trumpet shaped, but many others are more variable with some appearing nearly cup-shaped and still others resembling a cross between an Iris flower and a trumpet; some flowers are initially held erect, but most eventually become pendent; five showy yellow to red petals are surrounded by five showy sepals, often of slightly different hue, usually subtended by a set of three smaller green bracts at the base of the flowers. Fruit: Fruit are small five-ribbed globose pumpkin shaped capsules which when ripe rupture along the tops of the ribs to form a star-fish shaped opening that exposes the numerous white to brown wedge-shaped seeds; capsules may go through color changes from that similar to the flowers to some shade of brown when ripe. Stem / Bark: Stems — leaves arise from tight rosettes at ground level; Buds — buds are buried within the densely packed base of the foliage; Bark — not applicable. Habit: Pitcherplants are unique carnivorous herbaceous plants with erect leaves 1 to 2 (3) tall arising from a dense basal rosette, some of the leaves are modified into fluted narrow goblet shapes topped by a flared hoods; textures are coarse and growth rates rather slow. Cultural Requirements: Full sun is usually the best exposure; moisture is required, most prefer soggy acidic soils, some even with shallow water; they are tolerant of extremely nutrient poor soils, but are drought intolerant. Pathological Problems: Relatively few diseases or pests bother Pitcherplants, but sometimes if too many insects are trapped in the leaves the decaying mass can cause Pitcherplant rot in that leaf, scale insects sometimes infest the leaves, and occasionally stronger chewing insects can eat the leaves but these issues are not often life-threatening to the plants. Ornamental Assets: Showy flowers when present and tremendously unique and interesting foliage are the standard reasons to plant these taxa. Limitations & Liabilities: Requirements for cultivation have a narrow window and Pitcherplants can be difficult to work smoothly into landscape designs without dominating the scene or looking contrived. Landscape Utilization: Sarracenia are naturals for bog gardens or margins of water features where the water levels can be regulated; these are fantastic plants for school or educational gardens and can be grown in tub or container culture with a bit of care; the cut leaves are sometimes used in dried or fresh arrangements. Other Comments: The unique foliage and carnivorous nature make this an irresistible plant for collectors; the genus name honors the turn of the 18th century Quebec physician Dr. Michael Sarrazin de L'Etang who first sent S. purpurea to Europe. Native Habitat: Most Sarracenia are native to the Southeastern USA or eastern seaboard, but S. purpurea can be found as far north as Canada. Related Taxa: Sarracenia alata (see below), Sarracenia flava L. (Sarracenia gronovii var. flava, Huntsman's-Horn, Yellow Pitcherplant, Yellow Trumpet Pitcherplant, Trumpetleaf, Trumpets, Umbrella-Trumpets, Watches), Sarracenia leucophylla C.S. Rafinesque (Crimson Pitcherplant, Purple Trumpetleaf, White Top Pitcherplant, White Trumpet), Sarracenia minor T. Walter (Hooded Pitcherplant, Okefenokee Pitcherplant, Rainhat-Trumpet), Sarracenia psittacina A. Michaux (Parrot Pitcherplant), Sarracenia purpurea L. (Common Pitcherplant, Huntsman's-Cap, Huntsman's-Cup, Indian Cup-Plant, Pitcherplant, Purple Pitcherplant, Side-Saddle-Flower, Southern Pitcherplant, Sweet Pitcherplant), Sarracenia rosea R.F.C. Naczi, F.W. Case and R.B. Case (Purple Pitcherplant), and Sarracenia rubra T. Walter (Sarracenia gronovii var. rubra, Mountain Sweet Pitcherplant, Sweet Pitcherplant) are native to the Southeastern USA and are periodically available in the trade along with several hybrid taxa among them; Sarracenia purpurea has the most widespread native range among these taxa being found naturally from Canada to the Southern USA, although with numerous discontinuities within in this range; it is sometimes referred to as Northern Pitcherplant and was the first species introduced into Europe; northern provenances of S. purpurea would be the species of choice for colder climates. Sarracenia alata (Alph. Wood) Alph. Wood Yellow Trumpets (Sarracenia gronovii var. alata) • Sarracenia alata is also known as Flycatcher, Pale Pitcherplant, or Yellow Pitcherplant; the only native Texas species, S. alata can be found in the Southeastern USA from Robertson County in extreme eastern Central Texas to Georgia; plants consist of spreading clumps of 1 to 2 (3) tall narrowly funnel-shaped leaves; these plants are found in permanently moist soils, but unlike other Sarracenia are less vigorous in permanently soggy sites. • Leaves are a bright yellow-green to green base color, highlighted with intricate interesting red veins; the showy early spring flowers are borne atop pencil thin stalks and vary from pale yellow, yellow- green, creamy yellow to nearly white in color; flowers emit a pleasant mild lemon scent; this is probably the species of choice for all but the colder Texas locations. References: Barthlott et al., 2007; Tomocik, 1996. Copyright 2013 by Michael A. Arnold with all rights reserved; intended for future inclusion in Landscape Plants For Texas And Environs, Fourth Edition. .
