POWER OPERATIONS 1. 2/13: Talk by Jacob Lurie This Is Motivation For

Total Page:16

File Type:pdf, Size:1020Kb

POWER OPERATIONS 1. 2/13: Talk by Jacob Lurie This Is Motivation For POWER OPERATIONS Abstract. Notes from the spring 2014 \Thursday seminar" at Harvard. TEXed by Akhil Mathew, who takes full responsibility for all errors. 1. 2/13: Talk by Jacob Lurie This is motivation for what we're talking about in the Thursday seminar this semester. I'm going to start by talking about Dijkgraaf-Witten theory. Let G be a finite group, and fix η 2 Hn(BG; C×). If M n is an n-dimensional manifold, you can associate to it a number Z(M n). Namely, R ∗ X n P η Z(M n) = M jAut(P )j iso classes of G bundles P The numerator is as follows. G-bundles on M are given by maps M ! BG. Given a G-bundle P , identified with a map P : M ! BG, you get a class by pulling back a class in Hn(M; C×). You can then integrate this class and then come up with a class in C×. Example 1. If η = 1, then this is counting the number of G-bundles on M with multiplicity. In general, it is some twisted version of that count. This gives an invariant of n-manifolds, and this gives the top-level of a topological quantum field theory. If M is a manifold of dimension n − 1, then there is an analogous procedure that you can perform that you can use to perform a complex vector space. Again, you're going to think about all G-bundles on M, but instead of thinking of them one at a time, consider the classifying space of them. That is, consider Map(M n−1; BG). If I take this, there is a map : Map(M; BG) × M ! BG; given by evaluation. Moreover, we have a projection map p : Map(M; BG) × M ! Map(M; BG): If I start with η 2 Hn(BG; C×), pull back along the evaluation map to give a class ∗η in Hn(Map(M; BG)× × R ∗ 1 × M; C ). Then, consider the pushforward along p η 2 H (Map(M; BG); C ). Now H1 with coefficients in C× parametrizes local systems of 1-dimensional complex vector spaces. R ∗ So this class η classifies a local system LM on Map(M; BG). Earlier, we got a locally constant function | we got something in H0. We were able to sum it over the various connected components. So, we define n−1 Z(M ) = Γ(Map(M; BG); LM ): This is an invariant of any n − 1-dimensional manifold; it's a finite-dimensional complex vector space. The mapping space Map(M; BG) has finitely many connected components and each connected com- ponent is the classifying space of a finite group (the automorphism group of a finite G-bundle). So giving a one-dimensional local system means giving a bunch of characters of a bunch of finite groups and taking global sections means taking invariants and adding them up. How are these (n − 1)-dimensional invariants related to these n-dimensional invariants? To think about this, consider an (n − 1)-manifold M n−1, another N n−1, and an n-manifold B giving a bordism between the two. In this case, you can look at Map(B; BG), and that projects onto Map(M; BG) × Map(N; BG). So we get maps f : Map(B; BG) ! Map(M; BG); g : Map(N; BG): Date: May 11, 2014. 1 2 POWER OPERATIONS ∗ ∗ We get local systems LM ; LN on the two targets and we can pull back to get f LM ; g LN on Map(B; BG). These are related. These local systems came from pulling back certain cohomology classes on BG and integrating them. Inside this manifold B, the fundamental cycles of M and N are homologous { B itself is a boundary between them. So in B, integrating along M and integrating along N are ∗ ∗ identified. So we should get f LM ' g LN . If you do this process at the level of cycles, you get a ∗ ∗ preferred choice of isomorphism f LM ' g LN . So, given a section of LM , I can pull it back and push it forward to get a section of LN . So, I get a map Z(B) Z(M n−1) ! Z(N n−1); and when M; N are empty, then the two vector spaces are canonically C, so the map is multiplication by the number we encountered earlier. More precisely: n−1 0 Definition 1. Z(M ) = H (Map(M; BG; LM ). (There is no higher cohomology since we are over C.) Now there is a good way of pulling back cohomology classes, but not pushing forward. So, crucial to this discussion was the fact that homology and cohomology