Introduction to Digital Photography

Total Page:16

File Type:pdf, Size:1020Kb

Introduction to Digital Photography Introduction to Digital Photography Digital camera – A camera that captures the photo not on film, but in an electronic imaging sensor that takes the place of film. Using a Digital Camera Technology rapidly growing as more people become both computer and web savvy. We will be using Canon PowerShot’s in multiple models. Liquid Crystal Display (LCD) Delay Between Shots The amount of time (measured in seconds) it takes the camera to process and store an image when shooting in normal mode, at the camera’s maximum resolution setting also known as recycle time or lag time. Try taking multiple shots one after another with your digital camera. How much lag time is there? Shooting-The Basics . Check that the camera is in Shooting mode. Turn the dial to AUTO . Aim the camera at the subject you wish to shoot . Use the zoom lever to achieve the desired composition . Press the shutter button halfway . Press the shutter button all the way Megapixels Probably the most significant feature when choosing a digital camera is the number of megapixels, which determines the quality of your photos. Higher the megapixels the better off you are. Nowadays cameras are up to 14 megapixels. How many megapixels does our camera have? Shooting Mode Dial .Image Zone .Portrait-subject sharp, background blurry .Landscape-landscape scenes .Night Scene-human subject against night sky .Fast Shutter-fast moving objects .Slow Shutter-moving objects blurred .Movie-sound and video Shooting Mode Dial (con’t) Special SCN Foliage-flowers, leaves, trees Snow-subjects against backdrop of snow Beach-scenes by the sea or on the beach Fireworks-fireworks shot clearly Underwater-use with waterproof case Indoor-indoor shots with fluorescent lighting Kids and Pets-subjects that move around Night Snapshot-subjects against night skies Macro Mode Normal mode Macro mode White Balance •WB corrects for different lighting conditions Resolution- refers to the number of pixels. A digital camera is made up of hundreds of thousands of tiny squares, called pixels. Unlike that of traditional film where the dots are known as grain. If supplying photos for a website then you would shoot at a low resolution. Why is resolution important? The higher the resolution, the better the picture. Resolution is expressed in pixels, and refers to the “true” resolution of the camera. Resolution Range: “S” 640 x 480 Pixels (monitors) = Minimum Computer Resolution. GREAT for websites “L” 4000 x 3000 Pixels = Extreme resolution. Capable of huge prints and cropped, photo-quality 8” x 10”s from a fraction of the original image file. Image Resolution/Quality Small resolution 640x480 •Fine compression •Increases memory capacity Medium resolution 1078x760 •Fine compression •Good quality for prints or Net Large resolution 2048x1576 •Fine compression •Best quality for prints Low Resolution Image High Resolution Image Rapid-Fire Shots Rapid-Fire is also known as Burst Mode or Continuous Shooting Mode. This feature allows you to take multiple rapid-fire shots with one touch of the exposure button. This can be very useful feature when shooting subjects in motion, such as during a sporting event. Flash Option on a digital camera Off/On/auto-This refers to the basic flash functions, where the flash is always off, always on for “fill-ins” (for example: bright sky behind a subject will fill-in dark shadows on the face), or set to fire automatically when needed. Red-Eye Reduction-This refers to a mode of flash that helps prevent the appearance of people with red eyes in the picture. Downloading images to the Computer . Use the supplied interface cable to connect the computer’s USB port to the camera’s DIGITAL terminal . Slide the camera’s mode switch to playback . Turn the power on . Either copy the images from the SD card to your computer or move them from one to the other Image Compression & File Formats JPEGs (.jpg)-– Most common digital camera image format used for images with continuous tone changes such as photos. (* This is the one we will be using) GIFs (.gif)- images with solid color such as text banners. Primary use are websites. Smallest file size. PDF (.pdf)-stands for Adobe Acrobat’s Portable Document Format, a system for creating documents that can be read cross-platform. CCD Raw (.raw) – An uncompressed image format that contains all of the data picked up by the image sensor. Now it’s your turn…try to accomplish the following Take a picture with date option “on” Take a picture with date option “off” Take a picture with the sepia option, also try black & white option Photograph 1 object in “normal mode” Then photograph the same object in “macro mode” Take 3 pictures, but change your pixel settings (small, medium (1, 2, or 3), large) A “Continuous Motion” or “Rapid Fire” option (set to 5) Put the grid option “on” so it shows up on your screen and take a picture. Now download off of camera and transfer into your H: Drive in a folder labeled Camera Activity and label images accordingly. .