Recommended publications
  • Natural Heritage Program List of Rare Plant Species of North Carolina 2016
    Natural Heritage Program List of Rare Plant Species of North Carolina 2016 Revised February 24, 2017 Compiled by Laura Gadd Robinson, Botanist John T. Finnegan, Information Systems Manager North Carolina Natural Heritage Program N.C. Department of Natural and Cultural Resources Raleigh, NC 27699-1651 www.ncnhp.org C ur Alleghany rit Ashe Northampton Gates C uc Surry am k Stokes P d Rockingham Caswell Person Vance Warren a e P s n Hertford e qu Chowan r Granville q ot ui a Mountains Watauga Halifax m nk an Wilkes Yadkin s Mitchell Avery Forsyth Orange Guilford Franklin Bertie Alamance Durham Nash Yancey Alexander Madison Caldwell Davie Edgecombe Washington Tyrrell Iredell Martin Dare Burke Davidson Wake McDowell Randolph Chatham Wilson Buncombe Catawba Rowan Beaufort Haywood Pitt Swain Hyde Lee Lincoln Greene Rutherford Johnston Graham Henderson Jackson Cabarrus Montgomery Harnett Cleveland Wayne Polk Gaston Stanly Cherokee Macon Transylvania Lenoir Mecklenburg Moore Clay Pamlico Hoke Union d Cumberland Jones Anson on Sampson hm Duplin ic Craven Piedmont R nd tla Onslow Carteret co S Robeson Bladen Pender Sandhills Columbus New Hanover Tidewater Coastal Plain Brunswick THE COUNTIES AND PHYSIOGRAPHIC PROVINCES OF NORTH CAROLINA Natural Heritage Program List of Rare Plant Species of North Carolina 2016 Compiled by Laura Gadd Robinson, Botanist John T. Finnegan, Information Systems Manager North Carolina Natural Heritage Program N.C. Department of Natural and Cultural Resources Raleigh, NC 27699-1651 www.ncnhp.org This list is dynamic and is revised frequently as new data become available. New species are added to the list, and others are dropped from the list as appropriate.
    [Show full text]
  • Seeds Available CARNILANDES, Harvest 2020
    Seeds available CARNILANDES, harvest 2020 dimanche 9 mai 2021 www.sarracenia.fr [email protected] N° Species or hybrid Minimum quantity Droseraceae Dionaea DIO-1005 4,00 € Dionaea muscipula 25 DM Atlanta x DM Darwin DIO-999 2,75 € Dionaea muscipula. Mélange de 100 cultivars. 25 Seed mixture of more than 100 cultivars.. Drosera DCP-01 2,75 € Drosera capensis f.rouge 25 Red form D.capensis to darker flowers than the typical form. In the sun, the leaves become red purple. DCP-02 2,75 € Drosera capensis f.fleur blanche (alba) 25 D.capensis form with leaf and white flowers. DCP-02B 2,75 € Drosera capensis f.fleur blanche (alba Giant) 25 "Giant" form of D.capensis with leaves and white flowers. DCP-04 2,75 € Drosera capensis 25 DRI-01 2,75 € Drosera intermedia (Québec) 25 Quebec form of Drosera intermedia. Martyniaceae Ibicella IBI-01 2,75 € Ibicella lutea 12 Annual carnivorous plant produces beautiful large yellow flowers. The fruit is called "Claws of the Devil." Sarraceniaceae Sarracenia alata SAL-009 C 2,75 € Sarracenia alata var.atrorubra Red Skin 20 Completely red, inside and outside. Slightly pubescent. SAL-010 2,75 € Sarracenia alata var.rubrioperculata( purple throat Giant) 20 Similar, in larger, to alata red throat. Gets huge. SAL-013 A 2,75 € Sarracenia alata var.alata (cream white flower) 20 Alata with cream-white flower. SAL-015 2,75 € Sarracenia alata var.alata- red/heavy vein-Jackson Co-Mississippi 20 Sarracenia alata form type. Pretty red veins. dimanche 9 mai 2021 www.sarracenia.fr [email protected] Page 1 sur 8 N° Species or hybrid Minimum quantity SAL-016 A 2,75 € Sarracenia alata var.rubrioperculata (red lidded) 20 Wavy lid whith high red color.