were the same | so I could push forward either. At the level of vector spaces, this comes from the fact that if V is a vector space over C with G an action of a finite group G, then V ' VG canonically. Two years ago in this seminar, we proved that there is a similar phenomenon of homology and cohomology giving you the same answer in a different context. Let X be a space which has finitely many finite homotopy groups. A space like BG is such a space. Moreover, Map(M; BG) is such a space. Let L be a local system on X of K(n)-local spectra. Then we can talk about C∗(X; L) and C∗(X; L) (\chains" and \cochains" of L on X). Definition 2. C∗(X; L) is the homotopy limit over X of L.(L is a diagram of spectra parametrized by X.) Similarly, C∗(X; L) is the homotopy colimit of this diagram. The homotopy colimit is taken in the world of K(n)-local spectra. Two years ago, we discussed the fact that if X is as above, there is a canonical equivalence ∗ C∗(X; L) ' C (X; L): The slogan is that such a space, from the point of view of K(n)-local homotopy theory, behaves like a zero-dimensional space: homology and cohomology are canonically the same. A consequence is that you can run the same construction for Dijkgraaf-Witten theory. Let's restart the discussion. Let E be a Morava E-theory of height n. I'll review what these are a little later. This is some kind of cohomology theory, and a theorem of Goerss-Hopkins-Miller implies that it is a well-structured cohomology theory. E has an essentially unique structure of an E1-ring. There is a multiplication in E-cohomology, but somehow it satisfies all the commutativity that you would want up to coherent homotopy. 1 The upshot is that it makes sense to consider GL1(E) ⊂ Ω E, and this is the subspace of those 1 connected components in Ω E which are units at π0. That's a space that you can assign to any kind of multiplication on a spectrum. You just need a way of picking out the units in π0. But if you've got one of these fancy multiplications, then this GL1(E) is actually an infinite loop space. Any operad that acts on E as a spectrum will act on its units as a space. So GL1(E) gets an action of an E1-operad, 1 so you can deloop it as many times as you want. Therefore, you can write GL1(E) = Ω gl1(E) where gl1(E) is a spectrum. n Now it makes sense to talk about cohomology. Start with a cohomology class ηn 2 H (BG; gl1(E)). By definition, this is n −n H (BG; gl1(E)) = [BG; Ω GL1(E)]: Starting with η, we can mimic all the previous constructions. At various points, we need to invoke the ambidexterity theorem to avoid distinguishing between homology and cohomology. This means that we can do the following: POWER OPERATIONS 3 (1) To every closed n-manifold M, assign Z(M). Before it was a complex number; now it's a number in π0E. (2) Given an n − 1-manifold, assign to it Z(M n−1), which is going to be an E-module spectrum. These are related to each other in the previous way { functoriality for bordisms. All of this is motivation; it's not going to be what the seminar is going to be about. But I'm telling you that once you choose such an element η, you can construct a bunch of manifold invariants. If you thought that this was interesting and wanted to get manifold invariants, you might ask what types of η to choose. Now we're getting to the subject matter of this seminar. ∗ Question: What can we say about H (BG; gl1(E))? That's sort of like asking what this spectrum gl1(E) looks like. Maybe I don't care about everything here. I just want to map reasonably simple things into it, like the classifying spaces of finite groups. Let's start with this question of what gl1(E) looks like. How might you answer this question? It's a spectrum, so it's got homotopy groups. What are its homotopy groups? That's pretty easy. Note that gl1(E) is the connective delooping of GL1(E), so no homotopy groups in negative degrees, by definition. The zeroth space determines the other homotopy groups, so we get 8 0 if ∗ < 0 <> × π∗gl1(E) = (π0E) if ∗ = 0 : > :π∗E if∗ > 0 Just knowing the homotopy groups of a spectrum is not necessarily so useful if we want to know, for instance, how to map into it.
