Institute for Nuclear Study University of Tokyo Tanashi, Tokyo 188, Japan And

Total Page:16

File Type:pdf, Size:1020Kb

Institute for Nuclear Study University of Tokyo Tanashi, Tokyo 188, Japan And lNS-Rep.-645 INSTITUTE FOR NUCLEAR STUDY . UNIVERSITY OF TOKYO Sept 1987 Tanashi, Tokyo 188 Japan Resonant Spin-Flavor Precession of k Solar and Supernova Neutrinos Chong-Sa Lim and William J. Marciano •3300032376 INS-Rep.-645 Sept. 1987 Resonant Spin-Flavor Precession of Solar and Supernova Neutrinos Chong-Sa Lin Institute for Nuclear Study University of Tokyo Tanashi, Tokyo 188, Japan and William J. Mareiano Brookharen National Laboratory Upton. New Kork 11973, U.S.A. Abstract: The combined effect of natter and aagnetic fields on neutrino spin and flavor precession is examined. We find a potential new kind of resonant solar neutrino conversion \>_ * eL v or vT (for Dirac neutrinos) or «e *• « or vT (for Hajorana R R neutrinos). Such a resonance could help account for the lower than' expected solar neutrino v flux and/or Indications of an antl-oorrelatlon between fluctuations in the v( flux and sunspot activity. Consequences of spin-flavor precession for supernova neutrinos are also briefly discussed. - 1 - There has been a longstanding disagreement between the solar neutrino v_ flux monitored by B. Davis"" and collaborators Average Flux - 2.1 i 0.3 SHU , (1) (1 SNU - 10*' captures/s-atom) 7 37 via the reaction \>e • ' Cl •• «" • Ar and Bahcall'a standard solar model prediction Predicted Flux - 7.9 ± 2.5 SNU <3o errors) . <2) That discrepancy has come to be known as the solar neutrino puzzle. Attempts to resolve It have given rise to many speculative Ideas about unusual properties of neutrinos and/or the solar interior. One rather recently proposed solution, the MSW"-' (Mlkheyev, Snlrnov, Wolfensteln) effect is particularly elegant. It eaploys the changing solar density and the difference between ve and other neutrinos' interactions with matter to bring about an energy level crossing resonance. In that way, v neutrinos propagating fron the core of the sun to Its surface can encounter a resonance region (generally In the radiation zone which extends = from O.OIR^ to 0.7H# where R9 7«1O c«) and be converted to \>H> \>r or some as yet unknown flavor. Part of the MSH solution's appeal is that it naturally provides the required flux depletion (cf. Eqa. (1) and (2)) tor a large range of neutrino mass "~ 2 — differences im^ - m| - ra^ - 10"T - 10 eV2 and mixing angles, 2 rui sin 26>0.001; so, it is not contrived . In fact, the required parameters are very much In keeping with theoretical prejudices and expectations. A more speculative solution to the solar neutrino puzzle originally advocated by Cisneros'' , involves endowing neutrinos with magnetic moments such that spin precession in the strong interior solar magnetic fields can lead to v - \J . The eL eR sterility of v would then lead to an effective depletion in the eR measured flux. That scenario has been recently revived and improved by Okun, Voloshin and Vysotsky (henceforth referred to as OVV). Their motivation cane from the observation that there appears to be an anticorrelation between sunspot activity and variations in the detected solar vg flux ^'' . During times of high sunspot activity (i.e. large magnetic field disturbances in the convection zone > 0.7Ra), the measured flux is smallest. It is, therefore, quite natural to correlate the flux variation with spin precession which would of course be greatest when the magnetic fields are moat intense. The precession scenario has been studied in some detail by OVV'- . They noted that either a magnetic or electric dipole moment could give v - v precession, while flavor transition eL eR moments between different species could result in the combined spin-flavor precession «„ * NJ or « (for 1 component Dirac eL "R 'H «•— o ^ neutrinos) and v •» Z or u (for Majorana neutrinos ). In e u T all cases, however, they concluded that uB, where v is a generic dipole or transition moment and B is the transverse solar magnetic field, must at least be of order IO"l6-1O"15eV to make such a scenario viable. Since they argued that B could be of order io' Gauss ii: the sun's convection zone where precession was envisioned, they required 10 |uj = 0.3-1>10~ e/2ne . (3) That large a moment is consistent with direct experimental boundss1 ^03 10 ( [li:1 |uv | < H.10" e/2me (from v>e data ) , (1) but the upper range is slightly In conflict with astrophysloal arguments which imply 11 |uv | < 8.5-1O" e/2me (astrophysics bound) . (5) In addition, it is generally difficult to generate such a large moment while keeping the neutrino mass very small. For example, the standard SU(2)L»U<1) model with a singlet right-handed neutrino gives rise to "Precession of Majorana neutrinos gives rise (for example) to v. • (u ) with C being the charge conjugation operator. Since (v, ) is right-handed and generally called v , we refer to it that way. - 4 - /1eV)e/2me , (6) which is much too small for a viable solar neutrino precession scenario. Recently, however, a model has been proposed by [11] Fukugita and Yanagida in which a SU(2)L charged scalar singlet can induce at the one loop level a neutrino magnetic moment in the range of Eq.