Recommended publications
  • Xerox Confidentcolor Technology Putting Exacting Control in Your Hands
    Xerox FreeFlow® The future-thinking Print Server ConfidentColor Technology print server. Brochure It anticipates your needs. With the FreeFlow Print Server, you’re positioned to not only better meet your customers’ demands today, but to accommodate whatever applications you need to print tomorrow. Add promotional messages to transactional documents. Consolidate your data center and print shop. Expand your color-critical applications. Move files around the world. It’s an investment that allows you to evolve and grow. PDF/X support for graphic arts Color management for applications. transactional applications. With one button, the FreeFlow Print Server If you’re a transactional printer, this is the assures that a PDF/X file runs as intended. So print server for you. It supports color profiles when a customer embeds color-management in an IPDS data stream with AFP Color settings in a file using Adobe® publishing Management—so you can print color with applications, you can run that file with less time confidence. Images and other content can be in prepress and with consistent color. Files can incorporated from a variety of sources and reliably be sent to multiple locations and multiple appropriately rendered for accurate results. And printers with predictable results. when you’re ready to expand into TransPromo applications, it’s ready, too. Xerox ConfidentColor Technology Find out more Putting exacting control To learn more about the FreeFlow Print Server and ConfidentColor Technology, contact your Xerox sales representative or call 1-800-ASK-XEROX. Or visit us online at www.xerox.com/freeflow. in your hands. © 2009 Xerox Corporation. All rights reserved.
    [Show full text]
  • “Digital Single Lens Reflex”
    PHOTOGRAPHY GENERIC ELECTIVE SEM-II DSLR stands for “Digital Single Lens Reflex”. In simple language, a DSLR is a digital camera that uses a mirror mechanism to either reflect light from a camera lens to an optical viewfinder (which is an eyepiece on the back of the camera that one looks through to see what they are taking a picture of) or let light fully pass onto the image sensor (which captures the image) by moving the mirror out of the way. Although single lens reflex cameras have been available in various shapes and forms since the 19th century with film as the recording medium, the first commercial digital SLR with an image sensor appeared in 1991. Compared to point-and-shoot and phone cameras, DSLR cameras typically use interchangeable lenses. Take a look at the following image of an SLR cross section (image courtesy of Wikipedia): When you look through a DSLR viewfinder / eyepiece on the back of the camera, whatever you see is passed through the lens attached to the camera, which means that you could be looking at exactly what you are going to capture. Light from the scene you are attempting to capture passes through the lens into a reflex mirror (#2) that sits at a 45 degree angle inside the camera chamber, which then forwards the light vertically to an optical element called a “pentaprism” (#7). The pentaprism then converts the vertical light to horizontal by redirecting the light through two separate mirrors, right into the viewfinder (#8). When you take a picture, the reflex mirror (#2) swings upwards, blocking the vertical pathway and letting the light directly through.
    [Show full text]
  • Completing a Photography Exhibit Data Tag
    Completing a Photography Exhibit Data Tag Current Data Tags are available at: https://unl.box.com/s/1ttnemphrd4szykl5t9xm1ofiezi86js Camera Make & Model: Indicate the brand and model of the camera, such as Google Pixel 2, Nikon Coolpix B500, or Canon EOS Rebel T7. Focus Type: • Fixed Focus means the photographer is not able to adjust the focal point. These cameras tend to have a large depth of field. This might include basic disposable cameras. • Auto Focus means the camera automatically adjusts the optics in the lens to bring the subject into focus. The camera typically selects what to focus on. However, the photographer may also be able to select the focal point using a touch screen for example, but the camera will automatically adjust the lens. This might include digital cameras and mobile device cameras, such as phones and tablets. • Manual Focus allows the photographer to manually adjust and control the lens’ focus by hand, usually by turning the focus ring. Camera Type: Indicate whether the camera is digital or film. (The following Questions are for Unit 2 and 3 exhibitors only.) Did you manually adjust the aperture, shutter speed, or ISO? Indicate whether you adjusted these settings to capture the photo. Note: Regardless of whether or not you adjusted these settings manually, you must still identify the images specific F Stop, Shutter Sped, ISO, and Focal Length settings. “Auto” is not an acceptable answer. Digital cameras automatically record this information for each photo captured. This information, referred to as Metadata, is attached to the image file and goes with it when the image is downloaded to a computer for example.