Recommended publications
  • Adams Operations and Symmetries of Representation Categories Arxiv
    Adams operations and symmetries of representation categories Ehud Meir and Markus Szymik May 2019 Abstract: Adams operations are the natural transformations of the representation ring func- tor on the category of finite groups, and they are one way to describe the usual λ–ring structure on these rings. From the representation-theoretical point of view, they codify some of the symmetric monoidal structure of the representation category. We show that the monoidal structure on the category alone, regardless of the particular symmetry, deter- mines all the odd Adams operations. On the other hand, we give examples to show that monoidal equivalences do not have to preserve the second Adams operations and to show that monoidal equivalences that preserve the second Adams operations do not have to be symmetric. Along the way, we classify all possible symmetries and all monoidal auto- equivalences of representation categories of finite groups. MSC: 18D10, 19A22, 20C15 Keywords: Representation rings, Adams operations, λ–rings, symmetric monoidal cate- gories 1 Introduction Every finite group G can be reconstructed from the category Rep(G) of its finite-dimensional representations if one considers this category as a symmetric monoidal category. This follows from more general results of Deligne [DM82, Prop. 2.8], [Del90]. If one considers the repre- sentation category Rep(G) as a monoidal category alone, without its canonical symmetry, then it does not determine the group G. See Davydov [Dav01] and Etingof–Gelaki [EG01] for such arXiv:1704.03389v3 [math.RT] 3 Jun 2019 isocategorical groups. Examples go back to Fischer [Fis88]. The representation ring R(G) of a finite group G is a λ–ring.
    [Show full text]
  • ADAMS OPERATIONS on HIGHER K-THEORY Daniel R. Grayson
    February 6, 1995 ADAMS OPERATIONS ON HIGHER K-THEORY Daniel R. Grayson University of Illinois at Urbana-Champaign Abstract. We construct Adams operations on higher algebraic K-groups induced by oper- ations such as symmetric powers on any suitable exact category, by constructing an explicit map of spaces, combinatorially defined. The map uses the S-construction of Waldhausen, and deloops (once) earlier constructions of the map. 1. Introduction. Let P be an exact category with a suitable notion of tensor product M ⊗ N, symmetric power SkM,andexteriorpowerΛkM. For example, we may take P to be the category P(X) of vector bundles on some scheme X.OrwemaytakeP to be the category P(R)of finitely generated projective R-modules, where R is a commutative ring. Or we may fix a group Γ and a commutative ring R and take P to be the category P(R, Γ) of representations of Γ on projective finitely generated R-modules. We impose certain exactness requirements on these functors, so that in particular the tensor product is required to be bi-exact, and this prevents us from taking for P a category such as the category M(R) of finitely generated R-modules. In a previous paper [5] I showed how to use the exterior power operations on modules to construct the lambda operations λk on the higher K-groups as a map of spaces λk : |GP| → |GkP| in a combinatorial fashion. Here the simplicial set GP, due to Gillet and me [3], provides an alternate definition for the K-groups of any exact category, KiP = πiGP, which has the advantage that the Grothendieck group appears as π0 and is not divorced from the higher K-groups.