(3) without conflicting with low energy phenomenology. Therefore, in this paper we keep in open mind regarding the magnitude of u. It has also been noted that neutrino interactions with matter can quei.ch spin precession. In the case of v. •> « eL eR precession, the v and u_ interact differently with matter. eL eR The difference in their interactions effectively 3pllts their degeneracy and suppresses precession. To illustrate that point, we consider the evolution equation connecting the chlral components « and v e e R e R 1 - I II n | j7j where B is the transverse magnetic field and av (t) represents the "matter" potential experienced by v. as it propagates through the sun. In the standard model (for an unpolarized medium)' 2 2 a^.(t) - -i [(1-«sin etf)Ne • <1-Hsin eM)Np - Mj . (8) - 5 - 5 2 2 where Gu - 1.16636«io" GeV" , sin ew = 0.23 and Hf is the fermlon number density. (For other neutrino 3pecies (1 «• 2 2 1sin ew)Ne » (-1*'lsin 8M)Ne, while for antineutrinO3, the sign of a(t) is reversed.) For a neutral medium Ne - N and one finds from Eq.(8) S(t)" itf?"3"Nn) • (9! The t (or spatial) dependence comes about because the densities in Eq.(9) vary as the neutrino propagates outward through the solar interior. In addition, B will also vary with t; but it is likely to exhibit a complicated dependence. To get a feel for the matter effect, we can solve Eq.(7) for constant densities and constant B. In that case, the spin precession probability of starting with vg at t-0 and finding v_ at time t is given by eH In a vacuum where a - 0, that expression reduces to a standard 2 2 spin precession formula with frequency uB; but if a* >>(2uB) , precession is suppressed. Of course, to carry out a realistic calculation, one needs a density and magnetic field profile for the solar interior. The densities of electrons and neutrons in the convection zone and upper radiation zone'- ^ is well approximated by - 6 - N,, = 2.'4»1026exp[-r/0.09R ]/em3, 0.2<r/R <1 , (11a) while iri the lower radiation zone the linear approximation 25 25 • -- 6.10 (l - JJ°° f) , Nn = 2<1O (1 - (11b) 0.1 < r/R0 < 0.2 works well. (The relative neutron density increases.) Unfortu- nately, little is known about magnetic fields in the core, radi.at.ion zone or convection zone, except that they may be quite large. We have examined the evolution in Eq.(7) for an average B of 0(10 Gauss) in the convection zone (i.e. for a distance - 2«10 cm) and find for u - 10~ e/2m , one can obtain a v flux depletion consistent with Eqa. (1) and (2). That finding is in keeping with the results of OVV^ •* and a more recent analysis by Barbieri and "lorentini^ . Of course, if that scenario is realized, the \>e flux depletion would be strongly dependent on the magnitude of magnetic flel4. Hence, one could expect a strong correlation between v solar flux and sunspot activity which is a measure of the convection zone magnetic field. We come now to the main focus of our work, the effect of matter on spin-flavor precession. To begin, we note that even If an electromagnetic transition moment between mass eigenstates v. and \>, exists, one expects spin-flavor precession, "w * U2R' ln magnetic fields to be suppressed by the mass difference between v, an,d v-, unless •'''•'•' - 7 - U21B > Am^/aE^ , (12) with u21 the transition moment and Ev the neutrino energy. For 3 u21 = 10"'° e/2me, B = 10 Gauss, and Ey= 10 MeV, that condition requires 4ml, < 10~7 eV2, which is below the MSW solutions but not prohibitively small. (Of course, the condition depends on energy.) Partly because of that mass difference suppression, neutrino spin-flavor precession seems not to have been thoroughly studied. However, here we will show that matter interactions of the distinct neutrino flavors can compensate for the mass difference. In fact, for a mediuia of changing density, such as the sun, a resonance region can exist where neutrino spin-flavor precession may occur unimpeded. The physics of that resonance is quite similar to the HSK resonance"^ as we shall see. To illustrate the resonant spin-flavor precession phenomenon, we first consider the case of 2 generations with 1 component Dirac neutrinos .
