Activators of Soluble Guanylate Cyclase for the Treatment of Male Erectile Dysfunction

Total Page:16

File Type:pdf, Size:1020Kb

Activators of Soluble Guanylate Cyclase for the Treatment of Male Erectile Dysfunction International Journal of Impotence Research (2002) 14, 8–14 ß 2002 Nature Publishing Group All rights reserved 0955-9930/02 $25.00 www.nature.com/ijir Activators of soluble guanylate cyclase for the treatment of male erectile dysfunction JD Brioni1*, M Nakane1, GC Hsieh1, RB Moreland1, T Kolasa1 and JP Sullivan1 1Neuroscience Research, Global Pharmaceutical Research and Development, Abbott Laboratories, Abbott Park, Illinois, USA Soluble guanylate cyclase (sGC) is an important enzyme in corpus cavernosum smooth muscle cells as it is one of the regulators of the synthesis of cGMP. The efficacy of sildenafil (ViagraTM)in the treatment of male erectile dysfunction indicates the importance of the cGMP system in the erectile response as the increased levels of cGMP induce relaxation of the corpus cavernosum. sGC is physiologically activated by nitric oxide (NO) during sexual stimulation, and its activity can be pharmacologically enhanced by several NO-donors. Agents like YC-1 can also activate sGC after binding to a novel allosteric site in the enzyme, a site different from the NO binding site. YC-1 can relax rabbit cavernosal tissue and it facilitates penile erection in vivo. This review summarizes the enzymology, biochemistry and pharmacology of this novel allosteric site and its relevance for the regulation of penile function. This type of sGC activators represent a new class of compounds with a different pharmacological profile in comparison to the classical NO-donors and they could be beneficial for the treatment of male erectile dysfunction. International Journal of Impotence Research (2002) 14, 8–14. DOI: 10.1038=sj=ijir=3900801 Keywords: guanylate cyclase; YC-1; penile erection; erectile dysfunction; corpus cavernosum; sildenafil; cGMP Introduction that was initiated by nitric oxide (NO). These processes are mediated in part by nerves expressing nitric oxide synthase I (neural-NOS), as sexual The treatment of male erectile dysfunction (MED) stimulation results in the peripheral release of NO. has evolved during the last decade from surgical This neurally-derived NO mediates the initial options or intracavernosal – intraurethral injections dilation of the helicine resistance arterioles as well to the recent development of oral therapies such as as the trabecular smooth muscle, resulting in an TM sildenafil (Viagra ). The efficacy of IC351 and increase of arterial blood flow which further acti- vardenafil in clinical trials has strengthened the vates the endothelial NOS (type II) releasing more notion that blockade of phosphodiesterase 5 (PDE5) NO down into the smooth muscle layers. NO in the corpus cavernosum is a successful approach. activates soluble guanylate cyclase (sGC) in the The efficacy of apomorphine in a sublingual for- corpus cavernosum smooth muscle. sGC is respon- mulation in phase III trials and its recent approval sible for the enzymatic conversion of GTP to cyclic by the CPMP in Europe also indicate that MED can GMP (cGMP), and the increase of cGMP mediates be treated by agents that act at the neuronal level via relaxation of cavernosal smooth muscle leading to central mechanisms. Several other targets may also penile erection. be useful for the treatment of MED, and the The discovery that NO-sGC-cGMP system is one biochemical and neurological bases to facilitate the of the major effectors in penile smooth muscle 1 erectile response has recently been reviewed. relaxation and erectile function has led to the Penile erection is the end result of corpus development of two classes of agents: (a) agents that cavernosum trabecular smooth muscle relaxation inhibit cGMP degradation like the PDE inhibitors; (b) agents that elevate cGMP levels through poten- tiation of cGMP synthesis. Sildenafil increases *Correspondence: JD Brioni, PhD, Project Leader, cGMP levels by inhibiting PDE5, the enzyme that Neuroscience Research, Global Pharmaceutical Research & degrades cGMP. NO and NO-donors are well-known Development, Abbott Laboratories, Abbott Park, IL 60064, sGC activators and the examples of drugs that work USA. E-mail: [email protected] as NO-donors include nitroglycerine, minoxidil, Received 27 June 2001; revised 10 September 2001; sodium nitroprusside, and S-nitrosylated deriva- accepted 6 October 2001 tives of other drugs. So far, among the various sGC Activators of soluble guanylate cyclase JD Brioni et al 9 catalyze the conversion of GTP to cGMP. They are expressed in particulate and soluble forms, and while they share similar structural characteristics, they differ in their mechanisms of physiological regulations. Most importantly, sGC contains a heme group and binds NO that activates the enzyme, while particulate GC is stimulated by natriuretic peptides. sGC has been purified to apparent homogeneity and it exists as a heterodimer (Figure 2). The larger molecular