    [Show full text]
  • Sarracenias Aquascapes Seed Grown Hybrids Dutch Treats Collector's
    AQUASCAPES UNLIMITED, INC PO Box 364, Pipersville PA 18947 Phone: 215-766-8151, Fax: 215-766-8986 www.aquascapesunlimited.com EMAIL: [email protected] Spring 2014 Our Sarracenias are sold in small, medium and large sizes. The availability is indicated in the chart below with an X=Avail . The pricing reflects age and size: Small - $1.95 (1-2 Years) Multiples of 6, Medium - $3.95 (2-3 Years) Multiples of 5, Large - $8.95 (3-4Years) Multiples of 4. Sarracenias Botanical Name Common Name Small Med. Large Sarracenia alata Pale Pitcher X X X Sarracenia flava Yellow Trumpet X X Sarracenia leucophylla White Trumpet X X Sarracenia leucophylla 'Tarnock' ‘Tarnock’ X X Sarracenia psittacina Parrot Pitcher X Sarracenia purpurea Purple Pitcher X X X Sarracenia rubra Sweet Pitcher X X S. rubra ssp. jonesii (all green) Sweet Pitcher (all green) X Sarracenia x UNC Hybrid ‘Dixie Lace’ X X Sarracenia x UNC Hybrid ‘Doodle Bug’ X Sarracenia x UNC Hybrid ‘Mardi Gras’ X X Sarracenia x UNC Hybrid ‘Red Bug’ X Aquascapes Seed Grown Hybrids Sarracenia Hybrid Botanical Name Small Med. Large S. x areolata S. leucophylla x alata X X X S. x catesbaei S. purp x flava X X X S. readii x moorei S. (leuco x rubra j) (lxf) X X S. x readii All Green S. leuco x rubra jonsii X S. x moorei S. flava x leucophylla X S. x formosa (Limited) S. psitt x minor X Dutch Treats Botanical Name Common Name Size Price S. x 'Farnhamii ' Sarracenia x 'Farnhamii ' PL/72 3.95 S.
    [Show full text]
  • Seed Ecology Iii
    SEED ECOLOGY III The Third International Society for Seed Science Meeting on Seeds and the Environment “Seeds and Change” Conference Proceedings June 20 to June 24, 2010 Salt Lake City, Utah, USA Editors: R. Pendleton, S. Meyer, B. Schultz Proceedings of the Seed Ecology III Conference Preface Extended abstracts included in this proceedings will be made available online. Enquiries and requests for hardcopies of this volume should be sent to: Dr. Rosemary Pendleton USFS Rocky Mountain Research Station Albuquerque Forestry Sciences Laboratory 333 Broadway SE Suite 115 Albuquerque, New Mexico, USA 87102-3497 The extended abstracts in this proceedings were edited for clarity. Seed Ecology III logo designed by Bitsy Schultz. i June 2010, Salt Lake City, Utah Proceedings of the Seed Ecology III Conference Table of Contents Germination Ecology of Dry Sandy Grassland Species along a pH-Gradient Simulated by Different Aluminium Concentrations.....................................................................................................................1 M Abedi, M Bartelheimer, Ralph Krall and Peter Poschlod Induction and Release of Secondary Dormancy under Field Conditions in Bromus tectorum.......................2 PS Allen, SE Meyer, and K Foote Seedling Production for Purposes of Biodiversity Restoration in the Brazilian Cerrado Region Can Be Greatly Enhanced by Seed Pretreatments Derived from Seed Technology......................................................4 S Anese, GCM Soares, ACB Matos, DAB Pinto, EAA da Silva, and HWM Hilhorst
    [Show full text]
  • (Sarracenia) Provide a 21St-Century Perspective on Infraspecific Ranks and Interspecific Hybrids: a Modest Proposal for Appropriate Recognition and Usage
