S41598-018-20067-Z.Pdf
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
The Influence of Probiotics on the Firmicutes/Bacteroidetes Ratio In
microorganisms Review The Influence of Probiotics on the Firmicutes/Bacteroidetes Ratio in the Treatment of Obesity and Inflammatory Bowel disease Spase Stojanov 1,2, Aleš Berlec 1,2 and Borut Štrukelj 1,2,* 1 Faculty of Pharmacy, University of Ljubljana, SI-1000 Ljubljana, Slovenia; [email protected] (S.S.); [email protected] (A.B.) 2 Department of Biotechnology, Jožef Stefan Institute, SI-1000 Ljubljana, Slovenia * Correspondence: borut.strukelj@ffa.uni-lj.si Received: 16 September 2020; Accepted: 31 October 2020; Published: 1 November 2020 Abstract: The two most important bacterial phyla in the gastrointestinal tract, Firmicutes and Bacteroidetes, have gained much attention in recent years. The Firmicutes/Bacteroidetes (F/B) ratio is widely accepted to have an important influence in maintaining normal intestinal homeostasis. Increased or decreased F/B ratio is regarded as dysbiosis, whereby the former is usually observed with obesity, and the latter with inflammatory bowel disease (IBD). Probiotics as live microorganisms can confer health benefits to the host when administered in adequate amounts. There is considerable evidence of their nutritional and immunosuppressive properties including reports that elucidate the association of probiotics with the F/B ratio, obesity, and IBD. Orally administered probiotics can contribute to the restoration of dysbiotic microbiota and to the prevention of obesity or IBD. However, as the effects of different probiotics on the F/B ratio differ, selecting the appropriate species or mixture is crucial. The most commonly tested probiotics for modifying the F/B ratio and treating obesity and IBD are from the genus Lactobacillus. In this paper, we review the effects of probiotics on the F/B ratio that lead to weight loss or immunosuppression. -
Structural and Functional Characterization of the Fimh Adhesin of Uropathogenic Escherichia Coli and Its Novel Applications
Open Access Journal of Bacteriology and Mycology Research Article Structural and Functional Characterization of the FimH Adhesin of Uropathogenic Escherichia coli and Its Novel Applications Neamati F1, Moniri R2*, Khorshidi A1 and Saffari M1 Abstract 1Department of Microbiology and Immunology, School Type 1 fimbriae are responsible for bacterial pathogenicity and biofilm of Medicine, Kashan University of Medical Sciences, production, which are important virulence factors in uropathogenic Escherichia Kashan, Iran coli strains. Many articles are published on FimH, but each examined a specific 2Department of Microbiology, Faculty of Medicine, aspect of this protein. The current review study aimed at focusing on structure Kashan University of Medical Sciences, Qutb Ravandi and conformational changes and describing efforts to use this protein in novel Boulevard, Kashan, Iran potential treatments for urinary tract infections, typing methods, and expression *Corresponding author: Moniri R, Department of systems. The current study was the first review that briefly and effectively Microbiology, Faculty of Medicine, Kashan University of examined issues related to FimH adhesin. Medical Sciences, Qutb Ravandi Boulevard, Kashan, Iran Keywords: Uropathogenic E. coli; FimH Adhesion; FimH Typing; Received: June 05, 2020; Accepted: July 03, 2020; Conformation Switch; FimH Antagonists Published: July 10, 2020 Abbreviations FimH proteins play important roles in UPEC pathogenicity and the formation of bacterial biofilms [7]. FimH binds to mannosylated UTIs: Urinary Tract Infections; UPEC: Uropathogenic E. uroplakin proteins in the bladder lumen and invades into the Coli; IBCs: Intracellular Bacterial Communities; QIR: Quiescent superficial umbrella cells [8]. After the invasion, UPEC is expelled out Intracellular Reservoir; LD: Mannose-Binding Lectin; PD: Fimbria- of the cell in a TLR4 dependent process, or escape into the cytoplasm Incorporating Pilin; MBP: Mannose-Binding Pocket; LIBS: Ligand- [9]. -
Microbiota of Human Precolostrum and Its Potential Role As a Source Of
