Carcinus Maenas Class: Malacostraca Order: Decapoda Family: Portunidae Genus :Carcinus Distribution This Crab Is Native to Eu

Total Page:16

File Type:pdf, Size:1020Kb

Carcinus Maenas Class: Malacostraca Order: Decapoda Family: Portunidae Genus :Carcinus Distribution This Crab Is Native to Eu This crab is easily seen in Carcinus maenas local waters. Class: Malacostraca Order: Decapoda Family: Portunidae Genus :Carcinus Distribution This crab is native to The Green Crab is now dispersed globally. It has colonized European and North both the Atlantic and Pacific coasts of North America as well as African coasts as far as the the Atlantic coast of South America. It occurs in Australia, Baltic Sea in the east, and Hawaii, Sri Lanka and South Africa. Iceland and Central It was introduced to the Atlantic coast of North America by the Norway in the north, and is year 1817 and its range now extends from Nova Scotia to one of the most common Virginia. The first occurrence of the species on the Pacific coast crabs throughout much of of the U.S. was in 1989 in California and it has expanded its its range. However it is now range to the south, so also to the north into Canada. This an invasive species in many expansion is likely to continue in all coastal directions, it is a very other parts of the world. invasive species. They are quite abundant in Nova Scotia. Habitat It is predominantly a shore C. maenas can live in all types of marine and estuarine habitats, and shallow water species. including those with mud, sand, or rock substrates, submerged It is found on all types of aquatic vegetation, and emergent marsh, although soft bottoms shorelines, from high water are preferred. level to depths of 60 m. Food Prey items include clams, oysters, mussels, snails, worms, They are predatory feeders barnacles, crabs and other small crustaceans. Young crabs feed on a wide variety of on small molluscs and barnacles. At the larval stage they feed organisms. on plankton. Female with eggs Reproduction Mating begins with the After the female moults, copulation occurs. male finding a female who When ready to lay her fertilized eggs she creates has recently or is about to a cavity in the sand and deposits them. She then moult. He may carry her attaches them to her walking legs and carries s around for a few days them around as they develop further. underneath his body. Development Once at the megalopa stage, they settle out Eggs hatch into free- of the water column to search for a suitable swimming larvae. These area where they can moult into juvenile crabs. develop offshore in several Young crabs travel to the coastal waters stages, from the first (zoeal) where they begin a moulting cycle and life as stage through to the final juvenile crabs. They moult many times growing larval (megalopa) stage. larger as they do. In approximately three years This is their final moult the juvenile crab will become a fully developed before becoming juvenile crab and be able to mate and reproduce. crabs in the intertidal zone. Zoea Freshly moulted Carcinus maenas tend to be bright or dark green on top, as their common name implies, Characteristics and yellowish on their underside; but over the moult Despite their common cycle their colour changes. The top surface of the shell name these crabs are a is often irregularly blotched with dark areas. variety of colours including Being wider than it is long it is roughly fan-shaped. yellow, orange, and green. The front of the carapace looks serrated with five They grow to a carapace small spines, or teeth located on the front edge of (shell) width of about 8cm the shell behind each eye and three rounded lobes and length of 6 cm. Size between the eyes. Meegalopa varies geographically. The wide salinity range allows these crabs to survive in the lower salinities found in Adaptations estuaries. The first pair of legs (pereopods) C. maenas is euryhaline, have well developed pincers (chelae). They meaning it can tolerate a can extend these claws behind their backs to wide range of salinities defend against predators. Females can produce up to (from 4 to 52 ‰), and 185,000 eggs at a time. They are very prolific. survive in temperatures of 0 This allows a very wide dispersal of larvae. to 30 °C. The full impact of the green crab in Canada has yet to be determined. They can affect Status/Threats shellfish aquaculture and fishing industries - eel fisheries in They are under no threat particular. In some areas, Fisheries and Oceans Canada (DFO) whatsoever. In many areas distributes nuisance permits to fisherman. Fishermen who have of the world they are these permits can destroy any green crabs they catch in an effort considered a nuisance to reduce the population size. Natural predators include birds, species to fisheries. fish, and other large marine invertebrates. These are easily seen on shorelines throughout Nova Scotia in Sightings in Nova Scotia the intertidal zones in shallow water. .