weight subunit is designated a (82 kDa) and the smaller subunit, b (70 kDa). The first sGC Figure 1 Chemical structure of YC-1, Isoliquiritigenin and ODQ. 2 YC-1 and Isoliquiritigenin are activators of soluble guanylate cDNA isolated was for the b subunit from the rat. cyclase. However, no enzyme activity was observed when the b subunit cDNA was transfected into L cells, an established cell line derived from mouse connective tissue.3 A novel sGC subunit was isolated from rat kidney using the catalytic domain sequence of sGC by PCR 4 and subsequently designated the b2 subunit. This subunit is preferentially expressed in rat kidney and liver. Recently, co-expression of the rat b2 subunit revealed that a1b2 heterodimers are inactive and that 5 this subunit may be an inhibitor of the a1b1 subunit. Harteneck et al isolated a cDNA coding for a second novel subunit of sGC from human fetal brain and 6 designated as a2 subunit. Co-expression of the a2 Figure 2 Schematic representation of soluble guanylate cyclase subunit with the b1 subunit showed active sGC showing the catalytic site and the two allosteric sites. One activity indistinguishable from a1b1 heterodimer, allosteric site is defined by the NO binding site (the heme) and the demonstrating the interchangeability of the subunit second allosteric site is represented by the binding of YC-1. sGC isoforms. exists as a heterodimer of a (82 kDa) and b (70 kDa) subunits. Giuili et al have also isolated cDNAs correspond- ing to both a and b subunits of sGC from human activators, only NO-donors have been considered as 7 brain, and designated them a3 and b3. However, drug candidates for MED. Zabel et al re-sequenced these cDNA and found that A novel type of sGC activators is represented by 8 they were in fact authentic human a1 and b1. To YC-1 (Figure 1). This agent is not an NO-donor, but date, only a1, a2, b1 and b2 have been cloned and causes activation of sGC especially in the presence sequenced. of NO. The binding site for NO was the only Although two isoforms for each subunit have site reported to modulate sGC activity (Figure 2). been cloned, a1 and b1 are the main isoforms However, the finding that YC-1 activates sGC expressed in most of the mammalian tissues includ- by binding to an allosteric site on the enzyme ing brain, lung and liver.3 Behrends et al character- opened the possibility to discover a new class of ized the sGC in human corpus cavernosum by compounds with a different pharmacological profile revserse transcription-polymerase chain reaction in comparison to the NO-donors. (RT-PCR), and found that a1 and b1 are also the In this review we summarize the biochemical and main isoforms expressed in human corpus caverno- pharmacological data that indicate that activation of sum.9 Studies conducted in our laboratory also sGC via an allosteric site in the enzyme can lead to confirmed the expression of a1 and b1 subunits as facilitation of penile responses in animals. The the main isoforms in human corpus cavernosum.10 regulation of sGC activity by this type of sGC activators may represent a novel approach to regulate penile erection. Enzymology of soluble guanylate cyclase Cloning and expression of soluble guanylate sGC is a heterodimeric protein consisting of a and 11 cyclase subunits b subunits. The a and b subunits contain a C- terminal homologous domain to adenylate cyclase that constitutes the catalytic center.12 The N-term- The guanylate cyclases [GTP pyrophosphatase-lyase inal domains of both subunits are essential for the (cyclizing); EC 4.6.1.2] are a family of enzymes that stimulation of the enzyme by NO, although heme International Journal of Impotence Research Activators of soluble guanylate cyclase JD Brioni et al 10 binding occurs in the b subunit. sGC contains one submaximally activating NO. In the presence of YC- mole prosthetic heme per heterodimer attached to 1, the NO concentration – response curve is shifted histidine 105 of the b subunit, which is required for to the left, indicating that YC-1 sensitized sGC the activation of the enzyme by NO.13 towards NO. Several agents that modulate the activity of sGC have been identified (Figure 1). ODQ, a quinoxaline derivative, is a potent inhibitor of sGC in brain slices Biochemistry of the NO-cGMP system: (IC50 ¼ 20 nM), providing an important tool to allosteric sites in sGC identify cGMP-dependent signaling. ODQ binds to sGC in an NO-competitive manner and inhibits NO- stimulated activity, leaving basal activity un- The structure of sGC yields clues as to its mechan- changed. However, the inhibitory effect of ODQ is ism of action. The two subunits described above due to oxidation of the heme ion, indicating that share extensive homology in the C-terminal region ODQ may affect various heme-containing enzyme to the active site of adenylate cyclase.12 Membrane activities.14 The ODQ analog, NS 2028, was de- bound adenylate cyclase is activated by either the scribed as another potent inhibitor of sGC binding of specific G-proteins or by the terpenoid 15 16 17 (IC50 ¼ 30 nM).