Recommended publications
  • Doc.10100.Space Weather Manual FINAL DRAFT Version
    Doc 10100 Manual on Space Weather Information in Support of International Air Navigation Approved by the Secretary General and published under his authority First Edition – 2018 International Civil Aviation Organization TABLE OF CONTENTS Page Chapter 1. Introduction ..................................................................................................................................... 1-1 1.1 General ............................................................................................................................................... 1-1 1.2 Space weather indicators .................................................................................................................... 1-1 1.3 The hazards ........................................................................................................................................ 1-2 1.4 Space weather mitigation aspects ....................................................................................................... 1-3 1.5 Coordinating the response to a space weather event ......................................................................... 1-3 Chapter 2. Space Weather Phenomena and Aviation Operations ................................................................. 2-1 2.1 General ............................................................................................................................................... 2-1 2.2 Geomagnetic storms ..........................................................................................................................
    [Show full text]
  • Stability of Toroidal Magnetic Fields in Rotating Stellar Radiation Zones
    A&A 478, 1–8 (2008) Astronomy DOI: 10.1051/0004-6361:20077172 & c ESO 2008 Astrophysics Stability of toroidal magnetic fields in rotating stellar radiation zones L. L. Kitchatinov1,2 and G. Rüdiger1 1 Astrophysikalisches Institut Potsdam, An der Sternwarte 16, 14482, Potsdam, Germany e-mail: [lkitchatinov;gruediger]@aip.de 2 Institute for Solar-Terrestrial Physics, PO Box 291, Irkutsk 664033, Russia e-mail: [email protected] Received 26 January 2007 / Accepted 14 October 2007 ABSTRACT Aims. Two questions are addressed as to how strong magnetic fields can be stored in rotating stellar radiation zones without being subjected to pinch-type instabilities and how much radial mixing is produced if the fields are unstable. Methods. Linear equations are derived for weak disturbances of magnetic and velocity fields, which are global in horizontal dimen- sions but short–scaled in radius. The linear formulation includes the 2D theory of stability to strictly horizontal disturbances as a special limit. The eigenvalue problem for the derived equations is solved numerically to evaluate the stability of toroidal field patterns with one or two latitudinal belts under the influence of rigid rotation. Results. Radial displacements are essential for magnetic instability. It does not exist in the 2D case of strictly horizontal disturbances. Only stable (magnetically modified) r-modes are found in this case. The instability recovers in 3D. The minimum field strength Bmin for onset of the instability and radial scales of the most rapidly growing modes are strongly influenced by finite diffusion, the scales are indefinitely short if diffusion is neglected. The most rapidly growing modes for the Sun have radial scales of about 1 Mm.