Recommended publications
  • National Monitoring Program for Biodiversity and Non-Indigenous Species in Egypt
    UNITED NATIONS ENVIRONMENT PROGRAM MEDITERRANEAN ACTION PLAN REGIONAL ACTIVITY CENTRE FOR SPECIALLY PROTECTED AREAS National monitoring program for biodiversity and non-indigenous species in Egypt PROF. MOUSTAFA M. FOUDA April 2017 1 Study required and financed by: Regional Activity Centre for Specially Protected Areas Boulevard du Leader Yasser Arafat BP 337 1080 Tunis Cedex – Tunisie Responsible of the study: Mehdi Aissi, EcApMEDII Programme officer In charge of the study: Prof. Moustafa M. Fouda Mr. Mohamed Said Abdelwarith Mr. Mahmoud Fawzy Kamel Ministry of Environment, Egyptian Environmental Affairs Agency (EEAA) With the participation of: Name, qualification and original institution of all the participants in the study (field mission or participation of national institutions) 2 TABLE OF CONTENTS page Acknowledgements 4 Preamble 5 Chapter 1: Introduction 9 Chapter 2: Institutional and regulatory aspects 40 Chapter 3: Scientific Aspects 49 Chapter 4: Development of monitoring program 59 Chapter 5: Existing Monitoring Program in Egypt 91 1. Monitoring program for habitat mapping 103 2. Marine MAMMALS monitoring program 109 3. Marine Turtles Monitoring Program 115 4. Monitoring Program for Seabirds 118 5. Non-Indigenous Species Monitoring Program 123 Chapter 6: Implementation / Operational Plan 131 Selected References 133 Annexes 143 3 AKNOWLEGEMENTS We would like to thank RAC/ SPA and EU for providing financial and technical assistances to prepare this monitoring programme. The preparation of this programme was the result of several contacts and interviews with many stakeholders from Government, research institutions, NGOs and fishermen. The author would like to express thanks to all for their support. In addition; we would like to acknowledge all participants who attended the workshop and represented the following institutions: 1.
    [Show full text]
  • Lobsters-Identification, World Distribution, and U.S. Trade
    Lobsters-Identification, World Distribution, and U.S. Trade AUSTIN B. WILLIAMS Introduction tons to pounds to conform with US. tinents and islands, shoal platforms, and fishery statistics). This total includes certain seamounts (Fig. 1 and 2). More­ Lobsters are valued throughout the clawed lobsters, spiny and flat lobsters, over, the world distribution of these world as prime seafood items wherever and squat lobsters or langostinos (Tables animals can also be divided rougWy into they are caught, sold, or consumed. 1 and 2). temperate, subtropical, and tropical Basically, three kinds are marketed for Fisheries for these animals are de­ temperature zones. From such partition­ food, the clawed lobsters (superfamily cidedly concentrated in certain areas of ing, the following facts regarding lob­ Nephropoidea), the squat lobsters the world because of species distribu­ ster fisheries emerge. (family Galatheidae), and the spiny or tion, and this can be recognized by Clawed lobster fisheries (superfamily nonclawed lobsters (superfamily noting regional and species catches. The Nephropoidea) are concentrated in the Palinuroidea) . Food and Agriculture Organization of temperate North Atlantic region, al­ The US. market in clawed lobsters is the United Nations (FAO) has divided though there is minor fishing for them dominated by whole living American the world into 27 major fishing areas for in cooler waters at the edge of the con­ lobsters, Homarus americanus, caught the purpose of reporting fishery statis­ tinental platform in the Gul f of Mexico, off the northeastern United States and tics. Nineteen of these are marine fish­ Caribbean Sea (Roe, 1966), western southeastern Canada, but certain ing areas, but lobster distribution is South Atlantic along the coast of Brazil, smaller species of clawed lobsters from restricted to only 14 of them, i.e.