www.nature.com/scientificreports OPEN Microbiota of human precolostrum and its potential role as a source of bacteria to the infant mouth Received: 24 October 2018 Lorena Ruiz1,2, Rodrigo Bacigalupe3, Cristina García-Carral2,4, Alba Boix-Amoros3, Accepted: 2 April 2019 Héctor Argüello5, Camilla Beatriz Silva2,6, Maria de los Angeles Checa7, Alex Mira3 & Published: xx xx xxxx Juan M. Rodríguez 2 Human milk represents a source of bacteria for the initial establishment of the oral (and gut) microbiomes in the breastfed infant, however, the origin of bacteria in human milk remains largely unknown. While some evidence points towards a possible endogenous enteromammary route, other authors have suggested that bacteria in human milk are contaminants from the skin or the breastfed infant mouth. In this work 16S rRNA sequencing and bacterial culturing and isolation was performed to analyze the microbiota on maternal precolostrum samples, collected from pregnant women before delivery, and on oral samples collected from the corresponding infants. The structure of both ecosystems demonstrated a high proportion of taxa consistently shared among ecosystems, Streptococcus spp. and Staphylococcus spp. being the most abundant. Whole genome sequencing on those isolates that, belonging to the same species, were isolated from both the maternal and infant samples in the same mother-infant pair, evidenced that in 8 out of 10 pairs both isolates were >99.9% identical at nucleotide level. The presence of typical oral bacteria in precolostrum before contact with the newborn indicates that they are not a contamination from the infant, and suggests that at least some oral bacteria reach the infant’s mouth through breastfeeding. -
Identification of Type 3 Fimbriae in Uropathogenic Escherichia Coli
JOURNAL OF BACTERIOLOGY, Feb. 2008, p. 1054–1063 Vol. 190, No. 3 0021-9193/08/$08.00ϩ0 doi:10.1128/JB.01523-07 Copyright © 2008, American Society for Microbiology. All Rights Reserved. Identification of Type 3 Fimbriae in Uropathogenic Escherichia coli Reveals a Role in Biofilm Formationᰔ Cheryl-Lynn Y. Ong,1 Glen C. Ulett,1 Amanda N. Mabbett,1 Scott A. Beatson,1 Richard I. Webb,2 Wayne Monaghan,3 Graeme R. Nimmo,3 David F. Looke,4 1 1 Alastair G. McEwan, and Mark A. Schembri * Downloaded from School of Molecular and Microbial Sciences1 and Centre for Microscopy and Microanalysis,2 University of Queensland, Brisbane, Australia, and Queensland Health Pathology Service3 and Infection Management Services, Princess Alexandra Hospital, Brisbane, Australia4 Received 21 September 2007/Accepted 17 November 2007 Catheter-associated urinary tract infection (CAUTI) is the most common nosocomial infection in the United States. Uropathogenic Escherichia coli (UPEC), the most common cause of CAUTI, can form biofilms on indwelling catheters. Here, we identify and characterize novel factors that affect biofilm formation by UPEC http://jb.asm.org/ strains that cause CAUTI. Sixty-five CAUTI UPEC isolates were characterized for phenotypic markers of urovirulence, including agglutination and biofilm formation. One isolate, E. coli MS2027, was uniquely proficient at biofilm growth despite the absence of adhesins known to promote this phenotype. Mini-Tn5 mutagenesis of E. coli MS2027 identified several mutants with altered biofilm growth. Mutants containing insertions in genes involved in O antigen synthesis (rmlC and manB) and capsule synthesis (kpsM) possessed enhanced biofilm phenotypes. Three independent mutants deficient in biofilm growth contained an insertion in a gene locus homologous to the type 3 chaperone-usher class fimbrial genes of Klebsiella pneumoniae. -
Porphyromonas Gingivalis, Strain F0566 Catalog
Product Information Sheet for HM-1141 Porphyromonas gingivalis, Strain F0566 immediately upon arrival. For long-term storage, the vapor phase of a liquid nitrogen freezer is recommended. Freeze- thaw cycles should be avoided. Catalog No. HM-1141 Growth Conditions: For research use only. Not for human use. Media: Supplemented Tryptic Soy broth or equivalent Contributor: Tryptic Soy agar with 5% defibrinated sheep blood or Floyd E. Dewhirst, D.D.S., Ph.D., Senior Member of the Staff, Supplemented Tryptic Soy agar or equivalent Department of Microbiology and Jacques Izard, Assistant Incubation: Member of the Staff, Department of Molecular Genetics, The Temperature: 37°C Forsyth Institute, Cambridge, Massachusetts, USA Atmosphere: Anaerobic Propagation: Manufacturer: 1. Keep vial frozen until ready for use, then thaw. BEI Resources 2. Transfer the entire thawed aliquot into a single tube of broth. Product Description: 3. Use several drops of the suspension to inoculate an Bacteria Classification: Porphyromonadaceae, agar slant and/or plate. Porphyromonas 4. Incubate the tube, slant and/or plate at 37°C for 24 to Species: Porphyromonas gingivalis 72 hours. Broth cultures should include shaking. Strain: F0566 Original Source: Porphyromonas gingivalis (P. gingivalis), Citation: strain F0566 was isolated in October 1987 from the tooth Acknowledgment for publications should read “The following of a patient diagnosed with moderate periodontitis in the reagent was obtained through BEI Resources, NIAID, NIH as United States.1 part of the Human Microbiome Project: Porphyromonas Comments: P. gingivalis, strain F0566 (HMP ID 1989) is a gingivalis, Strain F0566, HM-1141.” reference genome for The Human Microbiome Project (HMP). HMP is an initiative to identify and characterize Biosafety Level: 2 human microbial flora. -