Recommended publications
  • Identi®Cation and Role of Adenylyl Cyclase in Auxin Signalling in Higher
    letters to nature + + + P.P. thank the Academy of Finland and the Deutsche Forschungsgemeinschaft, respectively, for ®nancial CO , 53), 77 (C6H5 , 60), 73 (TMSi , 84); 6-methyl-4-hydroxy-2-pyrone: RRt 0.35, 198 (M+, 18), 183 ([M-Me]+, 16), 170 ([M-CO]+, 54), 155 ([M-CO-Me]+, support. + + Correspondence and requests for materials should be addressed to J.S. (e-mail: [email protected] 15), 139 ([M-Me-CO2] , 10), 127 ([M-Me-2CO] , 13), 99 (12), 84 (13), 73 + + freiburg.de). (TMSi , 100), 43 (CH3CO , 55). The numbers show m/z values, and the key fragments and their relative intensities are indicated in parentheses. Received 4 August; accepted 14 October 1998. erratum 1. Helariutta, Y. et al. Chalcone synthase-like genes active during corolla development are differentially expressed and encode enzymes with different catalytic properties in Gerbera hybrida (Asteraceae). Plant Mol. Biol. 28, 47±60 (1995). 2. Helariutta, Y. et al. Duplication and functional divergence in the chalcone synthase gene family of 8 Asteraceae: evolution with substrate change and catalytic simpli®cation. Proc. Natl Acad. Sci. USA 93, Crystal structure of the complex 9033±9038 (1996). 3. Thaisrivongs, S. et al. Structure-based design of HIV protease inhibitors: 5,6-dihydro-4-hydroxy-2- of the cyclin D-dependent pyrones as effective, nonpeptidic inhibitors. J. Med. Chem. 39, 4630±4642 (1996). 4. Hagen, S. E. et al. Synthesis of 5,6-dihydro-4-hydroxy-2-pyrones as HIV-1 protease inhibitors: the kinase Cdk6 bound to the profound effect of polarity on antiviral activity. J. Med. Chem.