    [Show full text]
  • Factors Affecting Growth of the Spiny Lobsters Panulirus Gracilis and Panulirus Inflatus (Decapoda: Palinuridae) in Guerrero, México
    Rev. Biol. Trop. 51(1): 165-174, 2003 www.ucr.ac.cr www.ots.ac.cr www.ots.duke.edu Factors affecting growth of the spiny lobsters Panulirus gracilis and Panulirus inflatus (Decapoda: Palinuridae) in Guerrero, México Patricia Briones-Fourzán and Enrique Lozano-Álvarez Universidad Nacional Autónoma de México, Instituto de Ciencias del Mar y Limnología, Unidad Académica Puerto Morelos. P. O. Box 1152, Cancún, Q. R. 77500 México. Fax: +52 (998) 871-0138; [email protected] Received 00-XX-2002. Corrected 00-XX-2002. Accepted 00-XX-2002. Abstract: The effects of sex, injuries, season and site on the growth of the spiny lobsters Panulirus gracilis, and P. inflatus, were studied through mark-recapture techniques in two sites with different ecological characteristics on the coast of Guerrero, México. Panulirus gracilis occurred in both sites, whereas P. inflatus occurred only in one site. All recaptured individuals were adults. Both species had similar intermolt periods, but P. gracilis had significantly higher growth rates (mm carapace length week-1) than P. inflatus as a result of a larger molt incre- ment. Growth rates of males were higher than those of females in both species owing to larger molt increments and shorter intermolt periods in males. Injuries had no effect on growth rates in either species. Individuals of P. gracilis grew faster in site 1 than in site 2. Therefore, the effect of season on growth of P. gracilis was analyzed separately in each site. In site 2, growth rates of P. gracilis were similar in summer and in winter, whereas in site 1 both species had higher growth rates in winter than in summer.
    [Show full text]
  • The Portunid Crabs (Crustacea : Portunidae) Collected by the NAGA Expedition
    UC San Diego Naga Report Title The Portunid Crabs (Crustacea : Portunidae) Collected by the NAGA Expedition Permalink https://escholarship.org/uc/item/5v7289k7 Author Stephenson, W Publication Date 1967 eScholarship.org Powered by the California Digital Library University of California NAGA REPORT Volume 4, Part 1 Scientific Results of Marine Investigations of the South China Sea and the Gulf of Thailand 1959-1961 Sponsored by South Viet Natll, Thailand and the United States of Atnerica The University of California Scripps Institution of Oceanography La Jolla, California 1967 EDITORS: EDWARD BRINTON, MILNER B. SCHAEFER, WARREN S. WOOSTER ASSISTANT EDITOR: VIRGINIA A. WYLLIE Editorial Advisors: Jorgen Knu·dsen (Denmark) James L. Faughn (USA) Le van Thoi (Viet Nam) Boon Indrambarya (Thailand) Raoul Serene (UNESCO) Printing of this volume was made possible through the support of the National Science Foundation. The NAGA Expedition was supported by the International Cooperation Administration Contract ICAc-1085. ARTS & CRAFTS PRESS, SAN DIEGO, CALIFORNIA CONTENTS The portunid crabs (Crustacea : Portunidae) collected by theNAGA Expedition by W. Stephenson ------ 4 Gammaridean Amphipoda from the South China Sea by Marilyn Clark Inlbach ---------------- 39 3 THE PORTUNID CRABS (CRUSTACEA: PORTUNIDAE) COLLECTED BY THE NAGA EXPEDITION by w. STEPHENSON* * Senior Foreign Science Fellow of the National Science Foundation, Hancock Foundation, Univer­ sity of Southern California, and Professor of Zoology, University of Queensland, Brisbane, Australia. THE PORTUNID CRABS ( CRUSTACEA : PORTUNIDAE) CONTENTS Systematics ­ - - - - - 7 Literature - ----- 23 Plates 29 Appendix ------ 36 5 INTRODUCTION Although the collections of NAGA Expedition are small and contain many well-known and widely distributed species of the Indo-West Pacific area, they also contain several little-known forms (e.g.