    [Show full text]
  • Session Outline: History of the Daguerreotype
    Fundamentals of the Conservation of Photographs SESSION: History of the Daguerreotype INSTRUCTOR: Grant B. Romer SESSION OUTLINE ABSTRACT The daguerreotype process evolved out of the collaboration of Louis Jacques Mande Daguerre (1787- 1851) and Nicephore Niepce, which began in 1827. During their experiments to invent a commercially viable system of photography a number of photographic processes were evolved which contributed elements that led to the daguerreotype. Following Niepce’s death in 1833, Daguerre continued experimentation and discovered in 1835 the basic principle of the process. Later, investigation of the process by prominent scientists led to important understandings and improvements. By 1843 the process had reached technical perfection and remained the commercially dominant system of photography in the world until the mid-1850’s. The image quality of the fine daguerreotype set the photographic standard and the photographic industry was established around it. The standardized daguerreotype process after 1843 entailed seven essential steps: plate polishing, sensitization, camera exposure, development, fixation, gilding, and drying. The daguerreotype process is explored more fully in the Technical Note: Daguerreotype. The daguerreotype image is seen as a positive to full effect through a combination of the reflection the plate surface and the scattering of light by the imaging particles. Housings exist in great variety of style, usually following the fashion of miniature portrait presentation. The daguerreotype plate is extremely vulnerable to mechanical damage and the deteriorating influences of atmospheric pollutants. Hence, highly colored and obscuring corrosion films are commonly found on daguerreotypes. Many daguerreotypes have been damaged or destroyed by uninformed attempts to wipe these films away.
    [Show full text]
  • Digital Camera Functions All Photography Is Based on the Same
    Digital Camera Functions All photography is based on the same optical principle of viewing objects with our eyes. In both cases, light is reflected off of an object and passes through a lens, which focuses the light rays, onto the light sensitive retina, in the case of eyesight, or onto film or an image sensor the case of traditional or digital photography. The shutter is a curtain that is placed between the lens and the camera that briefly opens to let light hit the film in conventional photography or the image sensor in digital photography. The shutter speed refers to how long the curtain stays open to let light in. The higher the number, the shorter the time, and consequently, the less light gets in. So, a shutter speed of 1/60th of a second lets in half the amount of light than a speed of 1/30th of a second. For most normal pictures, shutter speeds range from 1/30th of a second to 1/100th of a second. A faster shutter speed, such as 1/500th of a second or 1/1000th of a second, would be used to take a picture of a fast moving object such as a race car; while a slow shutter speed would be used to take pictures in low-light situations, such as when taking pictures of the moon at night. Remember that the longer the shutter stays open, the more chance the image will be blurred because a person cannot usually hold a camera still for very long. A tripod or other support mechanism should almost always be used to stabilize the camera when slow shutter speeds are used.
    [Show full text]
  • Sample Manuscript Showing Specifications and Style
    Information capacity: a measure of potential image quality of a digital camera Frédéric Cao 1, Frédéric Guichard, Hervé Hornung DxO Labs, 3 rue Nationale, 92100 Boulogne Billancourt, FRANCE ABSTRACT The aim of the paper is to define an objective measurement for evaluating the performance of a digital camera. The challenge is to mix different flaws involving geometry (as distortion or lateral chromatic aberrations), light (as luminance and color shading), or statistical phenomena (as noise). We introduce the concept of information capacity that accounts for all the main defects than can be observed in digital images, and that can be due either to the optics or to the sensor. The information capacity describes the potential of the camera to produce good images. In particular, digital processing can correct some flaws (like distortion). Our definition of information takes possible correction into account and the fact that processing can neither retrieve lost information nor create some. This paper extends some of our previous work where the information capacity was only defined for RAW sensors. The concept is extended for cameras with optical defects as distortion, lateral and longitudinal chromatic aberration or lens shading. Keywords: digital photography, image quality evaluation, optical aberration, information capacity, camera performance database 1. INTRODUCTION The evaluation of a digital camera is a key factor for customers, whether they are vendors or final customers. It relies on many different factors as the presence or not of some functionalities, ergonomic, price, or image quality. Each separate criterion is itself quite complex to evaluate, and depends on many different factors. The case of image quality is a good illustration of this topic.