    [Show full text]
  • Use of Computational Biochemistry for Elucidating Molecular Mechanisms of Nitric Oxide Synthase
    Use of Computational Biochemistry for Elucidating Molecular Mechanisms of Nitric Oxide Synthase Bignon, Emmanuelle; Rizza, Salvatore; Filomeni, Giuseppe; Papaleo, Elena Published in: Computational and Structural Biotechnology Journal DOI: 10.1016/j.csbj.2019.03.011 Publication date: 2019 Document version Publisher's PDF, also known as Version of record Citation for published version (APA): Bignon, E., Rizza, S., Filomeni, G., & Papaleo, E. (2019). Use of Computational Biochemistry for Elucidating Molecular Mechanisms of Nitric Oxide Synthase. Computational and Structural Biotechnology Journal, 17, 415- 429. https://doi.org/10.1016/j.csbj.2019.03.011 Download date: 02. Oct. 2021 Computational and Structural Biotechnology Journal 17 (2019) 415–429 Contents lists available at ScienceDirect journal homepage: www.elsevier.com/locate/csbj Mini Review Use of Computational Biochemistry for Elucidating Molecular Mechanisms of Nitric Oxide Synthase Emmanuelle Bignon a,⁎, Salvatore Rizza b, Giuseppe Filomeni b,c, Elena Papaleo a,d,⁎⁎ a Computational Biology Laboratory, Danish Cancer Society Research Center, Strandboulevarden 49, 2100 Copenhagen, Denmark b Redox Signaling and Oxidative Stress Group, Cell Stress and Survival Unit, Danish Cancer Society Research Center, Strandboulevarden 49, 2100 Copenhagen, Denmark c Department of Biology, University of Rome Tor Vergata, Rome, Italy d Translational Disease Systems Biology, Faculty of Health and Medical Sciences, Novo Nordisk Foundation Center for Protein Research University of Copenhagen, Copenhagen, Denmark article info abstract Article history: Nitric oxide (NO) is an essential signaling molecule in the regulation of multiple cellular processes. It is endoge- Received 21 December 2018 nously synthesized by NO synthase (NOS) as the product of L-arginine oxidation to L-citrulline, requiring NADPH, Received in revised form 17 March 2019 molecular oxygen, and a pterin cofactor.
    [Show full text]
  • Soluble Guanylate Cyclase and Cgmp-Dependent Protein Kinase I Expression in the Human Corpus Cavernosum
    International Journal of Impotence Research (2000) 12, 157±164 ß 2000 Macmillan Publishers Ltd All rights reserved 0955-9930/00 $15.00 www.nature.com/ijir Soluble guanylate cyclase and cGMP-dependent protein kinase I expression in the human corpus cavernosum T Klotz1*, W Bloch2, J Zimmermann1, P Ruth3, U Engelmann1 and K Addicks2 1Department of Urology, University of Cologne; 2Institute I of Anatomy, University of Cologne; and 3Institute of Pharmacology, TU University of Munich, Germany Nitric oxide (NO) as a mediator in smooth muscle cells causes rapid and robust increases in cGMP levels. The cGMP-dependent protein kinase I has emerged as an important signal transduction mediator for smooth muscle relaxation. The purpose of this study was to examine the existence and distribution of two key enzymes of the NO=cGMP pathway, the cGMP-dependent kinase I (cGK I) and the soluble guanylate cyclase (sGC) in human cavernosal tissue. The expression of the enzymes were examined in corpus cavernosum specimens of 23 patients. Eleven potent patients suffered from penile deviations and were treated via Nesbit's surgical method. Nine long-term impotent patients underwent implantation of ¯exible hydraulic prothesis. Three potent patients underwent trans-sexual operations. Expression of the sGC and cGK I were examined immunohistochemically using speci®c antibodies. In all specimens of cavernosal tissue a distinct immunoreactivity was observed in different parts and structures. We found a high expression of sGC and cGK I in smooth muscle cells of vessels and in the ®bromuscular stroma. The endothelium of the cavernosal sinus, of the cavernosal arteries, and the cavernosal nerve ®bers showed an immunoreactivity against sGC.
    [Show full text]
  • Soluble Guanylate Cyclase B1-Subunit Expression Is Increased in Mononuclear Cells from Patients with Erectile Dysfunction
    International Journal of Impotence Research (2006) 18, 432–437 & 2006 Nature Publishing Group All rights reserved 0955-9930/06 $30.00 www.nature.com/ijir ORIGINAL ARTICLE Soluble guanylate cyclase b1-subunit expression is increased in mononuclear cells from patients with erectile dysfunction PJ Mateos-Ca´ceres1, J Garcia-Cardoso2, L Lapuente1, JJ Zamorano-Leo´n1, D Sacrista´n1, TP de Prada1, J Calahorra2, C Macaya1, R Vela-Navarrete2 and AJ Lo´pez-Farre´1 1Cardiovascular Research Unit, Cardiovascular Institute, Hospital Clı´nico San Carlos, Madrid, Spain and 2Urology Department, Fundacio´n Jime´nez Diaz, Madrid, Spain The aim was to determine in circulating mononuclear cells from patients with erectile dysfunction (ED), the level of expression of endothelial nitric oxide synthase (eNOS), soluble guanylate cyclase (sGC) b1-subunit and phosphodiesterase type-V (PDE-V). Peripheral mononuclear cells from nine patients with ED of vascular origin and nine patients with ED of neurological origin were obtained. Fourteen age-matched volunteers with normal erectile function were used as control. Reduction in eNOS protein was observed in the mononuclear cells from patients with ED of vascular origin but not in those from neurological origin. Although sGC b1-subunit expression was increased in mononuclear cells from patients with ED, the sGC activity was reduced. However, only the patients with ED of vascular origin showed an increased expression of PDE-V. This work shows for the first time that, independently of the aetiology of ED, the expression of sGC b1-subunit was increased in circulating mononuclear cells; however, the expression of both eNOS and PDE-V was only modified in the circulating mononuclear cells from patients with ED of vascular origin.