    [Show full text]
  • Decapod Crustacean Grooming: Functional Morphology, Adaptive Value, and Phylogenetic Significance
    Decapod crustacean grooming: Functional morphology, adaptive value, and phylogenetic significance N RAYMOND T.BAUER Center for Crustacean Research, University of Southwestern Louisiana, USA ABSTRACT Grooming behavior is well developed in many decapod crustaceans. Antennular grooming by the third maxillipedes is found throughout the Decapoda. Gill cleaning mechanisms are qaite variable: chelipede brushes, setiferous epipods, epipod-setobranch systems. However, microstructure of gill cleaning setae, which are equipped with digitate scale setules, is quite conservative. General body grooming, performed by serrate setal brushes on chelipedes and/or posterior pereiopods, is best developed in decapods at a natant grade of body morphology. Brachyuran crabs exhibit less body grooming and virtually no specialized body grooming structures. It is hypothesized that the fouling pressures for body grooming are more severe in natant than in replant decapods. Epizoic fouling, particularly microbial fouling, and sediment fouling have been shown r I m ans of amputation experiments to produce severe effects on olfactory hairs, gills, and i.icubated embryos within short lime periods. Grooming has been strongly suggested as an important factor in the coevolution of a rhizocephalan parasite and its anomuran host. The behavioral organization of grooming is poorly studied; the nature of stimuli promoting grooming is not understood. Grooming characters may contribute to an understanding of certain aspects of decapod phylogeny. The occurrence of specialized antennal grooming brushes in the Stenopodidea, Caridea, and Dendrobranchiata is probably not due to convergence; alternative hypotheses are proposed to explain the distribution of this grooming character. Gill cleaning and general body grooming characters support a thalassinidean origin of the Anomura; the hypothesis of brachyuran monophyly is supported by the conservative and unique gill-cleaning method of the group.
    [Show full text]
  • (Campanian) of the Moyenne Moulouya, Northeast Morocco
    Revista Mexicana de CienciasNew Geológicas, crabs from v. 27,the núm.Upper 2, Cretaceous 2010, p. 213-224 of the Moyenne Moulouya, Morocco 213 New crabs (Crustacea, Decapoda) from the Upper Cretaceous (Campanian) of the Moyenne Moulouya, northeast Morocco Àlex Ossó-Morales1, Pedro Artal2, and Francisco J. Vega3,* 1 Josep Vicenç Foix, 12-H, 1er-1ª 43007 Tarragona, Catalonia, Spain, 2 Museo Geológico del Seminario de Barcelona, Diputación 231, E-08007 Barcelona, Spain. 3 Instituto de Geología, Universidad Nacional Autónoma de México, Ciudad Universitaria, Del. Coyoacán, 04510, México D. F., Mexico. * [email protected] ABSTRACT The presence of the genera Costacopluma and Ophthalmoplax in Upper Cretaceous (Campanian) Moroccan strata is documented on the basis of specimens collected from the Calcaires à slumps de Taghit Formation, Moyenne Moulouya (Morocco). Two new species are described, Ophthalmoplax minimus and Costacopluma maroccana. The first record for Opthalmoplax in the west Tethyan realm is reported, and systematic affinities of this genus and its species are discussed. An absolute age of the late Campanian was obtained for this assemblage from 87Sr/86Sr analysis applied to well preserved cuticle calcitic remains of Ophthalmoplax minimus. Costacopluma maroccana represents the 14th species for this genus and the fourth Cretaceous species. Its morphology reinforces hypothesis of two main phyletic groups for this genus. Key words: Crustacea, Decapoda, Ophthalmoplax, Costacopluma, Campanian, Morocco. RESUMEN Se documenta la presencia de los géneros Ophthalmoplax y Costacopluma con base en especímenes recolectados en sedimentos del Cretácico Superior (Campaniano) de la Moyenne Mouluya (Marruecos). Se describen dos nuevas especies: Ophthalmoplax minimus y Costacopluma maroccana. Se identifíca y localiza (por primera vez en la parte occidental del dominio del Tethys) el género Ophthalmoplax, discutiéndose las afinidades sistemáticas de este género y sus especies.