The Effect of Porphyromonas Levii on Macrophage Function and Pro-Inflammatory Cytokine Production
University of Calgary PRISM: University of Calgary's Digital Repository Graduate Studies Legacy Theses 2001 Macrophages in bovine footrot: the effect of porphyromonas levii on macrophage function and pro-inflammatory cytokine production Walter, Michaela Roylene Valerie Walter, M. R. (2001). Macrophages in bovine footrot: the effect of porphyromonas levii on macrophage function and pro-inflammatory cytokine production (Unpublished master's thesis). University of Calgary, Calgary, AB. doi:10.11575/PRISM/19168 http://hdl.handle.net/1880/41129 master thesis University of Calgary graduate students retain copyright ownership and moral rights for their thesis. You may use this material in any way that is permitted by the Copyright Act or through licensing that has been assigned to the document. For uses that are not allowable under copyright legislation or licensing, you are required to seek permission. Downloaded from PRISM: https://prism.ucalgary.ca UNIVERSITY OF CALGARY Macrophages in Bovine Footrot: The Effect of Purphyrontonas fevii on Macrophage Function and Pro-Inilammatory Cytokine Production. Michaela Roylene Valerie Walter A THESIS SUBMITTED TO THE FACULTY OF GRADUATE STUDIES IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF MASTERS OF SCIENCE DEPARTMENT OF BIOLOGICAL SCIENCES CALGARY, ALBERTA MAY, 200 1 O Michaela Roylene Valerie Walter 200 1 National Library Biiliothbque nationale du Canada Acquisitions and Acquisitions et Bibliographic Services services bibliographiques The author has granted a non- L'auteur a accorde une licence non exclusive licence allowing the exclusive pennettant a la National Libmy of Canada to Bibliotheque nationale du Canada de reproduce, loan, distn'bute or sell reproduke, preter, distribuer ou copies of this thesis in microform, vendre des copies de cette these sous paper or electronic formats. -
A Double, Long Polar Fimbria Mutant of Escherichia Coli O157:H7 Expresses Curli and Exhibits Reduced in Vivo Colonization
A Double, Long Polar Fimbria Mutant of Escherichia coli O157:H7 Expresses Curli and Exhibits Reduced in Vivo Colonization The Harvard community has made this article openly available. Please share how this access benefits you. Your story matters Citation Lloyd, Sonja J., Jennifer M. Ritchie, Maricarmen Rojas-Lopez, Carla A. Blumentritt, Vsevolod L. Popov, Jennifer L. Greenwich, Matthew K. Waldor, and Alfredo G. Torres. 2012. “A Double, Long Polar Fimbria Mutant of Escherichia Coli O157:H7 Expresses Curli and Exhibits ReducedIn VivoColonization.” Edited by S. M. Payne. Infection and Immunity 80 (3): 914–20. https://doi.org/10.1128/ iai.05945-11. Citable link http://nrs.harvard.edu/urn-3:HUL.InstRepos:41483527 Terms of Use This article was downloaded from Harvard University’s DASH repository, and is made available under the terms and conditions applicable to Other Posted Material, as set forth at http:// nrs.harvard.edu/urn-3:HUL.InstRepos:dash.current.terms-of- use#LAA A Double, Long Polar Fimbria Mutant of Escherichia coli O157:H7 Expresses Curli and Exhibits Reduced In Vivo Colonization Sonja J. Lloyd,a Jennifer M. Ritchie,d* Maricarmen Rojas-Lopez,a Carla A. Blumentritt,a Vsevolod L. Popov,b Jennifer L. Greenwich,d Matthew K. Waldor,d and Alfredo G. Torresa,b,c Departments of Microbiology and Immunologya and Pathologyb and Sealy Center for Vaccine Development,c University of Texas Medical Branch, Galveston, Texas, USA, and Channing Laboratory, Brigham and Women’s Hospital and Harvard Medical School, Boston, Massachusetts, USAd Escherichia coli O157:H7 causes food and waterborne enteric infections that can result in hemorrhagic colitis and life- threatening hemolytic uremic syndrome. -
Cell Structure and Function in the Bacteria and Archaea