    Pitcher Plants (Sarracenia) Provide a 21st-Century Perspective on Infraspecific Ranks and Interspecific Hybrids: A Modest Proposal for Appropriate Recognition and Usage The Harvard community has made this article openly available. Please share how this access benefits you. Your story matters Citation Ellison, Aaron M., Charles C. Davis, Patrick J. Calie, and Robert FC Naczi. "Pitcher plants (Sarracenia) provide a 21st-century perspective on infraspecific ranks and interspecific hybrids: a modest proposal* for appropriate recognition and usage." Systematic Botany 39, no. 3 (2014): 939-949. Published Version doi:10.1600/036364414X681473 Citable link http://nrs.harvard.edu/urn-3:HUL.InstRepos:12313560 Terms of Use This article was downloaded from Harvard University’s DASH repository, and is made available under the terms and conditions applicable to Open Access Policy Articles, as set forth at http:// nrs.harvard.edu/urn-3:HUL.InstRepos:dash.current.terms-of- use#OAP A. M. Ellison et al. – 1 ELLISON ET AL.: A MODEST PROPOSAL FOR INFRASPECIFIC RANKS Pitcher Plants (Sarracenia) Provide a 21st-Century Perspective on Infraspecific Ranks and Interspecific Hybrids: A Modest Proposal* for Appropriate Recognition and Usage Aaron M. Ellison,1,5 Charles C. Davis,2 Patrick J. Calie,3 Robert F.C. Naczi4 1Harvard University, Harvard Forest, 324 North Main Street, Petersham, Massachusetts 01366, U. S. A. 2Harvard University Herbaria, Department of Organismic and Evolutionary Biology, 22 Divinity Avenue, Cambridge, Massachusetts 02138, U. S. A. 3Eastern Kentucky University, Department of Biological Sciences, Richmond, 521 Lancaster Avenue, Kentucky 40475, U. S. A. 4The New York Botanical Garden, 2900 Southern Boulevard, Bronx, New York 10458, U.
    [Show full text]
  • Evaluating the Adaptive Evolutionary Convergence of Carnivorous Plant Taxa Through Functional Genomics
    Evaluating the adaptive evolutionary convergence of carnivorous plant taxa through functional genomics Gregory L. Wheeler and Bryan C. Carstens Department of Evolution, Ecology, & Organismal Biology, The Ohio State University, Columbus, OH, United States of America ABSTRACT Carnivorous plants are striking examples of evolutionary convergence, displaying complex and often highly similar adaptations despite lack of shared ancestry. Using available carnivorous plant genomes along with non-carnivorous reference taxa, this study examines the convergence of functional overrepresentation of genes previously implicated in plant carnivory. Gene Ontology (GO) coding was used to quantitatively score functional representation in these taxa, in terms of proportion of carnivory- associated functions relative to all functional sequence. Statistical analysis revealed that, in carnivorous plants as a group, only two of the 24 functions tested showed a signal of substantial overrepresentation. However, when the four carnivorous taxa were analyzed individually, 11 functions were found to be significant in at least one taxon. Though carnivorous plants collectively may show overrepresentation in functions from the predicted set, the specific functions that are overrepresented vary substantially from taxon to taxon. While it is possible that some functions serve a similar practical purpose such that one taxon does not need to utilize both to achieve the same result, it appears that there are multiple approaches for the evolution of carnivorous function in plant genomes. Our approach could be applied to tests of functional convergence in other systems provided on the availability of genomes and annotation data for a group. Submitted 27 October 2017 Accepted 13 January 2018 Subjects Bioinformatics, Evolutionary Studies, Genomics, Plant Science Published 31 January 2018 Keywords Carnivorous plants, Gene Ontology, Functional genomics, Convergent evolution Corresponding author Gregory L.