    [Show full text]
  • The Marbled Crayfish (Decapoda: Cambaridae) Represents an Independent New Species
    Zootaxa 4363 (4): 544–552 ISSN 1175-5326 (print edition) http://www.mapress.com/j/zt/ Article ZOOTAXA Copyright © 2017 Magnolia Press ISSN 1175-5334 (online edition) https://doi.org/10.11646/zootaxa.4363.4.6 http://zoobank.org/urn:lsid:zoobank.org:pub:179512DA-1943-4F8E-931B-4D14D2EF91D2 The marbled crayfish (Decapoda: Cambaridae) represents an independent new species FRANK LYKO 1Division of Epigenetics, DKFZ-ZMBH Alliance, German Cancer Research Center, 69120 Heidelberg, Germany Correspondence: Deutsches Krebsforschungszentrum Im Neuenheimer Feld 580 69120 Heidelberg, Germany phone: +49-6221-423800 fax: +49-6221-423802 E-mail: [email protected] Abstract Marbled crayfish are a globally expanding population of parthenogenetically reproducing freshwater decapods. They are closely related to the sexually reproducing slough crayfish, Procambarus fallax, which is native to the southeastern United States. Previous studies have shown that marbled crayfish are morphologically very similar to P. fallax. However, different fitness traits, reproductive incompatibility and substantial genetic differences suggest that the marbled crayfish should be considered an independent species. This article provides its formal description and scientific name, Procambarus virgin- alis sp. nov. Key words: parthenogenesis, annulus ventralis, genetic analysis, mitochondrial DNA Introduction Marbled crayfish were first described in 2001 as the only known obligatory parthenogen among the approximately 15,000 decapod crustaceans (Scholtz et al., 2003). The animals were first described in the German aquarium trade in the late 1990s (Scholtz et al., 2003) and became widely distributed in subsequent years under their German name "Marmorkrebs". Stable populations have developed from anthropogenic releases in various countries including Madagascar, Germany, Czech Republic, Hungary, Croatia and Ukraine (Chucholl et al., 2012; Jones et al., 2009; Kawai et al., 2009; Liptak et al., 2016; Lokkos et al., 2016; Novitsky & Son, 2016; Patoka et al., 2016).
    [Show full text]
  • Stomatopod Interrelationships: Preliminary Results Based on Analysis of Three Molecular Loci
    Arthropod Systematics & Phylogeny 91 67 (1) 91 – 98 © Museum für Tierkunde Dresden, eISSN 1864-8312, 17.6.2009 Stomatopod Interrelationships: Preliminary Results Based on Analysis of three Molecular Loci SHANE T. AHYONG 1 & SIMON N. JARMAN 2 1 Marine Biodiversity and Biodescurity, National Institute of Water and Atmospheric Research, Private Bag 14901, Kilbirnie, Wellington, New Zealand [[email protected]] 2 Australian Antarctic Division, 203 Channel Highway, Kingston, Tasmania 7050, Australia [[email protected]] Received 16.iii.2009, accepted 15.iv.2009. Published online at www.arthropod-systematics.de on 17.vi.2009. > Abstract The mantis shrimps (Stomatopoda) are quintessential marine predators. The combination of powerful raptorial appendages and remarkably developed sensory systems place the stomatopods among the most effi cient invertebrate predators. High level phylogenetic analyses have been so far based on morphology. Crown-group Unipeltata appear to have diverged in two broad directions from the outset – one towards highly effi cient ‘spearing’ with multispinous dactyli on the raptorial claws (dominated by Lysiosquilloidea and Squilloidea), and the other towards ‘smashing’ (Gonodactyloidea). In a preliminary molecular study of stomatopod interrelationships, we assemble molecular data for mitochondrial 12S and 16S regions, combined with new sequences from the 16S and two regions of the nuclear 28S rDNA to compare with morphological hypotheses. Nineteen species representing 9 of 17 extant families and 3 of 7 superfamilies were analysed. The molecular data refl ect the overall patterns derived from morphology, especially in a monophyletic Squilloidea, a monophyletic Lysiosquilloidea and a monophyletic clade of gonodactyloid smashers. Molecular analyses, however, suggest the novel possibility that Hemisquillidae and possibly Pseudosquillidae, rather than being basal or near basal in Gonodactyloidea, may be basal overall to the extant stomatopods.