4 Chapter Preview and Key Concepts 4.1 1.1 DiversityThe Beginnings among theof Microbiology Bacteria and Archaea 1.1. •The BacteriaThe are discovery classified of microorganismsinto several Cell Structure wasmajor dependent phyla. on observations made with 2. theThe microscope Archaea are currently classified into two 2. •major phyla.The emergence of experimental 4.2 Cellscience Shapes provided and Arrangements a means to test long held and Function beliefs and resolve controversies 3. Many bacterial cells have a rod, spherical, or 3. MicroInquiryspiral shape and1: Experimentation are organized into and a specific Scientificellular c arrangement. Inquiry in the Bacteria 4.31.2 AnMicroorganisms Overview to Bacterialand Disease and Transmission Archaeal 4.Cell • StructureEarly epidemiology studies suggested how diseases could be spread and 4. Bacterial and archaeal cells are organized at be controlled the cellular and molecular levels. 5. • Resistance to a disease can come and Archaea 4.4 External Cell Structures from exposure to and recovery from a mild 5.form Pili allowof (or cells a very to attach similar) to surfacesdisease or other cells. 1.3 The Classical Golden Age of Microbiology 6. Flagella provide motility. Our planet has always been in the “Age of Bacteria,” ever since the first 6. (1854-1914) 7. A glycocalyx protects against desiccation, fossils—bacteria of course—were entombed in rocks more than 3 billion 7. • The germ theory was based on the attaches cells to surfaces, and helps observations that different microorganisms years ago. On any possible, reasonable criterion, bacteria are—and always pathogens evade the immune system. have been—the dominant forms of life on Earth. -
Biomechanical and Structural Features of CS2 Fimbriae of Enterotoxigenic Escherichia Coli !
!:7$ 5$ $ Biomechanical and Structural features of CS2 fimbriae of Enterotoxigenic Escherichia coli ! a a,b a c a,b* Narges Mortezaei , Bhupender Singh , Johan Zakrisson , Esther Bullitt and Magnus Andersson aDepartment of Physics, Umeå University, bUmeå Centre for Microbial Research (UCMR), Umeå University SE-901 87 Umeå, Sweden, cDepartment of Physiology and Biophysics, Boston University School of Medicine, Boston, MA 02118, USA Running title: The biomechanical and structural properties of CS2 fimbriae Key words: pili, optical tweezers, bacteria, pathogenesis, virulence factors! le to to le in be Biophysicalpublished journal ! 120!2( Enterotoxigenic Escherichia coli (ETEC) are a major cause of diarrhea worldwide, and infection of children in underdeveloped countries often leads to high mortality rates. Isolated ETEC express a plethora of colonization factors (fimbriae/pili), of which CFA/I and CFA/II that are assembled via the alternate chaperone pathway (ACP), are amongst the most common. Fimbriae are filamentous structures, whose shafts are primarily composed of helically arranged single pilin-protein subunits, with a unique biomechanical capability allowing them to unwind and rewind. A sustained ETEC infection, under adverse conditions of dynamic shear forces, is primarily attributed to this biomechanical feature of ETEC fimbriae. Recent understandings about the role of fimbriae as virulence factors are pointing to an evolutionary adaptation of their structural and biomechanical features. In this work, we investigated the biophysical -
Biofilms: Microbial Cities of Scientific Significance
Journal of Microbiology & Experimentation Review Article Open Access Biofilms: microbial cities of scientific significance Abstract Volume 1 Issue 3 - 2014 Biofilms are defined as the self produced extra polymeric matrices that comprises of Ranganathan Vasudevan sessile microbial community where the cells are characterized by their attachment School of Chemical and Biotechnology, SASTRA University, India to either biotic or abiotic surfaces. These extra cellular slime natured cover encloses the microbial cells and protects from various external factors. The components of Correspondence: Ranganathan Vasudevan, School of Chemical biofilms are very vital as they contribute towards the structural and functional aspects and Biotechnology, SASTRA University, Thanjavur- 613 401, of the biofilms. Microbial biofilms comprises of major classes of macromolecules like India, Tel +91-8121119692, Email nucleic acids, polysaccharides, proteins, enzymes, lipids, humic substances as well as ions. The presence of these components indeed makes them resilient and enables them Received: June 07, 2014 | Published: June 18, 2014 to survive hostile conditions. Different kinds of forces like the hydrogen bonds and electrostatic force of attraction are responsible for holding the microbial cells together in a biofilm and