University of Pennsylvania ScholarlyCommons Publicly Accessible Penn Dissertations 2018 Spectral Data For L^2 Cohomology Xiaofei Jin University of Pennsylvania,
[email protected] Follow this and additional works at: https://repository.upenn.edu/edissertations Part of the Mathematics Commons Recommended Citation Jin, Xiaofei, "Spectral Data For L^2 Cohomology" (2018). Publicly Accessible Penn Dissertations. 2815. https://repository.upenn.edu/edissertations/2815 This paper is posted at ScholarlyCommons. https://repository.upenn.edu/edissertations/2815 For more information, please contact
[email protected]. Spectral Data For L^2 Cohomology Abstract We study the spectral data for the higher direct images of a parabolic Higgs bundle along a map between a surface and a curve with both vertical and horizontal parabolic divisors. We describe the cohomology of a parabolic Higgs bundle on a curve in terms of its spectral data. We also calculate the integral kernel that reproduces the spectral data for the higher direct images of a parabolic Higgs bundle on the surface. This research is inspired by and extends the works of Simpson [21] and Donagi-Pantev-Simpson [7]. Degree Type Dissertation Degree Name Doctor of Philosophy (PhD) Graduate Group Mathematics First Advisor Tony Pantev Keywords Higgs bundle, Monodromy weight filtration, Nonabelian Hodge theory, Parabolic L^2 Dolbeault complex, Root stack, Spectral correspondence Subject Categories Mathematics This dissertation is available at ScholarlyCommons: https://repository.upenn.edu/edissertations/2815 SPECTRAL DATA FOR L2 COHOMOLOGY Xiaofei Jin A DISSERTATION in Mathematics Presented to the Faculties of the University of Pennsylvania in Partial Fulfillment of the Requirements for the Degree of Doctor of Philosophy 2018 Supervisor of Dissertation Tony Pantev, Class of 1939 Professor in Mathematics Graduate Group Chairperson Wolfgang Ziller, Francis J.