    [Show full text]
  • Feeding Habits of an Exotic Species, the Mediterranean Green Crab Carcinus Aestuarii, in Tokyo Bay
    Feeding habits of Car cinus aestuarii RB Chen et al. 10.1046/j.1444-2906.2004.00822.x Original Article430435BEES SGML FISHERIES SCIENCE 2004; 70: 430–435 Feeding habits of an exotic species, the Mediterranean green crab Carcinus aestuarii, in Tokyo Bay Rong Bin CHEN, Seiichi WATANABE* AND Masashi YOKOTA Department of Aquatic Biosciences, Tokyo University of Marine Science and Technology, Minato, Tokyo 108-8477, Japan ABSTRACT: Feeding habits of an exotic species, the Mediterranean green crab Carcinus aestuarii, in Tokyo Bay, Japan, were studied based on the analysis of stomach contents. Monthly samples were taken from May 2000 to October 2001 at stations near the Keihin Canal along the northern shore of Tokyo Bay. Stomach contents of 367 crabs (male n = 200, female n = 167) were examined. Carapace width ranged from 18.50 mm to 60.67 mm. Eleven food categories were identified: Bivalvia (mostly Mytilus galloprovincialis), other Mollusca, Cirripedia, Amphipoda, Brachyura, other Crustacea, Poly- chaeta, Pisces, unidentified animal materials, plant materials, and unidentified materials. The results showed that C. aestuarii is an omnivorous predator and that its diet depends greatly upon the availability of local prey species, especially in intertidal areas. Moreover, the analysis found no significant differences in the feeding habits of crabs of different sizes or sexes. KEY WORDS: Carcinus aestuarii, exotic species, feeding habits, stomach contents, Tokyo Bay. INTRODUCTION that they were scavengers and predators. The bulk of their prey consisted of slow-moving and sessile Many exotic species have established natural invertebrates, with algae comprising only a small populations in Japan in recent years.
    [Show full text]
  • Responses of Aquatic Non-Native Species to Novel Predator Cues and Increased Mortality
    Portland State University PDXScholar Dissertations and Theses Dissertations and Theses Spring 5-17-2017 Responses of Aquatic Non-Native Species to Novel Predator Cues and Increased Mortality Brian Christopher Turner Portland State University Follow this and additional works at: https://pdxscholar.library.pdx.edu/open_access_etds Part of the Terrestrial and Aquatic Ecology Commons Let us know how access to this document benefits ou.y Recommended Citation Turner, Brian Christopher, "Responses of Aquatic Non-Native Species to Novel Predator Cues and Increased Mortality" (2017). Dissertations and Theses. Paper 3620. https://doi.org/10.15760/etd.5512 This Dissertation is brought to you for free and open access. It has been accepted for inclusion in Dissertations and Theses by an authorized administrator of PDXScholar. Please contact us if we can make this document more accessible: [email protected]. Responses of Aquatic Non-Native Species to Novel Predator Cues and Increased Mortality by Brian Christopher Turner A dissertation submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy in Environmental Sciences and Resources Dissertation Committee: Catherine E. de Rivera, Chair Edwin D. Grosholz Michael T. Murphy Greg M. Ruiz Ian R. Waite Portland State University 2017 Abstract Lethal biotic interactions strongly influence the potential for aquatic non-native species to establish and endure in habitats to which they are introduced. Predators in the recipient area, including native and previously established non-native predators, can prevent establishment, limit habitat use, and reduce abundance of non-native species. Management efforts by humans using methods designed to cause mass mortality (e.g., trapping, biocide applications) can reduce or eradicate non-native populations.