    [Show full text]
  • USER MANUAL AKASO Brave 6 Plus Action Camera
    USER MANUAL AKASO Brave 6 Plus Action Camera V1.2 CONTENTS What's in the Box 1 Your Brave 6 Plus 2 Getting Started 4 Overview of Modes 5 Customizing Your Brave 6 Plus 8 Playing Back Your Content 15 Deleting Your Content 15 Connecting to the AKASO GO app 15 Offloading Your Content 16 Maintaining Your Camera 16 Maximizing Battery Life 17 Battery Storage and Handling 17 External Microphone 18 Remote 18 Mounting Your Camera 20 Contact Us 22 WHAT'S IN THE BOX Waterproof Handle Bar/ Brave 6 Plus Housing Pole Mount Mount 1 Mount 2 Mount 3 Mount 4 Mount 5 Mount 6 Mount 7 Mount 8 Charger 1 Helmet Mounts Battery Protective Backdoor Clip 1 Clip 2 Tethers Lens Cloth USB Cable Quick Start Guide AKASO Brave 6 Plus Action Camera Remote Bandages Quick Start Guide 1 YOUR BRAVE 6 PLUS 3 1 4 5 2 6 7 8 10 9 2 11 1 Shutter/Select Button 7 USB Type-C Port 2 Power/Mode/Exit Button 8 Micro HDMI Port 3 Up/Wifi Button 9 Touch Screen 4 Down Button 10 Battery Door 5 Speaker 11 MicroSD Slot 6 Lens Note: The camera does not record sound when it is in the waterproof case. 3 GETTING STARTED Welcome to your AKASO Brave 6 Plus. To capture videos and photos, you need a microSD card to start recording (sold separately). MICROSD CARDS Please use brand name microSD cards that meet these requirements: • microSD, microSDHC or microSDXC • UHS-III rating only • Capacity up to 64GB (FAT32) Note: 1.
    [Show full text]
  • 1.1 Introduction to the Digital Systems
    1.1 Introduction to the digital systems PHO 130 F Digital Photography Prof. Lorenzo Guasti How a DSLR work and why we call a camera “reflex” The heart of all digital cameras is of course the digital imaging sensor. It is the component that converts the light coming from the subject you are photographing into an electronic signal, and ultimately into the digital photograph that you can view or print PHO 130 F Digital Photography Prof. Lorenzo Guasti Although they all perform the same task and operate in broadly the same way, there are in fact th- ree different types of sensor in common use today. The first one is the CCD, or Charge Coupled Device. CCDs have been around since the 1960s, and have become very advanced, however they can be slower to operate than other types of sensor. The main alternative to CCD is the CMOS, or Complimentary Metal-Oxide Semiconductor sen- sor. The main proponent of this technology being Canon, which uses it in its EOS range of digital SLR cameras. CMOS sensors have some of the signal processing transistors mounted alongside the sensor cell, so they operate more quickly and can be cheaper to make. A third but less common type of sensor is the revolutionary Foveon X3, which offers a number of advantages over conventional sensors but is so far only found in Sigma’s range of digital SLRs and its forthcoming DP1 compact camera. I’ll explain the X3 sensor after I’ve explained how the other two types work. PHO 130 F Digital Photography Prof.
    [Show full text]
  • Real-Time Burst Photo Selection Using a Light-Head Adversarial Network
    Real-time Burst Photo Selection Using a Light-Head Adversarial Network Baoyuan Wang, Noranart Vesdapunt, Utkarsh Sinha, Lei Zhang Microsoft Research Abstract. We present an automatic moment capture system that runs in real-time on mobile cameras. The system is designed to run in the viewfinder mode and capture a burst sequence of frames before and after the shutter is pressed. For each frame, the system predicts in real-time a \goodness" score, based on which the best moment in the burst can be selected immediately after the shutter is released, without any user interference. To solve the problem, we develop a highly efficient deep neural network ranking model, which implicitly learns a \latent relative attribute" space to capture subtle visual differences within a sequence of burst images. Then the overall goodness is computed as a linear aggre- gation of the goodnesses of all the latent attributes. The latent relative attributes and the aggregation function can be seamlessly integrated in one fully convolutional network and trained in an end-to-end fashion. To obtain a compact model which can run on mobile devices in real-time, we have explored and evaluated a wide range of network design choices, tak- ing into account the constraints of model size, computational cost, and accuracy. Extensive studies show that the best frame predicted by our model hit users' top-1 (out of 11 on average) choice for 64:1% cases and top-3 choices for 86:2% cases. Moreover, the model(only 0.47M Bytes) can run in real time on mobile devices, e.g.