    [Show full text]
  • The Sun: Our Star (Chapter 14) Based on Chapter 14
    The Sun: Our Star (Chapter 14) Based on Chapter 14 • No subsequent chapters depend on the material in this lecture • Chapters 4, 5, and 8 on “Momentum, energy, and matter”, “Light”, and “Formation of the solar system” will be useful for understanding this chapter. Goals for Learning • What is the Sun’s structure? • How does the Sun produce energy? • How does energy escape from the Sun? • What is solar activity? What Makes the Sun Shine? • Sun’s size/distance known by 1850s • Some kind of burning, chemical reaction? – Can’t provide enough energy • Gravitational potential energy from contraction? – Sun doesn’t shrink very fast, shines for 25 million years • Physicists like this idea. Geologists don’t, because rocks/fossils suggest age of 100s of millions of years E=mc2 (1905, Einstein) • Massive Sun has enough energy to shine for billions of years, geologists are happy • But how does “m” become “E”? Sun is giant ball of plasma (ionized gas) Charged particles in plasma are affected by magnetic fields Magnetic fields are very important in the Sun Sun = 300,000 ME Sun >1000 MJ Radius = 700,000 km Radius > 100 RE 3.8 x 1026 Watts Rotation: 25 days (Equator) Rotation: 30 days (Poles) Surface T = 5,800 K Core T = 15 million K 70% Hydrogen, 28% Helium, 2% heavier elements Solar Wind • Stream of charged particles blown continually outwards from Sun • Shapes the magnetospheres of the planets today • Cleared away the gas of the solar nebula 4.5 billion years ago Corona • Low density outer layer of Sun’s atmosphere • Extends several million km high • T = 1 million K (why?) • Source of solar X-ray emissions – what wavelength? X-ray image of solar corona.
    [Show full text]
  • Chapter 15--Our
    2396_AWL_Bennett_Ch15/pt5 6/25/03 3:40 PM Page 495 PART V STELLAR ALCHEMY 2396_AWL_Bennett_Ch15/pt5 6/25/03 3:40 PM Page 496 15 Our Star LEARNING GOALS 15.1 Why Does the Sun Shine? • Why was the Sun dimmer in the distant past? • What process creates energy in the Sun? • How do we know what is happening inside the Sun? • Why does the Sun’s size remain stable? • What is the solar neutrino problem? Is it solved ? • How did the Sun become hot enough for fusion 15.4 From Core to Corona in the first place? • How long ago did fusion generate the energy we 15.2 Plunging to the Center of the Sun: now receive as sunlight? An Imaginary Journey • How are sunspots, prominences, and flares related • What are the major layers of the Sun, from the to magnetic fields? center out? • What is surprising about the temperature of the • What do we mean by the “surface” of the Sun? chromosphere and corona, and how do we explain it? • What is the Sun made of? 15.5 Solar Weather and Climate 15.3 The Cosmic Crucible • What is the sunspot cycle? • Why does fusion occur in the Sun’s core? • What effect does solar activity have on Earth and • Why is energy produced in the Sun at such its inhabitants? a steady rate? 496 2396_AWL_Bennett_Ch15/pt5 6/25/03 3:40 PM Page 497 I say Live, Live, because of the Sun, from some type of chemical burning similar to the burning The dream, the excitable gift.
    [Show full text]
  • Radiation Zone
    AST 100 General Astronomy: 5. What’s inside the Sun? Stars & Galaxies From the Center Outwards • Core: Hydrogen fusing into helium, releasing energy in ANNOUNCEMENTS the form of gamma rays, neutrinos, and positrons Midterm I on Tue, Sept. 29 it will cover class material up to today (included) • Core temp = 15 million K, hot & dense from the gravitational Quiz #2 today, end of class weight of all that mass Meanderings of outbound photons Our gamma-ray photons random walk outwards (getting Radiation Zone redirected with every step), gradually cooling • Gamma ray photons leave the core and move into an area known as the Takes hundreds of Radiation Zone thousands to a million – Neutrinos? They leave right years to get out!! away, no interaction – Positrons? Quickly find electrons in the core to annihilate with. • Photons only travel about 1 mm before being redirected in another direction T=10 million K. Photosphere Convection Zone • At the top of the convection • Eventually, gas is cool zone, the densities are now enough (2 million K at the low enough that our boundary) and becomes photons can zoom away. turbulent – Now downgraded all the – No longer just redirects way to visible energies photons, now absorbs them • Photosphere is the “visible surface” of the Sun • Convection: hotter • T = only 5800 K regions rise, cooler • Photons free - seen at Earth regions sink 8 min later • Blackbody spectrum (T= • Energy continues to work 5800 K) + absorption from its way out - nearly 1 cooler gasses just on top million years to get out Granulation: turbulent convection Granulation Movie Appearance of the photosphere • Typical granulations last only 8 - 15 minutes • Movie covers 35 min Taken by G.