    [Show full text]
  • Educational Posters on Threatened Plant Communities of North Carolina
    Submitted by Nicolette L. Cagle on June 26, 2012 Native Plant Studies Certificate Project: Educational Posters on Threatened Plant Communities of North Carolina Nonriverine Wet Hardwood Forest from the Coastal Plain, NC. [Photo by David Blevins, Ph.D.] Submitted by Nicolette L. Cagle on June 26, 2012 Table of Contents Background ................................................................................................................................................... 3 Project Description........................................................................................................................................ 3 Timeline......................................................................................................................................................... 4 Most Threatened Plant Communities in North Carolina .............................................................................. 4 Poster Display at the North Carolina Botanical Garden................................................................................ 5 Posters .......................................................................................................................................................... 6 Introduction .............................................................................................................................................. 6 Threatened Plant Communities ................................................................................................................ 7 Poster Project References
    [Show full text]
  • Carnivorous Plant Responses to Resource Availability
    Carnivorous plant responses to resource availability: environmental interactions, morphology and biochemistry Christopher R. Hatcher A doctoral thesis submitted in partial fulfilment of requirements for the award of Doctor of Philosophy of Loughborough University November 2019 © by Christopher R. Hatcher (2019) Abstract Understanding how organisms respond to resources available in the environment is a fundamental goal of ecology. Resource availability controls ecological processes at all levels of organisation, from molecular characteristics of individuals to community and biosphere. Climate change and other anthropogenically driven factors are altering environmental resource availability, and likely affects ecology at all levels of organisation. It is critical, therefore, to understand the ecological impact of environmental variation at a range of spatial and temporal scales. Consequently, I bring physiological, ecological, biochemical and evolutionary research together to determine how plants respond to resource availability. In this thesis I have measured the effects of resource availability on phenotypic plasticity, intraspecific trait variation and metabolic responses of carnivorous sundew plants. Carnivorous plants are interesting model systems for a range of evolutionary and ecological questions because of their specific adaptations to attaining nutrients. They can, therefore, provide interesting perspectives on existing questions, in this case trait-environment interactions, plant strategies and plant responses to predicted future environmental scenarios. In a manipulative experiment, I measured the phenotypic plasticity of naturally shaded Drosera rotundifolia in response to disturbance mediated changes in light availability over successive growing seasons. Following selective disturbance, D. rotundifolia became more carnivorous by increasing the number of trichomes and trichome density. These plants derived more N from prey and flowered earlier.
    [Show full text]
  • Carnivorous Plant Newsletter V42 N3 September 2013
    Technical Refereed Contribution Phylogeny and biogeography of the Sarraceniaceae JOHN BRITTNACHER • Ashland, Oregon • USA • [email protected] Keywords: History: Sarraceniaceae evolution The carnivorous plant family Sarraceniaceae in the order Ericales consists of three genera: Dar- lingtonia, Heliamphora, and Sarracenia. Darlingtonia is represented by one species that is found in northern California and western Oregon. The genus Heliamphora currently has 23 recognized species all of which are native to the Guiana Highlands primarily in Venezuela with some spillover across the borders into Brazil and Guyana. Sarracenia has 15 species and subspecies, all but one of which are located in the southeastern USA. The range of Sarracenia purpurea extends into the northern USA and Canada. Closely related families in the plant order Ericales include the Roridu- laceae consisting of two sticky-leaved carnivorous plant species, Actinidiaceae, the Chinese goose- berry family, Cyrillaceae, which includes the common wetland plant Cyrilla racemiflora, and the family Clethraceae, which also has wetland plants including Clethra alnifolia. The rather charismatic plants of the Sarraceniaceae have drawn attention since the mid 19th century from botanists trying to understand how they came into being, how the genera are related to each other, and how they came to have such disjunct distributions. Before the advent of DNA sequencing it was very difficult to determine their relationships. Macfarlane (1889, 1893) proposed a phylogeny of the Sarraceniaceae based on his judgment of the overlap in features of the adult pitchers and his assumption that Nepenthes is a member of the family (Fig. 1a). He based his phy- logeny on the idea that the pitchers are produced from the fusion of two to five leaflets.