    [Show full text]
  • Effects of Tetrahydrobiopterin on Endothelial Dysfunction in Rats with Ischemic Acute Renal Failure
    J Am Soc Nephrol 11: 301–309, 2000 Effects of Tetrahydrobiopterin on Endothelial Dysfunction in Rats with Ischemic Acute Renal Failure MASAO KAKOKI,* YASUNOBU HIRATA,* HIROSHI HAYAKAWA,* ETSU SUZUKI,* DAISUKE NAGATA,* AKIHIRO TOJO,* HIROAKI NISHIMATSU,* NOBUO NAKANISHI,‡ YOSHIYUKI HATTORI,§ KAZUYA KIKUCHI,† TETSUO NAGANO,† and MASAO OMATA* *The Second Department of Internal Medicine, Faculty of Medicine, and †Faculty of Pharmaceutical Sciences, The University of Tokyo, Tokyo, Japan; ‡Department of Biochemistry, Meikai University School of Dentistry, Saitama, Japan; and §Department of Endocrinology, Dokkyo University School of Medicine, Tochigi, Japan. Abstract. The role of nitric oxide (NO) in ischemic renal injury 4 fmol/min per g kidney; serum creatinine: control 23 Ϯ 2, is still controversial. NO release was measured in rat kidneys ischemia 150 Ϯ 27, ischemia ϩ BH4 48 Ϯ 6 ␮M; mean Ϯ subjected to ischemia and reperfusion to determine whether SEM). Most of renal NOS activity was calcium-dependent, and (6R)-5,6,7,8-tetrahydro-L-biopterin (BH4), a cofactor of NO its activity decreased in the ischemic kidney. However, it was synthase (NOS), reduces ischemic injury. Twenty-four hours restored by BH4 (control 5.0 Ϯ 0.9, ischemia 2.2 Ϯ 0.4, after bilateral renal arterial clamp for 45 min, acetylcholine- ischemia ϩ BH4 4.3 Ϯ 1.2 pmol/min per mg protein). Immu- induced vasorelaxation and NO release were reduced and renal noblot after low-temperature sodium dodecyl sulfate-polyac- excretory function was impaired in Wistar rats. Administration rylamide gel electrophoresis revealed that the dimeric form of of BH4 (20 mg/kg, by mouth) before clamping resulted in a endothelial NOS decreased in the ischemic kidney and that it marked improvement of those parameters (10Ϫ8 M acetylcho- was restored by BH4.