    [Show full text]
  • Local Distribution and Abundance of Swimming Crabs (Callinectes Spp
    11 Abstract–Distribution, abundance, and Local distribution and abundance of several population features were stud­ ied in Ensenada de La Vela (Vene­ swimming crabs (Callinectes spp. and zuela) between 1993 and 1998 as a first step in the assessment of local Arenaeus cribrarius) on a tropical arid beach fisheries of swimming crabs. Arenaeus cribrarius was the most abundant spe­ Carlos A. Carmona-Suárez cies at the marine foreshore. Callinectes danae prevailed at the estuarine loca­ Jesús E. Conde tion. Callinectes bocourti was the most Centro de Ecología, Instituto Venezolano de Investigaciones Científicas abundant species at the offshore. Abun­ A.P. 21827 dances of A. cribrarius and C. danae Caracas 1020-A, Venezuela fluctuated widely and randomly. Oviger­ E-mail address (for C. A. Carmona-Suárez): [email protected]. ous females were almost absent. Adults of several species were smaller than pre­ viously reported. This study suggests that fisheries based on these swimming crabs probably will be restricted to an artisanal level because abundances appear too low to support industrial Swimming crabs of the family Portun- accounts of its abundance in the south­ exploitation. idae are common in coastal habitats ern Caribbean. in tropical, subtropical, and temperate Several studies of portunids have regions. Species of the genus Callinectes been conducted on Venezuelan coasts are widely distributed in the neotropics (Taissoun, 1969, 1973a, 1973b; Rodrí­ and subtropics (Norse, 1977; Williams, guez, 1980; Scelzo and Varela, 1988; 1984) where they are a key resource in Carmona-Suárez and Conde, 1996), in­ local fisheries (Ferrer-Montaño, 1997; cluding species that are commercially Fischer, 1978; Oesterling and Petrocci, important at an industrial level and 1995) and are important in trophic rela- as a mainstay for artisanal and subsis­ tions of fish and organisms of sandy tence fisheries in many coastal villag­ and sandy-mud bottoms (Arnold, 1984; es (Ferrer-Montaño, 1997; Conde and Lin, 1991), and in seagrass meadows Rodríguez, 1999).
    [Show full text]
  • Projeto Tamar
    Globally, adult olive ridley turtles use a wide variety Chelonian Conservation and Biology, 2014, 13(2): 000–000 g 2014 Chelonian Research Foundation of foraging areas including pelagic and benthic habitats (Plotkin 2010; Silva et al. 2011). Satellite tracking has Diet of Olive Ridley Sea Turtles, Lepidochelys shown behavioral plasticity among populations (Rees et al. 2012), and adults have been reported either as remaining in olivacea (Eschscholtz, 1829), in the Waters of oceanic conditions, diving at depths of up to 400 m Sergipe, Brazil (Swimmer et al. 2006), or using coastal and continental shelf areas (McMahon et al. 2007; Whiting et al. 2007). In 1, LILIANA POGGIO COLMAN *, the western Atlantic, they are believed to feed in shallow 2 3 CLA´UDIO LUIS S. SAMPAIO ,MARILDA INEˆ S WEBER , and productive areas near estuarine zones (Pritchard and 3 Trebbau 1984; Reichart 1993). The ridley’s diet has been AND JAQUELINE COMIN DE CASTILHOS investigated in Venezuela (Wildermann and Barrios- Garrido 2012) and in southern Brazil by two reported 1Fundac¸a˜oPro´-TAMAR, Cx. Postal 2219, 41950-970, Salvador, BA, Brazil. [[email protected]] and Centre for Ecology and juvenile specimens incidentally caught by pelagic longline Conservation, University of Exeter, Penryn, fisheries (Pinedo et al. 1998; Serafini et al. 2002). In the Cornwall TR10 9EZ, UK Pacific Ocean, detailed studies have been conducted in 2Department of Fisheries – Universidade Federal de Alagoas - Mexico (Montenegro Silva et al. 1986) and Papua New UFAL, 57200-000, Penedo, AL, Brazil [[email protected]] Guinea (Spring and Gwyther 1999). Observations have 3Fundac¸a˜oPro´-TAMAR, 49035-485, Aracaju, SE, Brazil.
    [Show full text]