the interstitial voids and the water channels play a significant role in the circulation of nutrients to every cell in the biofilm. The current review adds a note on bacterial biofilms and attempts to provide an insight on the aspects ranging from their harmful effects on the human community to their useful application. The review also discusses the possible therapeutic strategies to overcome the detrimental effects of biofilms. Keywords: bacterial biofilms, applications and antibiotic resistance, formation and development, therapeutic approaches Abbreviations: MIC, microbial influenced corrosion; MBC, microbial communities attached to a surface that can either be biotic minimum bactericidal concentration; MBEC, minimum biofilm or abiotic. -
Porphyromonas Gingivalis, Strain F0185 Catalog
Product Information Sheet for HM-1140 Porphyromonas gingivalis, Strain F0185 immediately upon arrival. For long-term storage, the vapor phase of a liquid nitrogen freezer is recommended. Freeze- thaw cycles should be avoided. Catalog No. HM-1140 Growth Conditions: For research use only. Not for human use. Media: Supplemented Tryptic Soy broth or equivalent Contributor: Tryptic Soy agar with 5% defibrinated sheep blood or Floyd E. Dewhirst, D.D.S., Ph.D., Senior Member of the Staff, Supplemented Tryptic Soy agar or equivalent Department of Microbiology and Jacques Izard, Assistant Incubation: Member of the Staff, Department of Molecular Genetics, The Temperature: 37°C Forsyth Institute, Cambridge, Massachusetts, USA Atmosphere: Anaerobic Propagation: Manufacturer: 1. Keep vial frozen until ready for use, then thaw. BEI Resources 2. Transfer the entire thawed aliquot into a single tube of broth. Product Description: 3. Use several drops of the suspension to inoculate an Bacteria Classification: Porphyromonadaceae, agar slant and/or plate. Porphyromonas 4. Incubate the tube, slant and/or plate at 37°C for 24 to Species: Porphyromonas gingivalis 72 hours. Broth cultures should include shaking. Strain: F0185 Original Source: Porphyromonas gingivalis (P. gingivalis), Citation: strain F0185 was isolated in December 1985 from the Acknowledgment for publications should read “The following tooth of a patient diagnosed with juvenile periodontitis in reagent was obtained through BEI Resources, NIAID, NIH as the United States.1 part of the Human Microbiome Project: Porphyromonas Comments: P. gingivalis, strain F0185 (HMP ID 1988) is a gingivalis, Strain F0185, HM-1140.” reference genome for The Human Microbiome Project (HMP). HMP is an initiative to identify and characterize Biosafety Level: 2 human microbial flora. -
Pseudomonas Aeruginosa Diversification During Infection Development in Cystic Fibrosis Lungs—A Review
Pathogens 2014, 3, 680-703; doi:10.3390/pathogens3030680 OPEN ACCESS pathogens ISSN 2076-0817 www.mdpi.com/journal/pathogens Review Pseudomonas aeruginosa Diversification during Infection Development in Cystic Fibrosis Lungs—A Review Ana Margarida Sousa and Maria Olívia Pereira * CEB—Centre of Biological Engineering, LIBRO—Laboratório de Investigação em Biofilmes Rosário Oliveira, University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal; E-Mail: [email protected] * Author to whom correspondence should be addressed; E-Mail: [email protected]; Tel.: +351-253-604402; Fax: +351-253-604429. Received: 1 July 2014; in revised form: 11 August 2014 / Accepted: 12 August 2014 / Published: 18 August 2014 Abstract: Pseudomonas aeruginosa is the most prevalent pathogen of cystic fibrosis (CF) lung disease. Its long persistence in CF airways is associated with sophisticated mechanisms of adaptation, including biofilm formation, resistance to antibiotics, hypermutability and customized pathogenicity in which virulence factors are expressed according the infection stage. CF adaptation is triggered by high selective pressure of inflamed CF lungs and by antibiotic treatments. Bacteria undergo genetic, phenotypic, and physiological variations that are fastened by the repeating interplay of mutation and selection. During CF infection development, P. aeruginosa gradually shifts from an acute virulent pathogen of early infection to a host-adapted pathogen of chronic infection. This paper reviews the most common changes undergone by P. aeruginosa at each stage of infection development in CF lungs. The comprehensive understanding of the adaptation process of P. aeruginosa may help to design more effective antimicrobial treatments and to identify new targets for future drugs to prevent the progression of infection to chronic stages.