    [Show full text]
  • Looking for New Classes of Bronchodilators
    REVIEW BRONCHODILATORS The future of bronchodilation: looking for new classes of bronchodilators Mario Cazzola1, Paola Rogliani 1 and Maria Gabriella Matera2 Affiliations: 1Dept of Experimental Medicine, University of Rome Tor Vergata, Rome, Italy. 2Dept of Experimental Medicine, University of Campania “Luigi Vanvitelli”, Naples, Italy. Correspondence: Mario Cazzola, Dept of Experimental Medicine, University of Rome Tor Vergata, Via Montpellier 1, Rome, 00133, Italy. E-mail: [email protected] @ERSpublications There is a real interest among researchers and the pharmaceutical industry in developing novel bronchodilators. There are several new opportunities; however, they are mostly in a preclinical phase. They could better optimise bronchodilation. http://bit.ly/2lW1q39 Cite this article as: Cazzola M, Rogliani P, Matera MG. The future of bronchodilation: looking for new classes of bronchodilators. Eur Respir Rev 2019; 28: 190095 [https://doi.org/10.1183/16000617.0095-2019]. ABSTRACT Available bronchodilators can satisfy many of the needs of patients suffering from airway disorders, but they often do not relieve symptoms and their long-term use raises safety concerns. Therefore, there is interest in developing new classes that could help to overcome the limits that characterise the existing classes. At least nine potential new classes of bronchodilators have been identified: 1) selective phosphodiesterase inhibitors; 2) bitter-taste receptor agonists; 3) E-prostanoid receptor 4 agonists; 4) Rho kinase inhibitors; 5) calcilytics; 6) agonists of peroxisome proliferator-activated receptor-γ; 7) agonists of relaxin receptor 1; 8) soluble guanylyl cyclase activators; and 9) pepducins. They are under consideration, but they are mostly in a preclinical phase and, consequently, we still do not know which classes will actually be developed for clinical use and whether it will be proven that a possible clinical benefit outweighs the impact of any adverse effect.
    [Show full text]
  • Structural Perspectives on the Mechanism of Soluble Guanylate Cyclase Activation
    International Journal of Molecular Sciences Review Structural Perspectives on the Mechanism of Soluble Guanylate Cyclase Activation Elizabeth C. Wittenborn and Michael A. Marletta * California Institute for Quantitative Biosciences, Departments of Chemistry and of Molecular and Cell Biology, University of California, Berkeley, CA 94720, USA; [email protected] * Correspondence: [email protected] Abstract: The enzyme soluble guanylate cyclase (sGC) is the prototypical nitric oxide (NO) receptor in humans and other higher eukaryotes and is responsible for transducing the initial NO signal to the secondary messenger cyclic guanosine monophosphate (cGMP). Generation of cGMP in turn leads to diverse physiological effects in the cardiopulmonary, vascular, and neurological systems. Given these important downstream effects, sGC has been biochemically characterized in great detail in the four decades since its discovery. Structures of full-length sGC, however, have proven elusive until very recently. In 2019, advances in single particle cryo–electron microscopy (cryo-EM) enabled visualization of full-length sGC for the first time. This review will summarize insights revealed by the structures of sGC in the unactivated and activated states and discuss their implications in the mechanism of sGC activation. Keywords: nitric oxide; soluble guanylate cyclase; cryo–electron microscopy; enzyme structure Citation: Wittenborn, E.C.; Marletta, 1. Introduction M.A. Structural Perspectives on the Soluble guanylate cyclase (sGC) is a nitric oxide (NO)-responsive enzyme that serves Mechanism of Soluble Guanylate as a source of the secondary messenger cyclic guanosine monophosphate (cGMP) in Cyclase Activation. Int. J. Mol. Sci. humans and other higher eukaryotes [1]. Upon NO binding to sGC, the rate of cGMP 2021, 22, 5439.
    [Show full text]
  • Nitric Oxide Activates Guanylate Cyclase and Increases Guanosine 3':5'
    Proc. Natl. Acad. Sci. USA Vol. 74, No. 8, pp. 3203-3207, August 1977 Biochemistry Nitric oxide activates guanylate cyclase and increases guanosine 3':5'-cyclic monophosphate levels in various tissue preparations (nitro compounds/adenosine 3':5'-cyclic monophosphate/sodium nitroprusside/sodium azide/nitrogen oxides) WILLIAM P. ARNOLD, CHANDRA K. MITTAL, SHOJI KATSUKI, AND FERID MURAD Division of Clinical Pharmacology, Departments of Medicine, Pharmacology, and Anesthesiology, University of Virginia, Charlottesville, Virginia 22903 Communicated by Alfred Gilman, May 16, 1977 ABSTRACT Nitric oxide gas (NO) increased guanylate cy- tigation of this activation. NO activated all crude and partially clase [GTP pyrophosphate-yase (cyclizing), EC 4.6.1.21 activity purified guanylate cyclase preparations examined. It also in- in soluble and particulate preparations from various tissues. The effect was dose-dependent and was observed with all tissue creased cyclic GMP but not adenosine 3':5'-cyclic monophos- preparations examined. The extent of activation was variable phate (cyclic AMP) levels in incubations of minces from various among different tissue preparations and was greatest (19- to rat tissues. 33-fold) with supernatant fractions of homogenates from liver, lung, tracheal smooth muscle, heart, kidney, cerebral cortex, and MATERIALS AND METHODS cerebellum. Smaller effects (5- to 14-fold) were observed with supernatant fractions from skeletal muscle, spleen, intestinal Male Sprague-Dawley rats weighing 150-250 g were decapi- muscle, adrenal, and epididymal fat. Activation was also ob- tated. Tissues were rapidly removed, placed in cold 0.-25 M served with partially purified preparations of guanylate cyclase. sucrose/10 mM Tris-HCl buffer (pH 7.6), and homogenized Activation of rat liver supernatant preparations was augmented in nine volumes of this solution by using a glass homogenizer slightly with reducing agents, decreased with some oxidizing and Teflon pestle at 2-4°.