    [Show full text]
  • Assessing Genetic Diversity for the USA Endemic Carnivorous Plant Pinguicula Ionantha R.K. Godfrey (Lentibulariaceae)
    Conserv Genet (2017) 18:171–180 DOI 10.1007/s10592-016-0891-9 RESEARCH ARTICLE Assessing genetic diversity for the USA endemic carnivorous plant Pinguicula ionantha R.K. Godfrey (Lentibulariaceae) 1 1 2 3 David N. Zaya • Brenda Molano-Flores • Mary Ann Feist • Jason A. Koontz • Janice Coons4 Received: 10 May 2016 / Accepted: 30 September 2016 / Published online: 18 October 2016 Ó Springer Science+Business Media Dordrecht 2016 Abstract Understanding patterns of genetic diversity and data; the dominant cluster at each site corresponded to the population structure for rare, narrowly endemic plant spe- results from PCoA and Nei’s genetic distance analyses. cies, such as Pinguicula ionantha (Godfrey’s butterwort; The observed patterns of genetic diversity suggest that Lentibulariaceae), informs conservation goals and can although P. ionantha populations are isolated spatially by directly affect management decisions. Pinguicula ionantha distance and both natural and anthropogenic barriers, some is a federally listed species endemic to the Florida Pan- gene flow occurs among them or isolation has been too handle in the southeastern USA. The main goal of our recent to leave a genetic signature. The relatively low level study was to assess patterns of genetic diversity and of genetic diversity associated with this species is a con- structure in 17 P. ionantha populations, and to determine if cern as it may impair fitness and evolutionary capability in diversity is associated with geographic location or popu- a changing environment. The results of this study provide lation characteristics. We scored 240 individuals at a total the foundation for the development of management prac- of 899 AFLP markers (893 polymorphic markers).
    [Show full text]
  • The Microbial Phyllogeography of the Carnivorous Plant Sarracenia Alata
    Microb Ecol (2011) 61:750–758 DOI 10.1007/s00248-011-9832-9 PLANT MICROBE INTERACTIONS The Microbial Phyllogeography of the Carnivorous Plant Sarracenia alata Margaret M. Koopman & Bryan C. Carstens Received: 6 November 2010 /Accepted: 15 February 2011 /Published online: 24 March 2011 # Springer Science+Business Media, LLC 2011 Abstract Carnivorous pitcher plants host diverse microbial Introduction communities. This plant–microbe association provides a unique opportunity to investigate the evolutionary process- The integration of ecosystem genetics, phylogenetics, and es that influence the spatial diversity of microbial commu- community ecology has provided important insights into nities. Using next-generation sequencing of environmental the diversity, assembly, evolution, and functionality of samples, we surveyed microbial communities from 29 communities [1–5]. By exploring ecosystems in an evolu- pitcher plants (Sarracenia alata) and compare community tionary framework, investigators can measure genetic composition with plant genetic diversity in order to interactions across variable temporal and spatial scales explore the influence of historical processes on the and gain insight into fundamental processes such as food population structure of each lineage. Analyses reveal web dynamics and nutrient cycling [1, 3, 4]. Studies that there is a core S. alata microbiome, and that it is integrating these fields initially focused on the genetics of similar in composition to animal gut microfaunas. The plant species that supply a variety of important resources spatial structure of community composition in S. alata and environmental structure to other organisms in the (phyllogeography) is congruent at the deepest level with ecosystem [6]. An intriguing extension of these studies, the dominant features of the landscape, including the and an important opportunity for community geneticists, is Mississippi river and the discrete habitat boundaries that to further investigate community level responses to host– the plants occupy.
    [Show full text]
  • Insectivorous Plants”, He Showed That They Had Adaptations to Capture and Digest Animals
    the Strange, the Ugly, and the Bizarre . carnivores, parasites, and mycotrophs . Plant Oddities - Carnivores, Parasites & Mycotrophs Of all the plants, the most bizarre, the least understood, but yet the most interesting are those plants that have unusual modes of nutrient uptake. Carnivore: Nepenthes Plant Oddities - Carnivores, Parasites & Mycotrophs Of all the plants, the most bizarre, the least understood, but yet the most interesting are those plants that have unusual modes of nutrient uptake. Parasite: Rafflesia Plant Oddities - Carnivores, Parasites & Mycotrophs Of all the plants, the most bizarre, the least understood, but yet the most interesting are those plants that have unusual modes of nutrient uptake. Things to focus on for this topic! 1. What are these three types of plants 2. How do they live - selection 3. Systematic distribution in general 4. Systematic challenges or issues 5. Evolutionary pathways - how did they get to what they are Mycotroph: Monotropa Plant Oddities - The Problems Three factors for systematic confusion and controversy 1. the specialized roles often involve reductions or elaborations in both vegetative and floral features — DNA also is reduced or has extremely high rates of change for example – the parasitic Rafflesia Plant Oddities - The Problems Three factors for systematic confusion and controversy 2. their connections to other plants or fungi, or trapping of animals, make these odd plants prone to horizontal gene transfer for example – the parasitic Mitrastema [work by former UW student Tom Kleist]
    [Show full text]