    [Show full text]
  • The Sun Worksheet
    Name ____________________________ Date ____________________ Class ____________ The Solar System The Sun Guide for Reading ■ What are the three layers of the sun’s interior? ■ What are the three layers of the sun’s atmosphere? ■ What features form on or above the sun’s surface? The sun’s mass is 99.8 percent of all the mass in the solar system. Because the sun is so large, its gravity is strong enough to hold all of the planets and other distant objects in orbit. Unlike Earth, the sun does not have a solid surface. Like Earth, the sun has an interior and an atmosphere. The sun’s interior consists of the core, radiation zone, and convection zone. Each layer has different properties. The sun produces an enormous amount of energy in its core, or central region. The sun’s energy comes from nuclear fusion. In the process of nuclear fusion, hydrogen atoms in the sun join to form helium. The light and heat produced by the sun’s core first pass through the middle layer of the sun’s interior, the radiation zone. The radiation zone is a region of very tightly packed gas where energy is transferred mainly in the form of electromagnetic radiation. The convection zone is the outermost layer of the sun’s interior. Hot gases rise from the bottom of the convection zone and gradually cool as they approach the top. Cooler gases sink, forming loops of gas that move heat toward the sun’s surface. The sun’s atmosphere consists of the photosphere, the chromosphere, and the corona.
    [Show full text]
  • Dynamics of the Earth's Radiation Belts and Inner Magnetosphere Newfoundland and Labrador, Canada 17 – 22 July 2011
    AGU Chapman Conference on Dynamics of the Earth's Radiation Belts and Inner Magnetosphere Newfoundland and Labrador, Canada 17 – 22 July 2011 Conveners Danny Summers, Memorial University of Newfoundland, St. John's (Canada) Ian Mann, University of Alberta, Edmonton (Canada) Daniel Baker, University of Colorado, Boulder (USA) Program Committee David Boteler, Natural Resources Canada, Ottawa, Ontario (Canada) Sebastien Bourdarie, CERT/ONERA, Toulouse (France) Joseph Fennell, Aerospace Corporation, Los Angeles, California (USA) Brian Fraser, University of Newcastle, Callaghan, New South Wales (Australia) Masaki Fujimoto, ISAS/JAXA, Kanagawa (Japan) Richard Horne, British Antarctic Survey, Cambridge (UK) Mona Kessel, NASA Headquarters, Washington, D.C. (USA) Craig Kletzing, University of Iowa, Iowa City (USA) Janet Kozy ra, University of Michigan, Ann Arbor (USA) Lou Lanzerotti, New Jersey Institute of Technology, Newark (USA) Robyn Millan, Dartmouth College, Hanover, New Hampshire (USA) Yoshiharu Omura, RISH, Kyoto University (Japan) Terry Onsager, NOAA, Boulder, Colorado (USA) Geoffrey Reeves, LANL, Los Alamos, New Mexico (USA) Kazuo Shiokawa, STEL, Nagoya University (Japan) Harlan Spence, Boston University, Massachusetts (USA) David Thomson, Queen's University, Kingston, Ontario (Canada) Richard Thorne, Univeristy of California, Los Angeles (USA) Andrew Yau, University of Calgary, Alberta (Canada) Financial Support The conference organizers acknowledge the generous support of the following organizations: Cover photo: Andy Kale ([email protected])
    [Show full text]
  • The Science of the Sun by Cindy Grigg
    The Science of the Sun By Cindy Grigg 1 Photo credit: NASA 2 Our sun is a star. Like all stars, it is a mass of very hot gases. On Earth, burning fossil fuels like gasoline or coal gives us energy for our cars and heating our homes. But the sun's energy doesn't come from burning fuels. The sun's energy comes from nuclear fusion. The nuclei (plural form of nucleus) of different atoms of gases in the sun fuse or join together. Most of the sun's fusion happens when atoms of hydrogen smash into each other. Under high pressure and at high temperatures, the atoms join or fuse together. This creates helium atoms. Every atom releases heat and light when it fuses with another atom. 3 How big is the sun? Its diameter, the distance across its center, is about 870,000 miles. That's more than one hundred times the diameter of Earth. The sun's volume is more than a million times the volume of Earth. Another way to say this is that the sun could hold one million Earths inside it. 4 The sun has different layers of gases. Each layer blends into the next, like the layers of Earth's atmosphere. The core is the center of the sun. Most of the sun's mass is in its core. The core is extremely dense. It is also very hot. Almost all fusion takes place in the core. 5 Energy created in the core moves outward. It passes next into the radiative or radiation zone.