    [Show full text]
  • A Nitric Oxide/Cysteine Interaction Mediates the Activation of Soluble Guanylate Cyclase
    A nitric oxide/cysteine interaction mediates the activation of soluble guanylate cyclase Nathaniel B. Fernhoffa,1, Emily R. Derbyshirea,1,2, and Michael A. Marlettaa,b,c,3 Departments of aMolecular and Cell Biology and bChemistry, University of California, Berkeley, CA 94720; and cCalifornia Institute for Quantitative Biosciences and Division of Physical Biosciences, Lawrence Berkeley National Laboratory, Berkeley, CA 94720 Contributed by Michael A. Marletta, October 1, 2009 (sent for review August 22, 2009) Nitric oxide (NO) regulates a number of essential physiological pro- high activity of the xsNO state rapidly reverts to the low activity of cesses by activating soluble guanylate cyclase (sGC) to produce the the 1-NO state. Thus, all three sGC states (basal, 1-NO, and xsNO) second messenger cGMP. The mechanism of NO sensing was previ- can be prepared and studied in vitro (7, 8). Importantly, these ously thought to result exclusively from NO binding to the sGC heme; results define two different states of purified sGC with heme bound however, recent studies indicate that heme-bound NO only partially NO (7, 8), one with a high activity and one with a low activity. activates sGC and additional NO is involved in the mechanism of Further evidence for a non-heme NO binding site was obtained maximal NO activation. Furthermore, thiol oxidation of sGC cysteines by blocking the heme site with the tight-binding ligand butyl results in the loss of enzyme activity. Herein the role of cysteines in isocyanide, and then showing that NO still activated the enzyme NO-stimulated sGC activity investigated. We find that the thiol mod- (14).
    [Show full text]
  • Biosignaling-2014.Pdf
    Biosignaling Principals of Biochemistry, Lehninger, Chap 12 CBIO7100 Su Dharmawardhane [email protected] Lecture Outline } Introduction: Importance of cell signaling to periodontal disease } Principals of signal transduction, adaptors } G protein coupled receptors, Chemokine receptors } Receptor tyrosine kinases } Inflammatory signaling: Toll like receptor signaling and the role of NfκB in periodontitis } Receptor guanylyl kinases } Hormone receptors INTRODUCTION } Why do I have to learn about signaling? I am going to be a dentist Signaling is central to teeth development and decay. Signaling is important in periodontal disease. Periodontal Disease (Gum Disease) } Periodontal disease is inflammation and infection that destroys the tissues that support the teeth, including the gums, the periodontal ligaments, and the tooth sockets (alveolar bone). } Gingivitis: inflammation of the gums due to bacteria. Signaling molecules produced by bacteria activate receptors on periodontal cells to ultimately destroy periodontal tissue. } Although periodontal disease is initiated by bacteria that colonize the tooth surface and ginigva, the host signaling response is essential for breakdown of bone and connective tissue: Osteoclastogenesis and bone resorption. } Periodontal infection requires expression of a number of signaling molecules: proinflammatory and antiinflammatory cytokines, growth factors, etc. Cell signaling in periodontal disease u de Souza, et al. 2012. Modulation of host cell signaling pathways as a therapeutic approach in periodontal disease. Appl. Oral Sci. 20:128-138. Pharmacological inhibitors of MAPK, NFκB and JAK/STAT pathways are being developed to manage periodontal disease. u Kirkwood, et al., Novel host response therapeutic approaches to treat periodontal diseases. Periodontol 2000. 2007 ; 43: 294–315. Periodontal disease initiation and progression occurs as a consequence of the host immune inflammatory response to oral pathogens.