    [Show full text]
  • Local SU-Bordism
    On K(1)-local SU-bordism Dissertation zur Erlangung des Doktorgrades (Dr. rer. nat.) der Fakult¨at f¨urMathematik der Ruhr-Universit¨at Bochum vorgelegt von Dipl.-Math. Holger Reeker Mai 2009 Contents Chapter 1. Introduction and statement of results 5 Chapter 2. Some homotopical algebra 9 1. Generalized cohomology theories and spectra 9 2. Symmetric spectra over topological spaces 11 3. Complex oriented theories and computational methods 14 4. Bousfield localization of spectra 15 5. Algebraic manipulations of spectra 18 6. A resolution of the K(1)-local sphere 20 7. Thom isomorphism 21 Chapter 3. The algebraic structure of K(1)-local E∞ ring spectra 23 1. Operads 23 2. Dyer-Lashof operations for K(1)-local E∞ spectra 25 3. The θ-algebra structure of π0K ∧ MU 26 4. The θ-algebra structure of π0K ∧ MSU 29 Chapter 4. Splitting off an E∞ summand Tζ 31 1. The image of MSU∗ → MU∗ 32 2. Formal group laws and Miscenkos formula 34 3. Construction of an SU-manifold with Aˆ = 1 38 4. Construction of an Artin-Schreier class 41 5. Construction of an E∞ map Tζ → MSU 41 6. Split map - direct summand argument 42 0 Chapter 5. Detecting free E∞ summands TS 45 1. Introduction to Adams operations in K-theory 45 ∞ 2. Calculating operations on K∗CP 47 3. Bott’s formula and cannibalistic classes 52 4. Spherical classes in K∗MSU 55 5. Umbral calculus 57 Chapter 6. Open questions and concluding remarks 61 Bibliography 63 3 CHAPTER 1 Introduction and statement of results One of the highlights in algebraic topology was the invention of generalized homology and cohomology theories by Whitehead and Brown in the 1960s.
    [Show full text]
  • Adams Operations in Differential Algebraic K-Theory
    Adams Operations in Differential Algebraic K-theory Dissertation zur Erlangung des Doktorgrades der Naturwissenschaften (Dr. rer. nat.) der Fakult¨atf¨urMathematik der Universit¨atRegensburg vorgelegt von Christoph Schrade aus Leipzig im Jahr 2018 Promotionsgesuch eingereicht am: 29.05.2018 Die Arbeit wurde angeleitet von: • Prof. Dr. Ulrich Bunke • Dr. Georg Tamme 1 Contents 1. Introduction 3 2. 1-categorical background 7 2.1. General theory 7 2.2. Higher commutative algebra 25 2.3. Additive and stable 1-categories 41 3. Multiplicative Adams operations on algebraic K-theory 50 3.1. The Snaith model for the motivic K-theory spectrum 51 3.2. Construction of the Adams operations 61 4. Adams operations on differential algebraic K-theory 66 4.1. The Beilinson regulator as a map of ring spectra 67 4.2. Construction of the differential refinement of the Adams operations 79 Appendix A. Segre embeddings and commutative algebra structure on P1 95 References 101 3 1. Introduction Adams operations first appeared in the context of K-theory of topo- logical spaces. For a finite CW-complex X there is the zeroth topolog- ical K-group K0(X) constructed by group completion of the monoid Vect(X) of isomorphism classes of finite rank vector bundles over X with the direct sum operation. In fact there is even a ring structure on K0(X) which is induced by the tensor product operation of vector bundles. For a natural number k, the k-th Adams operation is then a ring homomorphism k : K0(X) ! K0(X) which is characterized by the property that it sends the class of a line bundle to the class of its k-th tensor power.
    [Show full text]
  • A-RINGS and ALGEBRAIC K-THEORY Howard L. HILLER* We
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Elsevier - Publisher Connector Journal of Pure and Applied Algebra 20 (1981) 241-266 North-Holland Publishing Company A-RINGS AND ALGEBRAIC K-THEORY Howard L. HILLER* Mathematical Institute, Oxford University, Oxford OX1 3LB, England Communicated by H. Bass Received 6 December 1979 Let A be a commutative ring with identity. Loday [14] and others have described the mutliplicative structure (both graded and ungraded) on the higher algebraic K-theory of A. In [ 191 and [24], Quillen has indicated the existence of a A-ring structure on the “K-cohomology” groups K(X, A) = [X, K,(A) x BGL(A)+]. The purpose of this paper is to develop some of this structure and show how it can be useful in obtaining information about the K-groups themselves. In particular, standard techniques will then allow one to construct Adams operations Gk in algebraic K-theory. These operations enjoy some of the attractive properties of their counterparts in the K-theory of complex vector bundles over a finite complex. Indeed, with this machinery and the itale Chern classes of Soul6 [27], one can hope to lift other results from the topological to the algebraic setting. We now give a more detailed description of the contents of this paper. In Section 1 we rapidly review the fundamentals of the Quillen K-theory and construct a natural transformation q connecting representations and K-theory using certain cohomological input from [24]. In Section 2 we demonstrate an important universal property that q enjoys and indicate its usefulness in producing maps between algebraic K-groups.