    [Show full text]
  • Diy Photography & Jr: Photographic Stickers
    1 DIY PHOTOGRAPHY & JR: PHOTOGRAPHIC STICKERS For grade levels 3-12 Developed by: PEITER GRIGA The world now contains more photographs than bricks, and they are, astonishingly, all different. - John Szarkowski Are images the spine and rib cage of our society or are we so saturated in photography that we forget the underlying messages we ‘read’ from images? Are we protected/ supported by images or flooded by them? JR’s work elaborates on the idea of how we value images by demonstrating our likenesses and differences. This dichotomy is so great in his work; JR can eliminate himself as the artist, becoming the egoless ‘guide.’ As part of his Inside Out Project he allows people from all around the world to send him pictures they take of themselves, which he then prints out a poster sized image and returns to the image maker, who then selects a location and hangs the work in a public space. In a traditional sense, he hands the artistic power over to the participant and only controls the printing and specs for the images. The CAC participated in the Inside Out Project as early as 2011, but most recently through installations in Fountain Square, Rabbit Hash, KY, Findlay Market, and inside the CAC Lobby. The power of the image and the location of the image are vital aspects of JR’s site-specific work. Building upon these two factors is the material used to place the image in the public space. His materials usually include wheat paste, paper, and a large scale digitally printed image.
    [Show full text]
  • Ground-Based Photographic Monitoring
    United States Department of Agriculture Ground-Based Forest Service Pacific Northwest Research Station Photographic General Technical Report PNW-GTR-503 Monitoring May 2001 Frederick C. Hall Author Frederick C. Hall is senior plant ecologist, U.S. Department of Agriculture, Forest Service, Pacific Northwest Region, Natural Resources, P.O. Box 3623, Portland, Oregon 97208-3623. Paper prepared in cooperation with the Pacific Northwest Region. Abstract Hall, Frederick C. 2001 Ground-based photographic monitoring. Gen. Tech. Rep. PNW-GTR-503. Portland, OR: U.S. Department of Agriculture, Forest Service, Pacific Northwest Research Station. 340 p. Land management professionals (foresters, wildlife biologists, range managers, and land managers such as ranchers and forest land owners) often have need to evaluate their management activities. Photographic monitoring is a fast, simple, and effective way to determine if changes made to an area have been successful. Ground-based photo monitoring means using photographs taken at a specific site to monitor conditions or change. It may be divided into two systems: (1) comparison photos, whereby a photograph is used to compare a known condition with field conditions to estimate some parameter of the field condition; and (2) repeat photo- graphs, whereby several pictures are taken of the same tract of ground over time to detect change. Comparison systems deal with fuel loading, herbage utilization, and public reaction to scenery. Repeat photography is discussed in relation to land- scape, remote, and site-specific systems. Critical attributes of repeat photography are (1) maps to find the sampling location and of the photo monitoring layout; (2) documentation of the monitoring system to include purpose, camera and film, w e a t h e r, season, sampling technique, and equipment; and (3) precise replication of photographs.
    [Show full text]
  • Digital Photography: the Influence of CCD Pixel-Size on Imaging
    IS&T’s 1999 PICS Conference IS&T's 1999 PICS Conference Digital Photography: The Influence of CCD Pixel Size on Imaging Performance Rodney Shaw Hewlett-Packard Research Laboratories Palo Alto, California 94304 Abstract with the question of enlargement, since this is a well-known factor in both analog and digital photography, and can be dealt As digital photography becomes increasingly competitive with with in a separate, well-established manner. traditional analog systems, questions of both comparative and The question here is the applicability of a similar global ultimate performance become of great practical relevance. In set of photographic performance parameters for any given particular the questions of camera speed and of the image digital sensor array, taking into account the complicating ex- sharpness and noise properties are of interest, especially from istence of a grid with a fixed pixel size. However to address the possibility of an opening up of new desirable areas of this question we can take the silver-halide analogy further by photographic performance with new digital technologies. considering the case where a conventional negative image is Clearly the camera format (array size, number of pixels) plays scanned as input to a digital system, which is in fact an in- a prominent role in defining overall photographic perfor- creasingly commonplace activity. In doing so the scanning mance, but it is less clear how the absolute pixel dimensions system implies placing over the film a virtual grid much akin define individual photographic parameters. This present study to the physical grid of sensor arrays. The choice of the grid uses a previously published end-to-end signal-to-noise ratio size is not seen as interfering with the global photographic model to investigate the influence of pixel size on various exposure properties, though clearly it will impose its own reso- aspects of imaging performance.
    [Show full text]