    [Show full text]
  • 8. the Sun As a Star
    Astronomy 110: SURVEY OF ASTRONOMY 8. The Sun as a Star 1. Inside the Sun 2. Solar Energy 3. Solar Activity The Sun is not only the largest object in our solar system — it is also the nearest example of a star. It produces energy by converting hydrogen to helium, thereby maintaining a constant internal temperature. Particles emitted by the Sun and detected on Earth confirm the details of this picture. Radius: 6.9 × 108 m (109 times Earth) Mass: 2 × 1030 kg (300,000 Earths) Luminosity: 3.8 × 1026 watts Copyright © 2009 Pearson Education, Inc. Composition of the Sun Number of Chemical Atomic Atomic Atoms Symbol Number Weight 1,000,000 H 1 1 85,000 He 2 4 850 O 8 16 400 C 6 12 120 Ne 10 20 100 N 7 14 47 Fe 26 56 1. INSIDE THE SUN a. How Does the Sun Stay Hot? b. Two Kinds of Equilibrium c. Structure of the Sun How Does the Sun Stay Hot? Why does the Sun shine? Because it is hot! Copyright © 2009 Pearson Education, Inc. Is it on FIRE? … NO! Chemical Energy Content ~ 10,000 years Luminosity Copyright © 2009 Pearson Education, Inc. Is it CONTRACTING? … NO! Gravitational Potential Energy ~ 25 million years Luminosity Copyright © 2009 Pearson Education, Inc. E = mc2 —Einstein, 1905 It is powered by NUCLEAR ENERGY! Nuclear Potential Energy (core) ~ 10 billion years Luminosity Copyright © 2009 Pearson Education, Inc. Energy From Matter Matter is frozen energy, and each can be converted to the other. The “rate of exchange” is E = mc2 where c = 3 × 105 km/s is the speed of light.
    [Show full text]
  • Chapter 11: Our Star
    Lecture Outline Chapter 11: Our Star © 2015 Pearson Education, Inc. Why does the Sun shine? © 2015 Pearson Education, Inc. Is it on FIRE? … NO! Chemical Energy Content ~ 10,000 years Luminosity © 2015 Pearson Education, Inc. Is it CONTRACTING? … NO! Gravitational Potential Energy ~ 25 million years Luminosity © 2015 Pearson Education, Inc. E = mc2 —Einstein, 1905 It is powered by NUCLEAR ENERGY! Nuclear Potential Energy (core) ~ 10 billion years Luminosity © 2015 Pearson Education, Inc. Gravitational equilibrium: Gravity pulling in balances pressure pushing out. © 2015 Pearson Education, Inc. Energy balance: Thermal energy released by fusion in core balances radiative energy lost from surface. © 2015 Pearson Education, Inc. Gravitational contraction… provided energy that heated the core as the Sun was forming. Contraction stopped when fusion started replacing the energy radiated into space. © 2015 Pearson Education, Inc. What is the Sun's structure? © 2015 Pearson Education, Inc. 11.2 Nuclear Fusion in the Sun Our goals for learning: • How does nuclear fusion occur in the Sun? • How does the energy from fusion get out of the Sun? • How do we know what is happening inside the Sun? © 2015 Pearson Education, Inc. Fission Fusion Big nucleus splits into Small nuclei stick together smaller pieces. to make a bigger one. (Nuclear power plants) (Sun, stars) © 2015 Pearson Education, Inc. High temperatures enable nuclear fusion to happen in the core. © 2015 Pearson Education, Inc. The Sun releases energy by fusing four hydrogen nuclei into one helium nucleus. © 2015 Pearson Education, Inc. IN 4 protons OUT 4He nucleus 2 gamma rays 2 positrons 2 neutrinos Total mass is 0.7% lower.