    [Show full text]
  • Klassen Theorie, December 26, 2016 to January 7, 2017
    Klassen Theorie B.Sury School on K-theory and its applications December 26, 2016 - January 7, 2017 I.S.I. Bangalore . "The way I first visualized a K-group was as a group of classes of objects of an abelian (or more generally, additive) category, such as coherent sheaves on an algebraic variety, or vector bundles, etc. I would presumably have called this group C(X) (X being a variety or any other kind of space), C the initial letter of class, but my past in functional analysis may have prevented this, as C(X) designates also the space of continuous functions on X (when X is a topological space). Thus, I reverted to K instead of C, since my mother tongue is German, Class = Klasse (in German), and the sounds corresponding to C and K are the same" .......................Alexander Grothendieck. 1 Introduction In 1957, Grothendieck (handwritten notes) formulated the "Grothendieck- Riemann-Roch theorem". In 1958, there was an exposition of this by Borel & Serre. In 1959, Bott proved his periodicity theorems on stable homotopy groups. His proof involved Riemannian geometry and Morse theory. In 1961, Atiyah & Hirzebruch realized that Bott periodicity is related to a new K- theory (topologial version) analogous to Grothendieck's algebraic K-theory. They developed the topological theory which followed a similar pattern. A new feature was that they could define derived functors K−n and Bott peri- odicity simplified to the statements −n ∼ −n−2 −n ∼ −n−8 KC = KC ;KR = KR : This K-theory is an extraordinary cohomology theory (satisfies all the axioms of cohomology theories save the dimension axiom).
    [Show full text]
  • Journal of Pure and Applied Algebra Adams Operations and Λ-Operations
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Elsevier - Publisher Connector Journal of Pure and Applied Algebra 213 (2009) 409–420 Contents lists available at ScienceDirect Journal of Pure and Applied Algebra journal homepage: www.elsevier.com/locate/jpaa Adams operations and λ-operations on classifying oriented cohomology theories José Malagón-López Department of Mathematics, University of Western Ontario, London, Ontario N6A 5B7, Canada article info a b s t r a c t Article history: Adams operations on algebraic cobordism with rational coefficients are defined and shown Received 19 October 2007 to descend to the oriented cohomology theories with rational coefficients which are Received in revised form 21 June 2008 universal with respect to their group law. With the induced structure of special λ-ring Available online 30 August 2008 ∗ we show that we can regard the γ -filtration on CH as a deformation of the classical γ - Communicated by C.A. Weibel Q filtration on K0 . Q MSC: ' 2008 Elsevier B.V. All rights reserved. 14F43 14C15 19A99 1. Introduction In [6] Levine and Morel introduced the notion of an oriented cohomology theory (OCT) on the category of smooth quasi- projective varieties over a field k. An important feature of these theories is the existence of a formal group law describing the behaviour of the first Chern class with respect to the tensor product of line bundles. When char.k/ D 0, in [6] the theory X 7! Ω∗.X/, called algebraic cobordism, is constructed as the universal OCT in the sense that for any such theory A∗, there is a unique map Ω∗ ! A∗ of OCTs so that the induced map on the coefficient rings is precisely the map classifying the ∗ ∗ formal group law of A .