    [Show full text]
  • Nitric Oxide Synthase Inhibitors As Antidepressants
    Pharmaceuticals 2010, 3, 273-299; doi:10.3390/ph3010273 OPEN ACCESS pharmaceuticals ISSN 1424-8247 www.mdpi.com/journal/pharmaceuticals Review Nitric Oxide Synthase Inhibitors as Antidepressants Gregers Wegener 1,* and Vallo Volke 2 1 Centre for Psychiatric Research, University of Aarhus, Skovagervej 2, DK-8240 Risskov, Denmark 2 Department of Physiology, University of Tartu, Ravila 19, EE-70111 Tartu, Estonia; E-Mail: [email protected] (V.V.) * Author to whom correspondence should be addressed; E-Mail: [email protected]; Tel.: +4577893524; Fax: +4577893549. Received: 10 November 2009; in revised form: 7 January 2010 / Accepted: 19 January 2010 / Published: 20 January 2010 Abstract: Affective and anxiety disorders are widely distributed disorders with severe social and economic effects. Evidence is emphatic that effective treatment helps to restore function and quality of life. Due to the action of most modern antidepressant drugs, serotonergic mechanisms have traditionally been suggested to play major roles in the pathophysiology of mood and stress-related disorders. However, a few clinical and several pre-clinical studies, strongly suggest involvement of the nitric oxide (NO) signaling pathway in these disorders. Moreover, several of the conventional neurotransmitters, including serotonin, glutamate and GABA, are intimately regulated by NO, and distinct classes of antidepressants have been found to modulate the hippocampal NO level in vivo. The NO system is therefore a potential target for antidepressant and anxiolytic drug action in acute therapy as well as in prophylaxis. This paper reviews the effect of drugs modulating NO synthesis in anxiety and depression. Keywords: nitric oxide; antidepressants; psychiatry; depression; anxiety 1. Introduction Recent data from Denmark and Europe [1,2], indicate that brain disorders account for 12% of all direct costs in the Danish health system and 9% of the total drug consumption was used for treatment of brain diseases.
    [Show full text]
  • Nitric Oxide Synthase Inhibitors
    Chapter 12 Nitric Oxide Synthase Inhibitors Elizabeth Igne Ferreira and Ricardo Augusto Massarico Serafim Additional information is available at the end of the chapter http://dx.doi.org/10.5772/67027 Abstract Nitric oxide (NO) is an endogenic product from plants, bacteria, and animal cells that has many important effects in those organisms. It is produced by nitric oxide synthase (NOS), which is found in main three isoforms, namely endothelial NOS (eNOS), induc- ible NOS (iNOS), and neuronal NOS (nNOS). It has an important role in homeostasis in different physiological systems, such as micro- and macro-vascularization, inhibition of platelet aggregation, and neurotransmission regulation in the central nervous, gastroin- testinal, respiratory, and genitourinary systems. However, its overproduction has been associated with diseases such as arthritis, asthma, cerebral ischemia, Parkinson’s disease, neurodegeneration, and seizures. For this reason, and due to better understanding of the molecular mechanisms by which NO provokes those diseases, the interest on the design of NOS inhibitors with therapeutic purposes has highly increased. Based on the forego - ing considerations, the proposal of this chapter is to show an overview about the design strategies, mechanism of action at the molecular level, and the main advances toward the search for selective NOS inhibitors available in the literature. Keywords: nitric oxide synthase isoforms, structure-based drug design, enzymatic inhibition, selectivity, heterocyclic compounds 1. Introduction Nitric oxide (NO) is a diatomic neutral molecule, produced by bacteria, plants, and animals. Having one unpaired electron, its effect in biological system is related to the stabilization of this electron. It acts as dissolved nonelectrolyte in the organisms, except for the lungs, where it is found in gaseous state [1–3].
    [Show full text]