    [Show full text]
  • Neutron Star
    Chapter 10 Our Star X-ray visible Radius: 6.9 108 m (109 times Earth) Mass: 2 1030 kg (300,000 Earths) Luminosity: 3.8 1026 watts (more than our entire world uses in 1 year!) Why does the Sun shine? Is it on FIRE? Is it on FIRE? Chemical Energy Content (J) ~ 10,000 years Luminosity (J/s = W) Is it on FIRE? … NO Chemical Energy Content ~ 10,000 years Luminosity Is it CONTRACTING? Is it CONTRACTING? Gravitational Potential Energy ~ 25 million years Luminosity Is it CONTRACTING? … NO Gravitational Potential Energy ~ 25 million years Luminosity E = mc2 —Einstein, 1905 It is powered by NUCLEAR ENERGY! Nuclear Potential Energy (core) ~ 10 billion years Luminosity E = mc2 —Einstein, 1905 It is powered by NUCLEAR ENERGY! •Nuclear reactions generate the Sun’s heat •But they require very high temperatures to begin with •Where do those temperatures come from? •They come from GRAVITY! •The tremendous weight of the Sun’s upper layers compresses interior •The intense compression generates temperatures >107 K in the innermost core •And that’s where the nuclear reactions are Gravitational Equilibrium •The compression inside the Sun generates temperatures that allow fusion •The fusion reactions in turn generate outward pressure that balances the inward crush of gravity •The Sun is in a balance between outward pressure from fusion and inward pressure from gravity •This is called gravitational equilibrium The Sun’s Structure Solar wind: A flow of charged particles from the surface of the Sun Corona: Outermost layer of solar atmosphere Temp ~1 million
    [Show full text]
  • Irina N Kitiashvili & Alan A. Wray NASA Ames Research Center
    Structure and Dynamics of the Overshoot Layer in Rotating Main-Sequence Stars with Shallow Convection Zone Irina N Kitiashvili & Alan A. Wray NASA Ames Research Center Current state-of-the-art computational modeling makes it possible to build realistic models of stellar convection zones and atmospheres that can take into account chemical composition, radiative effects, ionization, and turbulence. The standard 1D mixing-length-based evolutionary models are not able to capture the many physical processes of stellar interior dynamics, but they provide an initial approximation of stellar structure that can be used to initialize 3D time-dependent radiative hydrodynamics simulations. In this presentation we will show simulation results for F-type main-sequence stars of 1.47 and 1.35 Msun. For the 1.47 Msun star the computational domain includes the upper layers of the radiation zone, the entire convection zone, and the photosphere. These simulations provide new insights into the formation and properties of the convective overshoot region, the dynamics of the highly turbulent near-surface layer, and the structure and dynamics of granulation. We will discuss the thermodynamic structure and the effects of rotation on the dynamics of the stars across these layers. ‘StellarBox’ code (Wray et al., 2018) 3D rectangular geometry Fully conservative compressible MHD Fully coupled radiation solver: LTE using 4 opacity-distribution-function bins Ray-tracing transport by Feautrier method 18 ray (2 vertical, 16 slanted) angular quadrature Non-ideal (tabular) EOS Power spectrum of low-degree (radial) 4th order Padé spatial derivatives Slice of vertical velocity for a star with mass Angular degree – frequency diagram, obtained stellar oscillations for a 1.47Msun star.
    [Show full text]