    [Show full text]
  • The Hopf Invariant One Problem
    The Hopf invariant one problem Ishan Banerjee September 21, 2016 Abstract This paper will discuss the Adams-Atiyah solution to the Hopf invari- ant problem. We will first define and prove some identities concerning the Adams operations. Then we will look at the proof of the ordinary Hopf invariant one problem. Finally we will look at some results concerning the pth cup power mod p and the mod p version of the Hopf invariant problem. Contents 1 Introduction 1 2 Preliminaries on the Hopf invariant one problem 2 3 Adams Operations 3 4 The Hopf invariant one problem 6 5 Eigenspaces of k 8 6 Integral elements 9 7 The mod p Hopf invariant problem 11 1 Introduction Given a map f : S2n−1 ! Sn, one can assign to it a number, which we call the Hopf invariant, whose definition involves only ordinary cohomology theory. One can ask the following question: for which values of n do we have a map f with Hopf invariant one? This question turns out to have interesting consequences in geometry. It is related to both the parallelizability of spheres and the existence of division algebra structures on Rn. Adams had already answered the question in 1960 using only ordinary co- homology, but there is a much simpler proof of the theorem using K-theory due to Adams and Atiyah. 1 In this paper we will go through the proof using K-theory. We assume the reader is familiar with the basics of K-theory and ordinary cohomology theory. It may be possible to understand the paper without this background if the reader is willing to assume some basic facts on cohomology on faith, as we do not require that the reader knows the proofs of any nontrivial theorem about cohomology theory or K-theory.
    [Show full text]
  • Annals of Mathematics
    Annals of Mathematics Genetics of Homotopy Theory and the Adams Conjecture Author(s): Dennis Sullivan Source: Annals of Mathematics, Second Series, Vol. 100, No. 1 (Jul., 1974), pp. 1-79 Published by: Annals of Mathematics Stable URL: http://www.jstor.org/stable/1970841 Accessed: 07-12-2015 16:50 UTC Your use of the JSTOR archive indicates your acceptance of the Terms & Conditions of Use, available at http://www.jstor.org/page/ info/about/policies/terms.jsp JSTOR is a not-for-profit service that helps scholars, researchers, and students discover, use, and build upon a wide range of content in a trusted digital archive. We use information technology and tools to increase productivity and facilitate new forms of scholarship. For more information about JSTOR, please contact [email protected]. Annals of Mathematics is collaborating with JSTOR to digitize, preserve and extend access to Annals of Mathematics. http://www.jstor.org This content downloaded from 146.96.147.130 on Mon, 07 Dec 2015 16:50:45 UTC All use subject to JSTOR Terms and Conditions Geneticsof homotopytheory and the Adams conjecture By DENNIS SULLIVAN Dedicated to Norman Steenrod This is the firstin a seriesof papersdevoted to the invariantsand classi- ficationof compactmanifolds. One mighthope for a classificationtheory of manifoldshaving the follow- ing form: First, there is an understandablealgebraic descriptionof the homotopytheory of manifolds. Second, the salient geometricproperties of manifoldsbeyond homotopy theory can be isolated and understood. Third, the algebraic structureof these geometricinvariants can be determined. And fourth,this structurecan be successfullyintertwined with the algebraic descriptionof the homotopytheory of manifoldsto completethe theory.
    [Show full text]
  • Generalized Modular Forms and the Cooperation Algebra
    New York Journal of Mathematics New York J. Math. 1 (1995) 39–74. Operations and Cooperations in Elliptic Cohomology, Part I: Generalized modular forms and the cooperation algebra Andrew Baker Abstract. This is the first of two interconnected parts: Part I contains the geometric theory of generalized modular forms and their connections with the cooperation algebra for elliptic cohomology, E``∗E``, while Part II is devoted to the more algebraic theory associated with Hecke algebras and stable oper- ations in elliptic cohomology. We investigate the structure of the stable operation algebra E``∗E`` by first determining the dual cooperation algebra E``∗E``. A major ingredient is our identification of the cooperation algebra E``∗E`` with a ring of general- ized modular forms whoses exact determination involves understanding certain integrality conditions; this is closely related to a calculation by N. Katz of the ring of all ‘divided congruences’ amongst modular forms. We relate our present work to previous constructions of Hecke operators in elliptic cohomology. We also show that a well known operator on modular forms used by Ramanujan, Swinnerton-Dyer, Serre and Katz cannot extend to a stable operation. Introduction This paper is in two interelated parts: Part I contains the geometric theory of generalized modular forms and their connections with the cooperation algebra E``∗E``, while Part II will be devoted to the more algebraic theory associated with Hecke algebras and operations in elliptic cohomology. In our earlier paper [6], we defined operations in the ‘level 1’ version of ellip- tic cohomology E``∗( ) which restricted to the classical Hecke operators on the coefficient ring E``∗ (defined to be a ring of modular forms for the full modular group SL2(Z)).
    [Show full text]
  • Chern Classes and Compatible Power Operations in Inertial K-Theory
    CHERN CLASSES AND COMPATIBLE POWER OPERATIONS IN INERTIAL K-THEORY DAN EDIDIN, TYLER J. JARVIS, AND TAKASHI KIMURA Abstract. Let X = [X/G] be a smooth Deligne-Mumford quotient stack. In a previous paper the authors constructed a class of exotic products called inertial products on K(IX ), the Grothendieck group of vector bundles on the inertia stack IX . In this paper we develop a theory of Chern classes and compatible power operations for inertial products. When G is diagonalizable these give rise to an augmented λ-ring structure on inertial K-theory. One well-known inertial product is the virtual product. Our results show that for toric Deligne-Mumford stacks there is a λ-ring structure on inertial K-theory. As an example, we compute the λ-ring structure on the virtual K- theory of the weighted projective lines P(1, 2) and P(1, 3). We prove that after tensoring with C, the augmentation completion of this λ-ring is isomorphic as a λ-ring to the classical K-theory of the crepant resolutions of singularities of the coarse moduli spaces of the cotangent bundles T∗P(1, 2) and T∗P(1, 3), respectively. We interpret this as a manifestation of mirror symmetry in the spirit of the Hyper-K¨ahler Resolution Conjecture. 1. Introduction The work of Chen and Ruan [CR02], Fantechi-G¨ottsche [FG03], and Abramovich- Graber-Vistoli [AGV02, AGV08] defined orbifold products for the cohomology, Chow groups and K-theory of the inertia stack IX of a smooth Deligne-Mumford ∗ stack X . Moreover, there is an orbifold Chern character Ch: K(IX ) → A (IX )Q which respects these products [JKK07].
    [Show full text]
  • Topological K-Theory of the Classifying Spaces of Cyclic and Dihedral Groups
    Hacettepe Journal of Mathematics and Statistics Volume 42 (4) (2013), 381 – 385 TOPOLOGICAL K-THEORY OF THE CLASSIFYING SPACES OF CYCLIC AND DIHEDRAL GROUPS Mehmet Kırdar ∗ Received 28 : 06 : 2012 : Accepted 01 : 11 : 2012 Abstract We make a little survey and also present some new results on the topo- logical K-theory of the classfying spaces of cyclic and dihedral groups. Keywords: K-Theory, Representation Theory, Classifying Space 2000 AMS Classification: 55R50; 20C10 1. Introduction The K-ring of a CW -complex X, denoted by K(X), is defined by the ring completion of the semi-ring of the isomorphism classes of complex vector bundles over X. The KO- ring of X, denoted by KO(X), is defined similarly, by means of real vector bundles over X. Similar rings can be constructed for the other fields like the field of quaternions or the finite fields. One of the most interesting questions of the topological K-theory is to determine these rings when X is the classifying space BG of a group, in particular a finite group, G. See, for example, the description given in [5] for the KO-ring of the skeletons of the classifying space of the cyclic group of order 2n. In this note, we will make a brief survey and also present some new results for the K-rings and KO-rings of the classifying space of the cyclic and the dihedral groups. Before starting the presentation, we should mention two important theorems in topo- logical K-theory. Firstly, there is the Atiyah-Segal completion theorem (ASCT) which states that K(BG) is isomorphic to the completion of the complex representation ring of G at the augmentation ideal, that is, ˆ K(BG) = R(G)I Basically, this theorem says that K(BG) is another way of writing the elements of R(G), as formal sums of their reductions and what we are doing here is not more than represen- tation theory with a little geometry added.
    [Show full text]